遥感地学分析-地物光谱特征与遥感数字图像信息提取
- 格式:ppt
- 大小:3.27 MB
- 文档页数:88
遥感数据处理中的特征提取与分类方法引言遥感技术的发展使得人们能够通过航天器远距离获取地球表面的图像数据,并进行各种分析和应用。
遥感数据处理是指对这些获取到的数据进行预处理、特征提取和分类,以实现对地球表面特定区域的信息提取和解读。
本文将探讨遥感数据处理中的特征提取与分类方法。
一、特征提取方法1. 光谱特征提取光谱特征提取是遥感数据处理中最常用的方法之一。
通过分析地球表面的反射、辐射和发射光谱信息,可以获取不同物体或地物的光谱特征。
这些特征包括反射率、辐射亮度、辐射强度等。
2. 纹理特征提取纹理特征提取是通过分析地物表面纹理的空间分布和统计特性来获取特征信息的方法。
纹理特征包括灰度共生矩阵、方差、平均灰度等。
这些特征可以用于界定地物的边界、形状和空间分布特征。
3. 结构特征提取结构特征提取是通过分析地物的几何形状和排列方式来获取特征信息的方法。
结构特征包括面积、周长、长度、宽度、密度等。
这些特征可以用于判断地物的类型和分类。
二、分类方法1. 监督分类方法监督分类方法是基于已知地物类型的样本数据进行训练和分类的方法。
这种方法需要先收集一定数量的地物样本数据,并标注其类别信息。
然后,通过对样本数据进行统计分析和特征提取,建立分类模型,对未知地物进行分类。
2. 无监督分类方法无监督分类方法是不依赖已知样本数据进行分类的方法。
无监督分类方法主要依靠对地物间的相似性和差异性进行统计分析,通过将地物划分为具有相似特征的类别,实现分类。
3. 半监督分类方法半监督分类方法是监督分类方法和无监督分类方法的结合,充分利用已知样本数据和未知样本数据进行分类。
半监督分类方法首先使用无监督方法对未知样本数据进行聚类,然后使用监督方法对聚类结果进行分类。
结论遥感数据处理中的特征提取与分类方法是实现对地球表面信息提取和解读的关键环节。
光谱特征、纹理特征和结构特征的提取可以有效地表示地物的特点和特征。
监督分类、无监督分类和半监督分类方法可以根据不同的需求和数据情况进行选择和应用。
遥感影像处理中的特征提取方法和应用遥感影像是通过无人机、卫星等载体获取的地球表面的影像数据。
特征提取是遥感影像处理中的一项重要任务,旨在从遥感影像中提取出地物的特定特征,以实现对地物的分类、识别和监测等应用。
本文将介绍遥感影像处理中常用的特征提取方法及其应用。
一、特征提取方法1. 基于像素的特征提取方法基于像素的特征提取方法是从单个像素点的信息中提取特征。
常用的方法包括:(1)颜色特征提取:利用遥感影像中的颜色信息进行特征提取。
常用的方法包括二值化、RGB分量、HSV、归一化差异植被指数(NDVI)等。
(2)纹理特征提取:利用遥感影像中的纹理信息进行特征提取。
常用的方法包括灰度共生矩阵(GLCM)、灰度值标准差、平均灰度值等。
(3)形状特征提取:利用遥感影像中的形状信息进行特征提取。
常用的方法包括链码、Hu不变矩、区域面积等。
2. 基于目标的特征提取方法基于目标的特征提取方法是在已知地物目标的前提下,根据地物目标的特定特征进行特征提取。
常用的方法包括:(1)形状特征提取:利用地物目标的形状信息进行特征提取。
常用的方法包括面积、周长、伸长率等。
(2)纹理特征提取:利用地物目标的纹理信息进行特征提取。
常用的方法包括纹理能量、纹理熵、纹理对比度等。
(3)上下文特征提取:利用地物目标的上下文信息进行特征提取。
常用的方法包括边界连接、邻居分析、局部空间关系等。
二、特征提取应用1. 地物分类特征提取在地物分类中起到了关键作用。
通过提取不同地物的特定特征,可以将遥感影像中的地物进行分类,如水体、森林、建筑等。
特征提取方法可以通过训练分类器来实现自动分类。
2. 土地利用监测特征提取可以应用于土地利用监测。
通过提取遥感影像中地物的特定特征,可以实现对土地的类型和变化进行监测,如农田的扩张、森林的退化等,为土地规划和资源管理提供支持。
3. 城市规划特征提取在城市规划中具有重要意义。
通过提取遥感影像中的建筑、道路等特定特征,可以分析城市的发展趋势和扩张方向,为城市规划和交通规划提供数据支持。
遥感地学分析的重点知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第1章绪论一、遥感地学分析遥感地学分析是以地学规律为基础对遥感信息进行的分析处理过程。
地学分析方法与遥感图像处理方法有机地结合起来,一方面可扩大地学研究本身的视域,提高对区域的认识水平;另一方面可改善遥感分析、处理、识别目标的精度。
二、遥感的分类1、以探测平台划分;(地面、航空、航天、航宇)2、按探测的电磁波段划分;3、按电磁辐射源划分;(被动、主动)4、按应用目的划分。
(地质、农业、林业、水利、海洋等)二、按探测的电磁波段划分1、可见光遥感2、红外遥感3、微波遥感4、多光谱遥感5、紫外遥感6、高光谱遥感三、遥感信息定量化的定义遥感信息定量化是指通过实验或物理模型将遥感信息与观测目标参量联系起来,将遥感信息定量地反演或推算为某些地学、生物学或大气等测量目标参量。
四、遥感信息的定量化两重含义1、遥感信息在电磁波不同波段内给出的地标物质定量的物理量和准确的空间位置。
2、从定量的遥感信息中,通过实验或物理模型将遥感信息与地学参量联系起来,定量地反演或推算某些地学或生物学的参量。
3、定量化模型:分析模型、经验模型、半经验模型。
第2章地物光谱特征与遥感数字图像信息提取一、地物的反射光谱特性反射率——用来表示不同地物对入射电磁波的反射能力的不一样。
反射——当电磁辐射到达两种不同介质的分界面时,入射能力的一部分或全部返回原介质的现象。
光谱反射率——Ρ(λ)=E R(λ)/E I(λ)↓↓↓反射率反射能入射能一般地说,当入射电磁波长一定时,反射能力强的地物,反射率大,在黑白遥感图像上呈现的色调就浅。
反之,反射入射光能力弱的地物,反射率小,在黑白遥感图像上呈现的色调就深。
判读遥感图像的重要标志——在遥感图像上色调的差异。
判读识别各种地物的基础和依据——不同地物在不同波段反射率存在着差异,在不同波段的遥感图像上就呈现出不同的色调。
遥感图像信息提取方法综述遥感图像分析遥感实际上是通过接收(包括主动接收和被动接收方式)探测目标物电磁辐射信息的强弱来表征的,它可以转化为图像的形式以相片或数字图像表现。
多波段影像是用多波段遥感器对同一目标(或地区)一次同步摄影或扫描获得的若干幅波段不同的影像。
在遥感影像处理分析过程中,可供利用的影像特征包括:光谱特征、空间特征、极化特征和时间特性。
在影像要素中,除色调/彩色与物体的波谱特征有直接的关系外,其余大多与物体的空间特征有关。
像元的色调/彩色或波谱特征是最基本的影像要素,如果物体之间或物体与背景之间没有色调/彩色上的差异的话,他们的鉴别就无从说起。
其次的影像要素有大小、形状和纹理,它们是构成某种物体或现象的元色调/彩色在空间(即影像)上分布的产物。
物体的大小与影像比例尺密切相关;物体影像的形状是物体固有的属性;而纹理则是一组影像中的色调/彩色变化重复出现的产物,一般会给人以影像粗糙或平滑的视觉印象,在区分不同物体和现象时起重要作用。
第三级影像要素包括图形、高度和阴影三者,图形往往是一些人工和自然现象所特有的影像特征。
1、遥感信息提取方法分类常用的遥感信息提取的方法有两大类:一是目视解译,二是计算机信息提取。
1.1目视解译目视解译是指利用图像的影像特征(色调或色彩,即波谱特征)和空间特征(形状、大小、阴影、纹理、图形、位置和布局),与多种非遥感信息资料(如地形图、各种专题图)组合,运用其相关规律,进行由此及彼、由表及里、去伪存真的综合分析和逻辑推理的思维过程。
早期的目视解译多是纯人工在相片上解译,后来发展为人机交互方式,并应用一系列图像处理方法进行影像的增强,提高影像的视觉效果后在计算机屏幕上解译。
1)遥感影像目视解译原则遥感影像目视解译的原则是先“宏观”后“微观”;先“整体”后“局部”;先“已知”后“未知”;先“易”后“难”等。
一般判读顺序为,在中小比例尺像片上通常首先判读水系,确定水系的位置和流向,再根据水系确定分水岭的位置,区分流域范围,然后再判读大片农田的位置、居民点的分布和交通道路。
如何使用遥感影像进行地物提取的技巧遥感影像是一种重要的地球观测技术,可以提供大范围、全方位的地表信息。
而地物提取是利用遥感影像来识别和提取出感兴趣的地物对象的过程。
本文将介绍一些使用遥感影像进行地物提取的技巧,以帮助读者更好地利用这一技术。
一、选择适当的遥感影像不同类型的地物具有不同的光谱特征,因此选择适当的遥感影像是进行地物提取的关键。
在选择遥感影像时,可以考虑以下几个因素:1.分辨率:影像分辨率决定了影像中每个像素所代表的地表面积的大小。
高分辨率的影像可以提供更详细的地物信息,但也需要更多的计算资源和存储空间。
因此,根据具体需求选择适当的分辨率。
2.光谱波段:不同波段的遥感影像反映不同地物的光谱特征。
常见的波段包括可见光波段、红外波段和热红外波段。
根据地物类型和研究目标,选择包含适当波段组合的影像。
3.时间序列:同一地区的遥感影像在不同时间拍摄的结果有所差异。
通过比较不同时间序列的影像,可以获得地物的变化信息。
因此,在进行地物提取时,可以考虑采集不同时间的影像。
二、有效利用图像预处理技术图像预处理是进行地物提取的重要步骤,可以通过提高影像质量和减少干扰来提高地物提取的精度。
以下是一些常见的图像预处理技术:1.辐射定标:辐射定标是将原始遥感影像转换为具有物理单位的辐射亮度值。
通过辐射定标,可以消除不同影像之间的辐射差异,提高影像的可比性。
2.大气校正:大气校正是在辐射定标的基础上,根据大气传输模型进行影像修正,消除大气散射和吸收对影像的影响。
大气校正可以减少云层、雾霾等因素对地物提取的影响。
3.几何校正:几何校正是将原始影像与地理参考系统(如地面坐标系)对齐,消除影像的几何畸变。
几何校正有助于提高地物提取的精度和准确性。
4.影像融合:影像融合技术可以将多个波段或多个分辨率的影像结合起来,获得更详细和全面的地物信息。
常见的影像融合方法包括主成分分析、小波变换等。
三、选择合适的地物提取算法地物提取算法是根据遥感影像和地物特征进行地物识别和分类的方法。
如何进行遥感影像的分类与地物提取遥感影像是近年来在地理信息领域中应用广泛的一种技术。
通过使用遥感影像,我们可以获取地球表面的大量数据,可以利用这些数据进行地物的分类与提取。
地物分类与提取在自然资源管理、城市规划、环境监测等领域都有着重要的应用。
本文将探讨如何进行遥感影像的分类与地物提取。
一、遥感影像的分类方法遥感影像的分类主要是将影像中的像素点划分到不同的类别中,常用的分类方法有监督分类和无监督分类两种。
监督分类是指根据已经标记好的样本数据进行分类。
首先需要准备一部分已经标记好的样本数据,然后通过分析样本的特征,建立一个分类模型。
接下来,通过模型对整幅影像进行分类。
监督分类需要充分利用专业知识和经验,对样本特征进行细致的分析,从而提高分类的准确性。
无监督分类是指根据影像中像素点的相似性进行分类,不需要准备样本数据。
无监督分类是一种相对简单和快速的分类方法。
它可以帮助我们发现影像中存在的一些隐含的地物类型,但由于没有准确的样本数据,分类结果可能会存在一定的误差。
二、地物提取的方法地物提取是指根据分类结果,将影像中的地物单独提取出来。
常用的地物提取方法有阈值分割、形态学操作、边缘检测等。
阈值分割是一种基于像素灰度值的提取方法,根据不同地物的灰度特征,设置合适的阈值将地物提取出来。
阈值分割简单直观,但对光照、阴影等影像杂波比较敏感,对影像质量要求较高。
形态学操作是一种基于形状和结构的提取方法,通常包括腐蚀和膨胀操作。
通过对影像进行腐蚀操作,可以去除噪声,减小地物的面积;通过膨胀操作,可以填补裂缝,增大地物的面积。
形态学操作结合的阈值分割可以得到较为精确的地物提取结果。
边缘检测是一种基于边缘信息的提取方法,通过检测影像中的边缘特征来提取地物。
常用的边缘检测算法有Sobel算子、Canny算子等。
边缘检测可以提取出地物的轮廓信息,但对于复杂纹理和噪声干扰较多的影像,边缘检测可能会存在一定的偏差。
三、遥感影像分类与地物提取的挑战尽管遥感影像的分类与地物提取方法日益成熟,但仍然存在一些挑战。
使用遥感技术进行地表特征提取的方法与案例分析遥感技术是一种通过卫星、飞机等平台获取地球表面信息的技术手段。
利用遥感技术可以获取大范围的地表特征数据,包括地貌、植被、水体、土壤等,并能够对这些地表特征进行定量分析和提取。
本文将以遥感技术在地表特征提取方面的方法和应用案例进行详细分析。
在遥感技术中,常用的地表特征提取方法包括分类、指数和变化检测等。
分类方法是根据遥感图像的像元特征进行归类,从而将不同的地表特征区分开来。
其中,最常用的分类方法是基于光谱信息的分类方法,通过分析遥感图像在不同波段的反射率差异,将地表特征进行分类。
常见的分类方法包括最大似然法、支持向量机和人工神经网络等。
这些方法能够有效地提取地表特征,如森林、水体、裸地和农田等。
指数方法是通过计算遥感图像的特定指数进行地表特征提取。
特定指数是根据不同地表特征的光谱特性而定义的。
常见的指数包括归一化植被指数(NDVI)、水体指数(WI)和土壤湿度指数(SWI)等。
这些指数能够反映地表特征的数量和质量,并通过特定的计算公式将其提取出来。
例如,NDVI能够反映植被的生长状况,通过计算NDVI可以得到植被覆盖度的信息。
变化检测方法是通过比较不同时间或不同遥感图像之间的差异来提取地表特征的变化信息。
变化检测方法常用于自然资源调查、灾害监测和城市扩展等领域。
变化检测方法可以通过对遥感图像进行几何校正和辐射校正,消除因图像不一致而引起的误差。
常用的变化检测方法包括双差法、差值法和比率变化检测法等。
这些方法能够有效地提取地表特征的变化信息,如土地利用变化、城市扩张和湖泊变动等。
除了方法的介绍,下面将结合实际案例分析遥感技术在地表特征提取方面的应用。
以长江三角洲地区为例,通过遥感图像的分类和变化检测方法,可以提取出该地区的植被分布和土地利用变化等地表特征信息。
通过分类方法,可以将遥感图像中的植被、水体和城市等地表特征进行定量提取和分析。
通过变化检测方法,可以对不同时间的遥感图像进行比较,提取出长江三角洲地区土地利用的变化信息,如农田转化为城市用地、湖泊的增减和草地的退化等。
第1章绪论一、遥感地学分析遥感地学分析是以地学规律为基础对遥感信息进行的分析处理过程。
地学分析方法与遥感图像处理方法有机地结合起来,一方面可扩大地学研究本身的视域,提高对区域的认识水平;另一方面可改善遥感分析、处理、识别目标的精度。
二、遥感的分类1、以探测平台划分;(地面、航空、航天、航宇)2、按探测的电磁波段划分;3、按电磁辐射源划分;(被动、主动)4、按应用目的划分。
(地质、农业、林业、水利、海洋等)二、按探测的电磁波段划分1、可见光遥感2、红外遥感3、微波遥感4、多光谱遥感5、紫外遥感6、高光谱遥感三、遥感信息定量化的定义遥感信息定量化是指通过实验或物理模型将遥感信息与观测目标参量联系起来,将遥感信息定量地反演或推算为某些地学、生物学或大气等测量目标参量。
四、遥感信息的定量化两重含义1、遥感信息在电磁波不同波段内给出的地标物质定量的物理量和准确的空间位置。
2、从定量的遥感信息中,通过实验或物理模型将遥感信息与地学参量联系起来,定量地反演或推算某些地学或生物学的参量。
3、定量化模型:分析模型、经验模型、半经验模型。
第2章地物光谱特征与遥感数字图像信息提取一、地物的反射光谱特性反射率——用来表示不同地物对入射电磁波的反射能力的不一样。
反射——当电磁辐射到达两种不同介质的分界面时,入射能力的一部分或全部返回原介质的现象。
光谱反射率——Ρ(λ)=E R(λ)/E I(λ)↓↓↓反射率反射能入射能一般地说,当入射电磁波长一定时,反射能力强的地物,反射率大,在黑白遥感图像上呈现的色调就浅。
反之,反射入射光能力弱的地物,反射率小,在黑白遥感图像上呈现的色调就深。
判读遥感图像的重要标志——在遥感图像上色调的差异。
判读识别各种地物的基础和依据——不同地物在不同波段反射率存在着差异,在不同波段的遥感图像上就呈现出不同的色调。
物体对电磁波的反射形式——镜面反射、漫反射、方向反射。
反射光谱特性:1、发射率:任何地物当温度高于绝对温度0K时,组成物质的原子、分子等微粒,在不停地做热运动,具有向周围空间辐射红外线和微波的能力。
实测地物光谱数据处理与信息提取原理一、地物光谱数据的获取1. 遥感技术的应用遥感技术是通过获取地面物体的电磁辐射来获取其信息的技术手段,地物光谱数据便是通过遥感技术获取的一种数据。
遥感技术广泛应用于土地利用规划、环境监测、资源调查等领域,是获取地球表面信息的重要手段。
2. 地物光谱数据获取方式地物光谱数据可以通过航空遥感、卫星遥感等方式获取。
其中,卫星遥感是目前应用最广泛的一种方式,主要有高分辨率遥感卫星、中分辨率遥感卫星等。
二、地物光谱数据的处理1. 数据预处理地物光谱数据在获取后需要进行预处理,主要包括辐射校正、大气校正、几何校正等。
这些处理能够提高数据的质量,为后续的信息提取做好准备。
2. 数据融合在获取的不同波段的地物光谱数据可以进行融合,融合后的数据能够更全面地反映地物的信息,提高信息的获取效率和准确率。
3. 数据降维地物光谱数据具有高维度的特点,为了提高处理效率和降低存储成本,需要进行数据降维。
常用的方法包括主成分分析(PCA)、线性判别分析(LDA)等。
4. 数据分类在进行信息提取前,地物光谱数据需要进行分类处理,将不同的地物进行分割和识别。
常用的分类方法有最大似然分类、支持向量机分类等。
三、地物光谱数据信息提取原理1. 地物信息提取的目的地物光谱数据的信息提取是为了获取地表覆盖、土地利用、资源分布等信息,为地理信息系统(GIS)的更新和相关领域的研究提供数据支撑。
2. 信息提取方法信息提取方法包括监督分类、非监督分类、目标检测等。
监督分类是在有已知类别的样本数据的基础上,通过训练生成分类器,再对未知数据进行分类;非监督分类则是在未知类别的情况下将数据进行分类;目标检测是指根据特定的目标进行数据提取。
3. 信息提取结果应用通过信息提取得到的数据可以应用于土地规划、环境检测、资源调查等领域,为相关领域的决策制定提供重要的科学依据。
实测地物光谱数据处理与信息提取原理是通过遥感技术获取地球表面信息的重要手段之一,经过数据获取、处理和信息提取等步骤,可以获取到准确全面的地物信息,为地理信息系统的更新和相关领域的研究提供数据支持。