LTE-Advanced 关键技术及标准进展(DOC 10页)
- 格式:doc
- 大小:217.00 KB
- 文档页数:11
LTE技术标准中的关键技术及其演进杨鹏,李波(电信研究院泰尔实验室无线通信部,北京,100045)摘要:本文介绍了3G演进技术,首先分析了LTE技术的重要特征,高频谱效率和宽带化是其标志性特点;接着对LTE中物理层传输技术和网络结构这两部分中关键技术进行了详细的研究,突出了LTE的技术创新处;最后给出了目前两种不同制式的LTE演进路线图,并重点讨论了TD-LTE的发展现状。
关键字:LTE,关键技术,TD-LTE一、 引言随着互联网时代的到来,用户越来越习惯随处享用宽带接入服务,移动宽带技术将成为首选途径。
预计到2012年,全球宽带用户总数将达到18亿,其中约三分之二将是移动宽带用户,这势必对移动通信网络提出更加苛求的要求:更高的峰值速率和更低的时延,更高的频谱利用率和灵活性,以及更高的系统容量。
因此,3GPP和3GPP2相应启动了3G技术长期演进(LTE,Long Term Evolution)的研究工作[1-5],这项受人瞩目的技术被称为“演进型3G” (E3G,Evolved 3G)。
本文是以LTE技术为中心,详细介绍了LTE的特征,关键技术及其标准的演进。
二、 LTE技术特征LTE作为3G的下一代演进技术,具有100Mbit/s的数据下载能力。
3GPP启动的LTE 项目的主要性能目标包括:1.通信速率的提高,下行峰值速率达到100Mbps、上行达到50Mbps。
2.提高了频谱效率,下行链路为5(bit/s)/Hz,(3-4倍于R6 HSDPA);上行链路为2.5(bit/s)/Hz,(2-3倍于R6 HSUPA)。
3.以分组域业务为主要目标,系统在整体架构上将基于分组交换。
4.QoS保证,通过系统设计和严格的QoS机制,保证实时业务(如V oIP)的服务质量。
5.系统部署灵活,能够支持1.4MHz-20MHz间的多种系统带宽,并支持“paired”和“unpaired”的频谱分配,保证将来在系统部署上的灵活性。
LTE移动通信技术任务4 LTE关键技术LTE 移动通信技术任务 4:LTE 关键技术在当今数字化的时代,移动通信技术的发展日新月异,为人们的生活和工作带来了极大的便利。
LTE(Long Term Evolution,长期演进)作为一种先进的移动通信技术,具有高速率、低延迟、大容量等显著优势。
而这些优势的实现,离不开一系列关键技术的支持。
接下来,让我们深入探讨一下 LTE 的关键技术。
一、正交频分复用(OFDM)技术OFDM 技术是 LTE 系统的核心技术之一。
它的基本原理是将高速的数据流分解为多个并行的低速子数据流,然后分别调制到相互正交的多个子载波上进行传输。
与传统的频分复用技术相比,OFDM 具有诸多优点。
首先,它能够有效地抵抗多径衰落。
在无线通信环境中,信号会因为建筑物、地形等障碍物的反射和散射而产生多个路径,导致接收端接收到的信号出现延迟和衰减。
OFDM 通过将宽带信道划分成多个窄带子信道,使得每个子信道的带宽小于信道的相干带宽,从而减少了多径衰落的影响。
其次,OFDM 具有较高的频谱利用率。
由于子载波之间相互正交,使得它们可以在频谱上紧密排列,从而提高了频谱资源的利用效率。
此外,OFDM 还便于实现动态频谱分配。
通过灵活地调整子载波的分配,可以根据用户的需求和信道状况,合理地分配频谱资源,提高系统的容量和性能。
二、多输入多输出(MIMO)技术MIMO 技术是 LTE 实现高速数据传输的另一个重要手段。
它通过在发射端和接收端使用多个天线,形成多个并行的空间信道,从而在不增加带宽和发射功率的情况下,显著提高系统的容量和频谱利用率。
MIMO 技术主要包括空间复用和空间分集两种工作模式。
空间复用模式下,多个数据流同时在不同的天线上传输,从而提高数据传输速率。
而空间分集模式则通过在多个天线上发送相同的数据,或者对接收端接收到的多个信号进行合并处理,来提高信号的可靠性和抗衰落能力。
在实际应用中,MIMO 技术可以根据信道条件和系统需求,灵活地切换工作模式,以达到最佳的性能。
LTE—Advanced关键技术研究作者:阿娜古丽·阿布拉来源:《数字技术与应用》2013年第12期摘要:文章从当今热门的移动4G网络通信的发展现状入手,引出4G网络通信中的LTE-Advanced的基本概念,进而简单介绍了LTE-Advanced的主要技术参数,然后详细分析并研究了LTE-Advanced技术中的的几项关键技术并进行了深入的分析研究,最后在分析研究的基础上对LTE-Advanced的发展前景作出展望。
关键词:4G网络通信 LTE-Advanced 3GPP 载波聚合中继技术(Relay)多点协作(CoMP)中图分类号:TN929.5 文献标识码:A 文章编号:1007-9416(2013)12-0022-011 引言当今移动通信技术步入4G时代,2013年6月韩国三星发布了LTE Advanced版的Galaxy S4,LTE-Advanced网络采用了当前一代LTE的技术,并在其基础上进行了演进。
目前,LTE-Advanced网络的下载速度最高达102Mbps,比中国普通家用宽带无线传输速度快100倍以上。
从理论上讲,LTE-Advanced网络的数据传输速度还能更快,根据最新的研究数据表明,LTE-Advanced网络数据下载速度最高能达到150Mbps,数据上传速度最高能达到37.5Mbps。
2 LTE-Advanced基本概念及主要技术参数LTE-Advanced(LTE-A)是LTE(Long Term Evolution,长期演进)的后续演进,是LTE-Advanced的简称,2008年3月开始,2008年5月确定需求。
LTE-Advanced是LTE (Long Term Evolution)的演进,但其并非5G,而是对现存LTE技术的更高效运用。
LTE-Advanced的技术参数如下:带宽为100MHz;理论下行峰值速率为1 Gbps,理论上行峰值速率为500 Mbps;上行峰值频谱利用率为15Mbps/Hz,下行峰值频谱利用率为30Mbps/Hz。
LTE向IMT-Advanced标准化演进摘要本文综述了LTE R10/LTE-Advanced 标准化发展概况。
首先简单介绍了LTE 标准版本及其关键技术,然后讨论了IMT-Advanced的需求。
对LTE R10将要引进的载波聚合、多天线增强、中继及异构部署增强等技术进行了完善和增强。
最后,性能仿真评估结果显示,LTE R10的各项系统性能指标均达到或者甚至超过了ITU IMT-Advanced技术要求。
引言第四代(4G)移动宽带系统是基于高度灵活的无线接入技术的长期演进(LTE)而发展起来的,3GPP LTE正处在迅速发展中,所有的版本都是基于LTE 标准实现的。
2008年第一个可商用的LTE R8版本系列规范发布,它的下行峰值速率和上行峰值速率分别为300Mb/s和75Mb/s,单向传输延时低于5ms,频谱效率大大增强。
LTE具有较好的频谱灵活性,不但支持时分双工(TDD)和频分双工(FDD),而且希望从早期3GPP技术如TD-SCDMA、宽带CDMA(WCDMA)、HSPA以及3GPP2 CDMA2000技术的基础上平滑演进。
为满足未来移动通信的需求,LTE继续致力于无线接入的研究。
2009年LTE R9的标准化工作完成。
R9版本在LTE核心标准的基础上增加了广播/多播服务、配置服务以及基于LTE的定位技术和双流波束赋形技术。
目前,3GPP 2010年底完成LTE R10版本的制定,并进一步扩展LTE的性能,使其远远超过R8/9。
其中最重要的目标是LTE R10各项系统性能指标均超过国际电信联盟(ITU) IMT-Advanced技术要求。
为了响应关于ITU IMT-Advanced 国际建议的工作,将LTE Release 10以及后续版本又称为LTE-Advanced。
本文首先简要的介绍了LTE R8/9和IMT-Advanced,在此基础上详细的分析了R10版本的研究。
最后通过仿真结果显示LTE R10的各项系统性能指标均达到或者超过了ITU IMT-Advanced技术要求。
TD-LTE技术标准与实践230⑦ TD-LTE-Advanced的终端可以工作在TD-LTE的网络;⑧ TD-LTE-Advanced系统增强相对于TD-LTE的网络和终端来说必须是透明的。
在WRC-07大会上定义了新频段用于IMT,同时原先定义的IMT-2000频段改用于IMT。
新定义的频段如下:① 450~470MHz;② UHF频段(690~806/862MHz);③ 2.3~2.4GHz;④C频段(3.4~3.6GHz)10.2.3 TD-LTE-Advanced关键技术介绍针对ITU关于4G方案的需求,在2009年LTE的 R8版本标准冻结后,LTE-Advanced 标准化工作主要考虑从以下方面技术进行增强。
1.载波聚合技术(1)技术原理ITU IMT-Advanced系统要求的最大带宽不小于40MHz,考虑到现有的频谱分配方式和规划,无线频谱已经被2G、3G及卫星等通信系统大量占用,很难找到足以承载IMT-Advanced 系统宽带的整段频带,也面临着如何有效地利用现有剩余离散频段的问题。
同时LTE虽然支持最大20MHz的多种传输带宽,但为了支持更高的峰值速率,如下行1Gbit/s,传输带宽需要扩展到100MHz。
基于这样的现实情况,3GPP在LTE-Advanced中开始使用载波聚合技术,用来解决系统对频带资源的需求,同时为了更好地兼容LTE现有标准、降低标准化工作的复杂度及支持灵活的应用场景。
载波聚合(CA,Carrier Aggregation),即通过联合调度和使用多个成员载波(CC,Component Carrier)上的资源,使得LTE-Advanced系统可以支持最大100MHz的带宽,从而能够实现更高的系统峰值速率。
如图10-2所示,将可配置的系统载波定义为成员载波,每个成员载波的带宽都不大于之前LTE R8系统所支持的上限(20MHz)。
为了满足峰值速率的要求,组合多个成员载波,允许配置带宽最高可达100MHz,实现上下行峰值目标速率分别为500Mbit/s和1Gbit/s,同时为合法用户提供后向兼容。
LTE—Advanced系统关键技术的研究【摘要】LTE-Advanced作为新一代移动通信(4G)国际标准,使用了许多全新的技术,例如载波聚合、上/下行多天线增强、多点协作传输、中继等关键技术。
这些技术增加了LTE-Advanced 小区的系统容量与信息的传输速率,极大的改善了小区边缘用户的性能。
本文对LTE-A的需求、相应关键技术进行了研究。
【关键词】LTE-Advanced;载波聚合;多天线增强;CoMP;Relay0 引言LTE-Advanced指的是LTE在Release 10以及之后的技术版本。
为了满足IMT-Advanced(4G)的各种需求指标,3GPP针对LTE-Advanced(LTE-A)提出了几个关键技术,包括载波聚合、协作多点传输、多天线增强等。
这些技术使LTE-A能够提供更高的峰值速率和吞吐量,支持多种应用场景,满足了未来移动通信系统日益增加的高速数据业务需求。
1 LTE-Advanced需求分析IMT-Advanced要求未来的4G通信在满足较高的峰值速率和较大的带宽之外,还要保证用户在各个区域的体验。
有统计表明,未来80%~90%的系统吞吐量将发生在室内和热点场景,室内、低速、热点将可能成为移动互联网时代更重要的应用场景。
因此,需要通过新技术增强传统蜂窝在未来热点场景的用户体验。
为满足这些需求,3GPP在LTE-A SI(Study Item)阶段对载波聚合、上下行多天线增强、多点协作传输、中继等关键技术进行了性能评估。
2009年10月,3GPP将LTE-Advanced(LTE Release 10 & beyond)作为IMT-Advanced候选技术方案提交ITU,包括FDD和TDD两种制式,以及初始的自评估结果。
2 LTE-Advanced关键技术为适应未来无线通信市场的更高需求和更多应用,满足和超过IMT-Advanced的需求,LTE-A采用了载波聚合、上/下行多天线增强、多点协作传输、中继等关键技术,大大提高无线通信系统的相应性能。
LTE-Advanced 关键技术及标准进展来源 [电信网技术] 作者华为技术有限公司[导读]对LTE-A采用的载波聚合(Carrier Aggregation)、上/下行多天线增强(Enhanced UL/DL MIMO)、多点协作传输(Coordinated Multi-point Tx&Rx)、中继(Relay)、异构网干扰协调增强(Enhanced Inter-cell Interference Coordination for Heterogeneous Network)等关键技术及其标准进展进行了介绍。
1引言LTE-Advanced(LTE-A)是LTE的演进版本,其目的是为满足未来几年内无线通信市场的更高需求和更多应用,满足和超过IMT-Advanced的需求,同时还保持对LTE较好的后向兼容性。
LTE-A采用了载波聚合(Carrier Aggregation)、上/下行多天线增强(Enhanced UL/DL MIMO)、多点协作传输(Coordinated Multi-point Tx&Rx)、中继(Relay)、异构网干扰协调增强(Enhanced Inter-cell Interference Coordination for Heterogeneous Network)等关键技术,能大大提高无线通信系统的峰值数据速率、峰值谱效率、小区平均谱效率以及小区边界用户性能,同时也能提高整个网络的组网效率,这使得LTE和LTE-A系统成为未来几年内无线通信发展的主流,本文将对这些关键技术及其标准进展进行介绍。
3GPP LTE-Advanced需求分析IMT-Advanced 和LTE-Advanced的需求以及LTE Rel.8版本对需求的满足度参见表1。
表1 IMT-Advanced 和LTE-Advanced的需求以及LTE Rel.8性能为满足这些需求,3GPP在LTE-A SI(Study Item)阶段对载波聚合、上下行多天线增强、多点协作传输、中继等关键技术进行了性能评估。
2009年10月,3GPP 将LTE-Advanced (LTE Release 10 & beyond) 作为IMT-Advanced候选技术方案提交ITU,包括FDD和TDD两种制式,以及初始的自评估结果。
同时基于此候选方案和评估结果,在2010年3月LTE-A SI结束后,3GPP 又先后成立了CA WI (Work Item),UL MIMO WI,DL MIMO WI,Relay WI,CoMP SI,对这些关键技术进行进一步完善和标准化。
另外,LTE/LTE-A制式内的不同功率节点同覆盖形成的异构网络系统(Heterogeneous Network,Hetnet)作为一种显著提升系统吞吐量和提高网络整体效率的技术在3GPP中也引起了极大关注,2010年3月也成立了eICIC for Hetnet WI。
中国公司一直非常重视并积极参与LTE-A的标准化过程,提交的提案覆盖了下文阐述的所有关键技术,并且突破性地取得了其中两个重要WI的报告人职位——中国移动成为eICIC WI的报告人,华为公司成为UL MIMO WI的报告人。
本文将对这些关键技术及其目前的标准进展进行简要介绍。
载波聚合(Carrier aggregation,CA)载波聚合是能满足LTE-A更大带宽需求且能保持对LTE后向兼容性的必备技术。
目前,LTE支持的最大带宽是20MHz,LTE-A通过聚合多个对LTE后向兼容的载波可以支持到最大100MHz带宽。
接收能力超过20MHz的LTE-A 终端(User Equipment,UE)可以同时接收多个成员载波,而对LTE Rel.8的终端,也可以正常接收其中一个成员载波。
频谱聚合的场景可以分为3种:带内连续载波聚合(Intra-Band,Contiguous)、带内非连续载波聚合(Intra-Band,Non-contiguous)、带外非连续载波聚合(Inter-Band,Contiguous)。
具体参见图1。
图1 典型CA场景带外非连续载波聚合通常会造成共站同功率的两个成员载波的覆盖不相同。
标准中曾对LTE-A每个成员载波是否都要保证对LTE Rel.8后向兼容性的问题进行过长时间的讨论。
考虑到频谱效率、系统简单性、终端/eNodeB复杂度和测试复杂度等因素,标准最后决定在Rel.10中,CA成员载波都是后向兼容的,在后续版本中可以考虑引入其他形态载波的可能性。
LTE-A不同终端聚合的载波数目可以不同。
FDD系统中,同一个终端聚合的上/下行成员载波的数目也可以不同;但TDD系统中,通常上/下行成员载波的数目是相同的。
在MAC到PHY映射上,无论上行还是下行,每个成员载波有独立的HARQ 实体,这种方式可以最大程度地重用Rel.8的功能,并能保证较好的HARQ性能,缺点是可能需要反馈多个ACK/NACK。
LTE上行采用了单载波传输方式(DFT-S-OFDM),在LTE-A上行多载波聚合传输时,经过对OFDM和N x DFT-S-OFDM之间的评估之后,最终传输方式采纳了N x DFT-S-OFDM的形式,即其中每个成员载波按独立的DFT-S-OFDM传输。
力。
设计说明:学习是为了应用。
数学综合应用的重要方面,是使学生能用多天线增强(Enhanced Multiple Antenna Transmission)多天线技术的增强是满足LTE-A峰值谱效率和平均谱效率提升需求的重要途径之一。
LTE Rel.8下行支持1,2,4天线发射,终端侧2,4天线接收,下行可支持最大4层(Layer)传输。
上行只支持终端侧单天线发送,基站侧最多4天线接收。
LTE Rel.8的多天线发射模式包括开环(Open loop)MIMO,闭环(Closed loop)MIMO,波束成型(Beamforming,BF),以及发射分集。
除了单用户MIMO(single-user MIMO,SU-MIMO),LTE中还采用了另外一种谱效率增强的多天线传输方式,称为多用户MIMO(Multi-User MIMO,MU-MIMO),多个用户复用相同的无线资源通过空分的方式同时传输。
LTE-A中为提升峰值谱效率和平均谱效率,在上下行都扩充了发射/接收支持的最大天线个数,允许上行最多4天线4层发送,下行最多8天线8层发送,从而LTE-A中需要考虑更多天线数配置下的多天线发送方式。
1)上行多天线增强LTE-A上行除了需要考虑更多天线数配置外,还需要考虑上行低峰均比的需求和每个成员载波上的单载波传输的需求。
对上行控制信道而言,容量提升不是主要需求,多天线技术主要用来进一步优化性能和覆盖,因此只需要考虑发射分集方式。
经过评估,对采用码分的上行控制信道(PUCCH)格式1/1a/1b采用了SORTD(Spatial Orthogonal Resource Transmit Diversity)的发射分集方式,即在多天线上采用互相正交的码序列对信号进行调制传输。
上行控制信道格式2的分集方式还在讨论中。
对上行业务信道而言,容量提升是主要需求,多天线技术需要考虑空间复用的引入。
同时,由于发射分集相对于更为简单的开环秩1预编码并没有性能优势,因此标准最终确定上行业务信道不采用发射分集,对小区边界的用户等可以直接采用开环秩1预编码。
目前,2发射天线和4发射天线下的低峰均比秩1~4的码本设计都已完成。
验可能性是生活里的常见现象;进一步感受数学方法的应用价值,增与LTE一样,LTE-A的上行参考信号(Reference Signal,RS)也包括用于信道测量的SRS(Sounding RS) 和用于信号检测DMRS(Demodulation RS)。
由于上行空间复用及多载波的采纳,单个用户使用的上行DMRS的资源开销需要扩充,最直接的方式就是在LTE 上行RS使用的CAZAC(Const Amplitude Zero Auto-Corelation)码循环移位(Cyclic Shift)的基础上,不同数据传输层的DMRS使用不同的循环移位。
还有一种可能是在时域的多个RS符号上叠加正交码(Orthogonal Cover Code,OCC)来扩充码复用空间。
目前,关于两种扩充方式的讨论还在继续。
对于SRS信号,为了支持上行多天线信道测量以及多载波测量,资源开销相对于R8 SRS信号同样需要扩充,除了延用R8周期性SRS发送模式以外,LTEA还增加了非周期SRS发送模式,由NodeB触发UE发送,实现SRS 资源的扩充。
2)下行多天线增强因为支持的传输层数的增加,导致需要考虑更大尺寸的码本设计。
因为LTE-A下行业务信道的传输可以采用专用参考信号(dedicated RS),因此原则上下行发送可以基于码本也可以基于非码本。
同时,对于闭环MIMO,为了减少反馈开销,采用基于码本的PMI反馈方式。
目前8天线码本的设计正在进行,初步采用双预编码矩阵码本(Dual-index Precoding Codebook)结构,即把码本矩阵用两个矩阵的乘积表示,通常两个矩阵中一个是基码本,另一个是根据信道变化特征在基码本上的修正。
为了进一步减少反馈开销,还可以考虑根据信道的变化快慢不同的统计特征分别进行长周期反馈(比如空间相关性)和短周期反馈(比如快衰因素)。
LTE-A采用用户专用参考信号的方式来进行业务信道的传输,同一用户业务信道的不同层使用的参考信号以CDM+FDM的方式相互正交。
为了测量最多八层信道,除了原来的公共参考信号(Common RS)外,还引入了信道状态指示参考信号(Channel State Indication RS,CSI-RS),CSI-RS在时频域可以设置得比较稀疏,各天线端口的CSI-RS以CDM+FDM的方式相互正交。
另外,LTE-A中目前正在讨论对MU-MIMO的继续增强,以充分开发多用户分集增益和联合信号处理的增益来减少多用户流间的干扰,同时也做到性能和复杂度之间的较好折中。
根据目前标准上达成的结论,MU-MIMO支持最多4个用户复用,每用户不超过两层,总共不超过4层传输。
为了增加调度灵活性,MU-MIMO调度对用户而言是透明的,即用户可以不知道是否有其它用户与其在相同的资源上进行空间复用,并且用户可以在SU-MIMO和MU-MIMO状态之间动态进行转换。
协作多点传输(Coordinated Multiple Point Transmission and Reception,CoMP)协作多点传输是一种提升小区边界容量和小区平均吞吐量的有效途径。