第7章 超音速翼型和机翼的气动特性1[1]
- 格式:ppt
- 大小:2.47 MB
- 文档页数:64
超声速翼型和亚声速翼型的气动特性总负责:祝恺辰(071450704)组员:辛宏宇(071450703)超声速和亚声速翼型不同的主要原因是超声速翼型需承受激波阻力。
激波超声速气体中的强压缩波。
微扰动(如弱压缩波)的叠加而形成的强间断,带有很强的非线性效应。
经过激波,气体的压强、密度、温度都会突然升高,流速则突然下降。
压强的跃升产生可闻的爆响。
如飞机在较低的空域中作超音速飞行时,地面上的人可以听见这种响声,即所谓音爆。
理想气体的激波没有厚度,是数学意义的不连续面。
实际气体有粘性和传热性,这种物理性质使激波成为连续式的,不过其过程仍十分急骤。
因此,实际激波是有厚度的,但数值十分微小,只有气体分子自由程的某个倍数,波前的相对超音速马赫数越大,厚度值越小。
一、超音速薄翼型翼型作亚声速运动和超声速运动时,对气流的扰动有很大不同根据动量定律,向前流出的气体将给翼型一个像后的反作用力,它有一个阻力分量;而从控制面向后流出的气流对翼型有一个推力分量;同理,向前流入控制面的气流将给翼型一个阻力分量。
而向后流入控制面的气流将给翼型一个阻力分量。
从控制面垂直进出的流动不会是翼使翼型承受阻力或是推力。
这样,在无粘性流体中作亚胜诉流亚声速扰动无界原子弹爆炸形成的蘑菇云也是一种激波超声速扰动限于前马赫锥后,前半部压缩,后半部膨胀,扰动均沿着波德传播方向即垂直于马赫波动的翼型不承受阻力(推力与阻力相消),而超声速翼型将承受阻力,这种与马赫波传播有关的阻力称为波阻。
超声速流动中,绕流物体产生的激波阻力大小与物体头波钝度有着密切的关系。
由于钝物的绕流将产生离体激波,激波阻力大;而尖头体的绕流将产生附体激波,激波阻力小。
因此,对于超声速翼型,前缘最好作成尖的,如菱形、四边形、双弧形。
但是对于超声速飞机,总是要经历起飞和着陆的低速阶段,尖头翼型在低速绕流时,较小迎角下气流就要发生给力,是翼型的气动特性能变坏。
为此,为了兼顾超声速飞机的低速特性,目前低超声速的翼型,其形状都采用小圆头的对称薄翼。
超音速飞机的机翼平面形状及特点一、机翼平面形状1.1 简介超音速飞机的机翼平面形状是指机翼在平面上的几何形状,其设计直接影响到飞机的空气动力性能,对于超音速飞行来说尤为重要。
1.2 矩形平面形状在早期的超音速飞机设计中,矩形平面形状曾被广泛使用。
矩形机翼具有简单的几何形状,易于制造,但在超音速飞行时会产生较大的阻力,限制了飞机的速度及性能。
1.3 翼展锥度平面形状随着超音速飞机技术的不断发展,翼展锥度平面形状逐渐成为主流设计。
翼展锥度机翼呈锥形,即从根部到翼尖逐渐变细。
这种设计能够减小阻力,在超音速飞行时具有更好的空气动力性能。
1.4 变后掠平面形状一些超音速飞机还采用了变后掠平面形状,即机翼在根部与翼尖的后掠角不同。
这种设计可以根据飞行状态在不同的速度段获得更佳的空气动力性能。
二、特点2.1 较小的翼展比超音速飞机的机翼平面形状通常具有较小的翼展比。
这有利于减小机身与机翼的等效体积,降低阻力,并且有助于降低材料重量,提高飞机的载荷能力。
2.2 锥形机翼锥形机翼的特点是在超音速飞行时能够减小激波阻力,提高升阻比,使飞机具有更好的空气动力性能。
大多数超音速飞机都采用了锥形机翼设计。
2.3 合理的后掠角后掠角是指机翼在纵向平面上与机身的夹角,超音速飞机的机翼平面形状需要具有合理的后掠角来降低阻力,并且在超音速飞行时保持稳定的飞行姿态。
合理的后掠角设计能够使飞机在超音速飞行时具有更好的空气动力性能。
2.4 薄型翼型超音速飞机的机翼平面形状通常采用较薄的翼型。
薄型翼型能够减小阻力,提高升阻比,提高飞机的速度和性能。
结语超音速飞机的机翼平面形状具有独特的设计特点,包括翼展锥度、较小的翼展比、合理的后掠角和薄型翼型等。
这些特点使得超音速飞机在超音速飞行时具有更好的空气动力性能,为飞机的高速飞行提供了重要的技术支持。
随着科学技术的不断进步,相信超音速飞机的机翼平面形状设计将会不断完善,为飞机的超音速飞行带来更加优异的性能表现。
超声速翼型和亚声速翼型的气动特性总负责:祝恺辰(071450704)组员:辛宏宇(071450703)超声速和亚声速翼型不同的主要原因是超声速翼型需承受激波阻力。
激波超声速气体中的强压缩波。
微扰动(如弱压缩波)的叠加而形成的强间断,带有很强的非线性效应。
经过激波,气体的压强、密度、温度都会突然升高,流速则突然下降。
压强的跃升产生可闻的爆响。
如飞机在较低的空域中作超音速飞行时,地面上的人可以听见这种响声,即所谓音爆。
理想气体的激波没有厚度,是数学意义的不连续面。
实际气体有粘性和传热性,这种物理性质使激波成为连续式的,不过其过程仍十分急骤。
因此,实际激波是有厚度的,但数值十分微小,只有气体分子自由程的某个倍数,波前的相对超音速马赫数越大,厚度值越小。
一、超音速薄翼型翼型作亚声速运动和超声速运动时,对气流的扰动有很大不同根据动量定律,向前流出的气体将给翼型一个像后的反作用力,它有一个阻力分量;而从控制面向后流出的气流对翼型有一个推力分量;同理,向前流入控制面的气流将给翼型一个阻力分量。
而向后流入控制面的气流将给翼型一个阻力分量。
从控制面垂直进出的流动不会是翼使翼型承受阻力或是推力。
这样,在无粘性流体中作亚胜诉流亚声速扰动无界原子弹爆炸形成的蘑菇云也是一种激波超声速扰动限于前马赫锥后,前半部压缩,后半部膨胀,扰动均沿着波德传播方向即垂直于马赫波动的翼型不承受阻力(推力与阻力相消),而超声速翼型将承受阻力,这种与马赫波传播有关的阻力称为波阻。
超声速流动中,绕流物体产生的激波阻力大小与物体头波钝度有着密切的关系。
由于钝物的绕流将产生离体激波,激波阻力大;而尖头体的绕流将产生附体激波,激波阻力小。
因此,对于超声速翼型,前缘最好作成尖的,如菱形、四边形、双弧形。
但是对于超声速飞机,总是要经历起飞和着陆的低速阶段,尖头翼型在低速绕流时,较小迎角下气流就要发生给力,是翼型的气动特性能变坏。
为此,为了兼顾超声速飞机的低速特性,目前低超声速的翼型,其形状都采用小圆头的对称薄翼。
超音速飞行器空气动力学特性解析随着科学技术的不断发展,超音速飞行器已成为航空航天领域的研究热点。
而研究超音速飞行器的空气动力学特性对于提高其性能和安全性具有重要意义。
本文将从空气动力学的角度,对超音速飞行器的特性进行解析。
首先,我们需要明确超音速飞行器与亚音速飞行器的区别。
亚音速飞行器的飞行速度较低,飞行速度小于音速(即马赫数小于1)。
而超音速飞行器的飞行速度超过音速,即马赫数大于1。
由于超音速飞行器在飞行过程中会遭受到更高的空气阻力和压力差,因此其空气动力学特性与亚音速飞行器有所不同。
在超音速飞行器的空气动力学特性中,最重要的因素之一是震波的生成与传播。
当飞行器的速度超过音速时,会产生一系列的震波,这些震波由于其超音速的传播速度而导致了飞行器周围流场的复杂变化。
特别是当超音速飞行器突破音障时,会产生一条由多个菲涅耳-朗之万(Fanno-Mach)波和波尔坎-朗之万(Prandtl-Meyer)波组成的复杂震波系统。
这些震波系统对超音速飞行器的气动力和热力特性产生了重要影响。
除了震波的生成和传播,超音速飞行器还面临着较大的阻力和压力差。
由于超音速飞行的特殊性,空气动力学设计中需要克服更大的阻力。
阻力的大小直接影响飞行器的能耗和速度性能。
因此,在超音速飞行器的设计中,需要采取各种措施来减小阻力的产生,如采用流线型的外形和优化翼型等。
此外,超音速飞行器还需要面对较大的压力差。
由于超音速飞行器在朝向气流中运动时,面对的气体压强比非运动状态下要大得多。
这个差异导致了飞行器表面所承受的压力差也较大。
在设计超音速飞行器时,需要采用合适的材料和结构来增强飞行器的结构强度和耐压性能,确保其在超音速飞行过程中能够承受较大的压力差。
最后,超音速飞行器的空气动力学特性还包括其机翼和尾翼的特性。
在超音速飞行器中,机翼和尾翼的设计对于保持飞行器的稳定性和操纵性至关重要。
由于超音速飞行器在飞行过程中会遭受到更大的空气动力负载和压力差,机翼和尾翼的结构设计需要考虑更多的因素。
高超音速飞行的气动特性分析在现代航空航天领域,高超音速飞行正成为研究的热点和前沿方向。
高超音速通常指的是速度超过 5 倍音速的飞行状态。
当飞行器达到这样的高速时,其面临的气动环境极为复杂和特殊,与传统的低速和亚音速飞行有着显著的差异。
理解高超音速飞行的气动特性对于飞行器的设计、性能评估以及飞行安全都具有至关重要的意义。
高超音速飞行时,空气的可压缩性变得极为显著。
在低速飞行中,空气往往被视为不可压缩的流体,但在高超音速条件下,空气的密度和压力会随着飞行器的高速运动而发生急剧变化。
这导致了一系列独特的现象,例如激波的产生。
激波是空气受到强烈压缩而形成的一道高压、高温、高速度梯度的界面。
激波的出现不仅增加了飞行器的阻力,还会引起表面温度的急剧升高。
阻力特性是高超音速飞行中一个关键的气动问题。
在高超音速下,阻力主要由波阻、摩擦阻力和诱导阻力组成。
波阻是由于激波的存在而产生的,其大小与飞行器的外形、速度以及飞行姿态密切相关。
为了减小波阻,飞行器的外形通常设计得较为细长和尖锐,以减少激波的强度和影响范围。
摩擦阻力则与飞行器表面的粗糙度和气流的粘性有关。
在高超音速下,由于气流的高速摩擦,飞行器表面的温度升高,这会使得空气的粘性增加,从而进一步增大摩擦阻力。
诱导阻力则是由于飞行器产生升力时所伴随的阻力,在高超音速飞行中,其相对较小,但也不能被忽视。
热环境也是高超音速飞行中需要重点考虑的因素。
由于空气的强烈压缩和摩擦,飞行器表面会产生大量的热量,导致表面温度急剧升高。
这种高温环境对飞行器的材料和结构提出了极高的要求。
例如,传统的铝合金材料在高温下会失去强度和刚度,因此需要采用耐高温的特殊合金、陶瓷复合材料等新型材料。
同时,飞行器的热防护系统也至关重要,如隔热瓦、热沉等,以保护内部的设备和人员免受高温的影响。
高超音速飞行中的气动加热还会引起气流的化学反应。
在高温下,空气中的氧气和氮气等成分会发生解离和化合反应,从而改变空气的物理和化学性质。
超声速翼型和亚声速翼型的气动特性总负责:祝恺辰(071450704)组员:辛宏宇(071450703)超声速和亚声速翼型不同的主要原因是超声速翼型需承受激波阻力。
激波超声速气体中的强压缩波。
微扰动(如弱压缩波)的叠加而形成的强间断,带有很强的非线性效应。
经过激波,气体的压强、密度、温度都会突然升高,流速则突然下降。
压强的跃升产生可闻的爆响。
如飞机在较低的空域中作超音速飞行时,地面上的人可以听见这种响声,即所谓音爆。
理想气体的激波没有厚度,是数学意义的不连续面。
实际气体有粘性和传热性,这种物理性质使激波成为连续式的,不过其过程仍十分急骤。
因此,实际激波是有厚度的,但数值十分微小,只有气体分子自由程的某个倍数,波前的相对超音速马赫数越大,厚度值越小。
一、超音速薄翼型翼型作亚声速运动和超声速运动时,对气流的扰动有很大不同根据动量定律,向前流出的气体将给翼型一个像后的反作用力,它有一个阻力分量;而从控制面向后流出的气流对翼型有一个推力分量;同理,向前流入控制面的气流将给翼型一个阻力分量。
而向后流入控制面的气流将给翼型一个阻力分量。
从控制面垂直进出的流动不会是翼使翼型承受阻力或是推力。
这样,在无粘性流体中作亚胜诉流亚声速扰动无界原子弹爆炸形成的蘑菇云也是一种激波超声速扰动限于前马赫锥后,前半部压缩,后半部膨胀,扰动均沿着波德传播方向即垂直于马赫波动的翼型不承受阻力(推力与阻力相消),而超声速翼型将承受阻力,这种与马赫波传播有关的阻力称为波阻。
超声速流动中,绕流物体产生的激波阻力大小与物体头波钝度有着密切的关系。
由于钝物的绕流将产生离体激波,激波阻力大;而尖头体的绕流将产生附体激波,激波阻力小。
因此,对于超声速翼型,前缘最好作成尖的,如菱形、四边形、双弧形。
但是对于超声速飞机,总是要经历起飞和着陆的低速阶段,尖头翼型在低速绕流时,较小迎角下气流就要发生给力,是翼型的气动特性能变坏。
为此,为了兼顾超声速飞机的低速特性,目前低超声速的翼型,其形状都采用小圆头的对称薄翼。