热氧化工艺
- 格式:ppt
- 大小:3.97 MB
- 文档页数:62
RTO工艺与特点解析热氧化法是应用热氧化和催化氧化技术来破坏排放物中的有机物的方法。
蓄热式热氧化器(Regenerative Thermal Oxidizer),简称RTO,用于处理中低浓度的有机废气(VOC)。
RTO设备处理VOC的常见形式有二室RTO、三室RTO和旋转RTO,根据客户需求还可设计成五室RTO、七室RTO等结构形式。
华世洁RTO设备,依托于强大的科研团队和各大院校科研院所的技术支持,在行业内有丰富的项目开发经验。
设备的部件如蓄热装置、燃烧器、控制、仪表等均采用国内外高精尖产品。
1. RTO工艺原理RTO的工作原理:有机物(VOCs)在一定温度下与氧气发生反应,生成CO2和H2O,并放出一定热量的氧化反应过程,RTO是把废气加热到700℃以上,使废气中的VOC氧化分解为CO2和H2O,氧化产生的高温气体流经陶瓷蓄热体,使之升温“蓄热”,并用来预热后续进入的有机废气,从而节省废气升温燃料消耗的处理技术。
1.1 旋转RTO工作原理表1-1 三室RTO工作程序室1 室2 室3循环1 进入排除冲洗循环2 冲洗进入排出循环3 排出冲洗进入表2-1 RTO设备基本参数表内容数据处理废气量: Nm3/h(根据排废气风量确定)VOC去除率: ≦95%(二室RTO);≥99%(三室RTO、五室RTO);≥99%(旋转RTO)陶瓷利用率: 100%(二室RTO);67%(三室RTO);83%(旋转RTO)氧化温度: 760-900 ℃停留时间: 1.0 -3.0sec燃料天然气/柴油/电排放符合标准: GB16297-1996 《大气污染物综合排放标准》表3-1 三种RTO设备特点对比表比较项目两室RTO 三室RTO 旋转RTO阀门结构简单,控制程序简单结构复杂,控制程序复杂单一阀门,控制程序最简单压力压力波动大压力波动较小压力波动小出口浓度出口浓度波动大出口浓度波动小出口浓度波动小处理效率≦95≥99%≥99%陶瓷利用率100% 67% 83%占地小大小旋转RTO的蓄热体中设置分格板,将蓄热体床层分为几个独立的扇形区。
热氧化工艺的原理及应用1. 热氧化工艺的原理热氧化工艺是一种通过高温氧化的方法处理废气和废水的技术。
其原理主要包括以下几个方面:1.1 高温氧化热氧化工艺的核心是将废气或废水中的有机物经过高温条件下的氧化反应,使有机物转化为水和二氧化碳等无害物质。
高温氧化技术可以利用高温条件下氧气的强氧化性,将有机物无害化。
1.2 催化剂的作用在热氧化过程中,常常会使用催化剂来增加反应的速率和效率。
催化剂可以使氧化反应在相对较低的温度下进行,从而节省能源和降低操作成本。
1.3 控制氧化反应的条件热氧化工艺需要控制反应的温度、压力、氧气浓度等条件,以确保有机物能够完全氧化,同时避免产生副产物或有害物质。
通过科学合理的控制条件,可以使热氧化工艺达到较高的效率和环保要求。
2. 热氧化工艺的应用热氧化工艺具有广泛的应用领域,主要包括以下几个方面:2.1 废气处理热氧化工艺可以有效地处理各种产生有机废气的工艺,如化工、印染、塑料加工等。
通过热氧化工艺,可以将有机废气中的有害物质彻底分解,达到排放标准。
2.2 废水处理热氧化工艺可以用于废水的处理,特别是含有高浓度有机物的废水。
通过高温氧化反应,可以将有机物转化为无害的水和二氧化碳等物质,实现废水的处理和资源化利用。
2.3 有机废物处理热氧化工艺也可以用于有机废物的处理,如有机固体废弃物、污泥等。
通过高温氧化反应,可以将有机物完全矿化,减少废物体积,并同时产生热能和可回收资源。
2.4 生物质能利用热氧化工艺可以用于生物质能的利用。
生物质能包括秸秆、木材废弃物、农作物残渣等。
通过热氧化反应,可以将生物质能转化为热能或生物质材料,实现能源的有效利用和资源循环利用。
2.5 废弃物热能利用热氧化工艺还可以将废弃物中的有机物转化为热能。
通过燃烧废弃物产生高温,然后利用热能进行发电或供热。
这样不仅能减少废弃物的量,还能提供清洁能源。
3. 热氧化工艺的优势热氧化工艺相比传统的废气和废水处理方法具有一些明显的优势:•高效性:热氧化工艺可以彻底分解有机物,处理效率高;•环保性:热氧化工艺将有机物转化为无害物质,避免了有害物质的产生和排放;•资源化利用:热氧化工艺可以将有机物转化为能源或可回收资源,实现资源的循环利用;•可控性:热氧化工艺可以通过控制温度、压力等条件,实现反应的可控性;•适应性强:热氧化工艺适用于多种废气、废水和废弃物的处理,具有较强的适应性。
薄膜淀积一、介绍在分立器件与集成电路制造过程中,需要很多类型的薄膜,这些薄膜主要分为四类:热氧化薄膜、介质、多晶硅以及金属膜等:半导体可采用多种氧化方法,包括热氧化法、电化学阳极氧化法以及等离子体反应法。
对于硅来说,热氧化法是最重要的。
在热氧化薄膜中,有两种膜最重要:一种是在漏/源极的导通沟道覆盖的栅极氧化膜(gate oxide);一种是用来隔离其他器件的场氧化膜(field oxide)。
这些膜只有通过热氧化才能获得最低界面陷阱密度的高质量氧化膜。
二氧化硅SiO2和氮化硅Si3N4的介电薄膜作用:隔离导电层;作为扩散及离子注入的掩蔽膜;防止薄膜下掺杂物的损失;保护器件使器件免受杂质、水气或刮伤的损害。
由于多晶硅电极的可靠性由于铝电极,常用来制作MOS器件的栅极;多晶硅可以作为杂质扩散的浅结接触材料;作为多层金属的导通材料或高电阻值的电阻。
金属薄膜有铝或金属硅化物,用来形成具有低电阻值的金属连线、欧姆接触及整流金属-半导体接触势垒器件。
二、原理与工艺A、热氧化工艺热氧化工艺的原理就是在硅衬底上生成高质量的二氧化硅薄膜。
热氧化工艺分为干氧氧化和湿氧氧化。
反应方程式如下:Si+2H2O→SiO2+2H2湿氧氧化Si+O2→SiO2干氧氧化热氧化是高温工艺。
在高温下,一开始是氧原子与硅原子结合,二氧化硅的生长是一个线性过程。
大约长了500Å之后,线性阶段达到极限。
为了保持氧化层的生长,氧原子与硅原子必须相互接触。
在二氧化硅的热生长过程中,氧气扩散通过氧化层进入到硅表面,因此,二氧化硅从硅表面消耗硅原子,氧化层长入硅表面。
随着氧化层厚度的增加,氧原子只有扩散通过更长的一段距离才可以到达硅表面。
因此从时间上来看,氧化层的生长变慢,氧化层厚度、生长率及时间之间的关系成抛物线形。
高质量的二氧化硅都是在800℃~1200℃的高温下生成,而且其生成速率极其缓慢。
其中湿氧氧化速率要高于干氧氧化。
在氧化过程中,硅与二氧化硅的界面会向硅内部迁移,这将使得Si表面原有的污染物移到氧化膜表面而形成一个崭新的界面。
半导体晶圆氧化工艺介绍全文共四篇示例,供读者参考第一篇示例:半导体晶圆氧化工艺介绍半导体晶圆氧化工艺是半导体制造过程中的重要环节,其作用是将半导体晶片的表面氧化处理,形成氧化层,以提高半导体器件的性能和稳定性。
半导体晶圆氧化工艺主要应用于CMOS(互补金属氧化物半导体)器件的制造过程中,其关键技术是热氧化和湿氧化。
热氧化是指将半导体晶片置于高温炉内,与氧气反应生成氧化物膜的过程。
热氧化工艺可分为干氧化和湿氧化两种方式。
干氧化是在氧气气氛中进行的,主要适用于硅晶圆的氧化处理。
湿氧化是在含有一定湿度的氧气气氛中进行的,可以提高氧化速度,适用于一些特殊情况下。
在热氧化过程中,晶片表面的硅原子与氧气发生反应,生成一定厚度的氧化硅层。
氧化硅层能够有效隔离杂质和控制晶片表面的平整度,提高器件的性能和可靠性。
氧化硅层还可以起到保护作用,防止晶片表面受到外部环境的影响。
除了热氧化工艺外,湿氧化工艺也是半导体晶圆氧化的重要方式。
湿氧化工艺是在高温高湿度的氧气气氛中进行的,可以生成高质量的氧化硅层。
湿氧化工艺具有氧化速度快、氧化硅质量好等优点,但也存在着生长速度难以控制和氧化过程中液滴形成等缺点。
在半导体晶圆氧化工艺中,除了选择合适的氧化方法外,还需要注意氧化层的厚度和质量控制。
氧化层的厚度决定了器件性能和效果,通常需要通过控制氧化时间和温度来实现。
而氧化层的质量对晶片的性能和可靠性也有着重要影响,因此需要通过优化工艺参数和设备设施来保证氧化层质量。
半导体晶圆氧化工艺是半导体器件制造过程中的重要步骤,通过合理选择氧化方法、控制氧化参数和优化设备设施等方式,可以实现对氧化硅层的高质量生长和控制,从而提高器件的性能和可靠性。
随着半导体技术的不断发展和进步,半导体晶圆氧化工艺也在不断创新和改进,为半导体器件的制造提供了更为稳定和可靠的技术保障。
第二篇示例:半导体晶圆氧化工艺是半导体制造工艺中非常重要的一部分。
在半导体制造过程中,晶圆氧化是一个非常关键的步骤,它主要用于形成氧化层,以保护晶片表面、改变表面状态、控制电子通道等。
热氧化工艺的原理及应用热氧化工艺是一种通过高温和氧气氧化有机物质的技术,它的原理基于有机物质在高温下与氧气反应,产生二氧化碳、水和其他气体的化学反应。
这种工艺主要应用于废弃物处理、空气污染物净化和能源回收等方面。
热氧化工艺的原理基于燃烧和氧化反应。
在高温下,有机物质分解为低分子量的化合物,如气体和液体,同时发生与氧气的化学反应,产生二氧化碳、水蒸汽和其他的气体。
这些气体经过后续的处理,如冷凝、过滤和吸收等,可以达到废弃物处理和空气污染物净化的目的。
此外,热氧化工艺还可以通过高温下有机物的燃烧产生热能,用于能源回收。
热氧化工艺的应用非常广泛。
首先,它可以用于废弃物处理。
废弃物处理主要包括固体废弃物和液体废弃物的处理。
热氧化工艺可以将有机废弃物转化为二氧化碳和水等无害物质,从而达到减少废弃物的目的。
同时,该工艺还可以处理污染性废物,如有机化合物、危险废物和污泥等。
通过高温和氧气的作用,这些有机物质可以迅速分解和氧化,减少对环境的污染。
其次,热氧化工艺还用于空气污染物净化。
空气污染物是导致大气污染的主要原因之一。
大气污染物主要包括气体污染物和颗粒物污染物。
热氧化工艺可以将这些污染物通过高温和氧气的氧化作用转化为二氧化碳、水和其他无害气体。
例如,热氧化工艺可以用于处理一氧化碳、氯仿、甲苯、苯酚和氮氧化物等有机污染物。
它还可以处理含有二噁英、卤化物和重金属等污染物的废水。
此外,热氧化工艺还可以用于能源回收。
在热氧化过程中,有机物质被氧化,同时也产生了大量的热能。
这些热能可以用于提供热水、热蒸汽或发电等能源。
因此,通过热氧化工艺可以将废弃物转化为能源,实现资源的循环利用。
总之,热氧化工艺是一种通过高温和氧气氧化有机物质的技术。
它的原理基于燃烧和氧化反应,主要应用于废弃物处理、空气污染物净化和能源回收等方面。
热氧化工艺在环境保护和资源利用方面具有重要意义,有助于减少废弃物产生、提高空气质量和实现能源的可持续利用。
氧化工艺的种类
氧化工艺的种类包括:
1. 热氧化:在高温下形成均匀而且薄薄的硅氧化膜。
这些热氧化方法根据用于氧化反应的气体可分为湿法氧化和干法氧化。
湿法氧化反应快,膜厚,氧化膜质量较差。
干法氧化反应慢,膜薄,氧化膜质量较好。
2. 臭氧氧化:臭氧是一种强氧化剂,能有效地杀灭细菌,破坏病毒细胞。
3. 二氧化氯或二氧化硫化:二氧化氯或二氧化硫都具有强氧化性,可用来净化水。
4. 过氧化氢氧化:过氧化氢是一种强氧化剂,可以用来对水进行净化处理。
5. 高锰酸钾氧化:高锰酸钾是一种强氧化剂,能有效地杀灭细菌,破坏病毒细胞。
6. 光催化氧化:光催化氧化是以光能作为能量来源,在光催化剂的作用下,使有机污染物在常温常压下完全矿化成无机小分子。
7. 紫外线和臭氧、过氧化氢相结合的高级氧化技术。
这些氧化工艺各有特点,需根据具体情况选择适合的工艺。
二.常见的各种氧化工艺1.热氧化工艺热生长氧化法-将硅片置于高温下,通以氧化的气氛,使硅表面一薄层的硅转变为二氧化硅的方法。
①常见的热氧化工艺类别及特点:a 干氧氧化:干氧氧化法-氧化气氛为干燥、纯净的氧气。
氧化膜质量最好,但氧化速度最慢。
b水汽氧化:水汽氧化法-氧化气氛为纯净的水汽。
氧化速度最快,但氧化膜质量最差。
c湿氧氧化:湿氧氧化法-氧化气氛为纯净的氧气+纯净的水汽。
氧化膜质量和氧化速度均介于干氧氧化和水汽氧化之间。
②常见的热氧化工艺:a方法:常采用干氧-湿氧-干氧交替氧化法。
b工艺条件:温度:高温(常见的为1000℃-1200℃)。
时间:一般总氧化时间超过30分钟。
②氧化生长规律:一般热氧化生长的二氧化硅层厚度与氧化时间符合抛物线规律。
原因是:在氧化时存在氧化剂穿透衬底表面已生成的二氧化硅层的事实。
2.热分解淀积法:(工艺中也常称为低温淀积法或低温氧化法)热分解淀积法-在分解温度下,利用化合物的分解和重新组合生成二氧化硅,然后将生成的二氧化硅淀积在衬底(可为任何衬底)表面上,形成二氧化硅层的方法。
①可见的低温氧化工艺类别及特点:a.含氧硅化物热分解淀积法:多采用烷氧基硅烷进行热分解,分解物中有二氧化硅,在衬底上淀积形成二氧化硅层。
b.硅烷(不含氧硅化物)热分解氧化淀积法:硅烷热分解析出硅原子,与氧化剂(氧气)作用生成二氧化硅,在衬底上淀积形成二氧化硅层。
②常见的低温氧化工艺:a.设备:采用低真空氧化淀积炉。
b.条件:Ⅰ含氧硅化物热分解淀积法:对常用的正硅酸乙酯:T=750℃;真空度为托。
Ⅱ硅烷热分解氧化淀积法:T>300 ℃(实际采用420 ℃),淀积时系统中通入氧气,真空度同上。
③低温氧化生长规律:低温氧化(热分解淀积)生长的二氧化硅层厚度与氧化时间符合线性规律。
原因是:在氧化时是在衬底表面上淀积二氧化硅,不存在氧化剂穿透衬底表面已生成的二氧化硅层的问题。
SiO2的制备方法:热氧化法干氧氧化水蒸汽氧化湿氧氧化干氧-湿氧-干氧(简称干湿干)氧化法氢氧合成氧化化学气相淀积法热分解淀积法溅射法化学汽相淀积(CVD)化学汽相淀积(Chemical Vapor Deposition):通过气态物质的化学反应在衬底上淀积一层薄膜材料的过程CVD技术特点:具有淀积温度低、薄膜成分和厚度易于控制、均匀性和重复性好、台阶覆盖优良、适用范围广、设备简单等一系列优点CVD方法几乎可以淀积集成电路工艺中所需要的各种薄膜,例如掺杂或不掺杂的SiO2、多晶硅、非晶硅、氮化硅、金属(钨、钼)等常压化学汽相淀积(APCVD)低压化学汽相淀积(LPCVD)等离子增强化学汽相淀积(PECVD)化学汽相淀积(CVD)单晶硅的化学汽相淀积(外延):一般地,将在单晶衬底上生长单晶材料的工艺叫做外延,生长有外延层的晶体片叫做外延片二氧化硅的化学汽相淀积:可以作为金属化时的介质层,而且还可以作为离子注入或扩散的掩蔽膜,甚至还可以将掺磷、硼或砷的氧化物用作扩散源低温CVD氧化层:低于500℃中等温度淀积:500~800℃高温淀积:900℃左右多晶硅的化学汽相淀积:利用多晶硅替代金属铝作为MOS器件的栅极是MOS集成电路技术的重大突破之一,它比利用金属铝作为栅极的MOS器件性能得到很大提高,而且采用多晶硅栅技术可以实现源漏区自对准离子注入,使MOS集成电路的集成度得到很大提高。
实验硅热氧化工艺在硅片表面生长一层优质的氧化层对整个半导体集成电路制造过程具有极为重要的意义。
它不仅作为离子注入或热扩散的掩蔽层,而且也是保证器件表面不受周围气氛影响的钝化层,它不光是器件与器件之间电学隔离的绝缘层,而且也是MOS工艺以及多层金属化系统中保证电隔离的主要组成部分。
因此了解硅氧化层的生长机理,控制并重复生长优质的硅氧化层方法对保证高质量的集成电路可靠性是至关重要的。
在硅片表面形成SiO2的技术有很多种:热氧化生长,热分解淀积(即VCD 法),外延生长,真空蒸发,反应溅射及阳极氧化法等。
其中热生长氧化在集成电路工艺中用得最多,其操作简便,且氧化层致密,足以用作为扩散掩蔽层,通过光刻易形成定域扩散图形等其它应用。
一、实验目的1、掌握热生长SiO2的工艺方法(干氧、湿氧、水汽)。
2、熟悉SiO2层在半导体集成电路制造中的重要作用。
3、了解影响氧化层质量有哪些因素。
4、能建立起厚度d和时间t的函数关系。
5、了解形成SiO2层的几种方法及它们之间的不同之处。
二、实验原理热生长二氧化硅法是将硅片放在高温炉内,在以水汽、湿氧或干氧作为氧化剂的氧化气氛中,使氧与硅反应来形成一薄层二氧化硅。
图1和图2分别给出了干氧和水汽氧化装置的示意图。
图1、干氧氧化装置示意图图2、水汽氧化装置示意图将经过严格清洗的硅片表面处于高温的氧化气氛(干氧、湿氧、水汽)中时,由于硅片表面对氧原子具有很高的亲和力,所以硅表面与氧迅速形成SiO2层。
硅的常压干氧和水汽氧化的化学反应式分别为:Si+O2—→SiO2(2—1)Si+2H2O—→SiO2+2H2↑ (2—2)如果生长的二氧化硅厚度为χ0(μm),所消耗的硅厚度为χi,则由定量分析可知:i(2—3)46.0即生长1μm的SiO2,要消耗掉0.46μm的Si。
由于不同热氧化法所得二氧化硅的密度不同,故值亦不同。
图3示出了硅片氧化前后表面位置的变化。
图3、SiO2生长对应硅片表面位置的变化当硅片表面生长一薄层SiO2以后,它阻挡了O2或H2O直接与硅表面接触,此时氧原子和水分子必须穿过SiO2薄膜到达Si—SiO2界面才能与硅继续反应生长SiO2。