中兴设计规范与指南pcb接地设计[1]
- 格式:ppt
- 大小:2.77 MB
- 文档页数:35
CDMA事业部设计开发部电路设计规范版本:2.0修订日期:2005年11月中兴通讯股份有限公司版本变更说明关于本文档中兴通讯股份有限公司CDMA事业部设计开发部《电路设计规范》(以下简称《规范》)为原理图设计规范文档。
本文档规定和推荐了CDMA设计开发部在原理图设计中需要注意的一些事项,目的是使设计规范化,并通过将经验固化为规范的方式,避免设计过程中错误的发生,最终提高产品质量。
使用方法《规范》制图部分以Cadence平台Concept HDL原理图工具为依据,但其大部分内容不局限于该工具的约束。
《规范》总体上由检查条目、详细说明、附录3部分构成。
“检查条目”部分浓缩了各种规范条款和经验,以简明扼要的形式加以描述。
对部分条目内容,在“详细说明”部分进行了解释和举例,通过Ctrl –左键点击可以跟踪到相应位置。
建议在阅读条目的同时,对详细说明进行阅读,理解检查项的意义,并主动避免异常出现。
《规范》中检查项共有三种等级:“规定”,“推荐”和“提示”。
标记为“规定”的条目在设计中必须遵守,如果因为设计实际需要不能遵守其中某些条款,则必须进行说明并经过评审确认。
说明文档同原理图评审异常记录、原理图一同基线。
标记为“推荐”的条目为根据一般情况推荐遵守的内容。
建议开发工程师在设计时阅读推荐该部分的内容和说明,根据实际设计情况选择恰当的设计实现。
标记为“提示”的条目,一般是难以从原理图角度检查的问题和很难有结论的问题,不做规范约束,提醒开发工程师在设计中注意相关问题,避免出错。
《规范》只能涵盖硬件原理图设计中已知的常见问题,所以在开发过程和评审/走查过程中不排除《规范》之外的设计异常,开发/评审人员应该根据经验对这些问题进行处理。
在开发过程中使用硬件开发工程师必须了解《规范》的内容并在开发中遵循《规范》的指导,在设计完成之后要进行自查。
在同行评审/走查过程中使用规范的检查条目部分抽出单独成为《原理图检查单》,评审人员必须了解《规范》并按照《检查单》的每一条目对原理图进行检查。
PCB设计规范PCB设计是电子产品中非常重要的一环,也是实现电路功能的基础。
设计出高质量的PCB板不仅可以保证电路稳定性和可靠性,还能提升整个产品的性能和品质。
为了确保PCB设计的质量和效果,需要遵循PCB设计规范。
PCB设计规范包括以下几个方面:1.尺寸规范PCB板的尺寸要大于等于实际需要的空间大小,以确保电路板的稳定性和可靠性。
同时,PCB板的尺寸还需要考虑到制造成本和生产工艺。
在标注PCB尺寸时,应该包括外形尺寸和最长边尺寸。
2.布线规范布线是PCB设计中重要的一部分,它直接影响到电路的正常工作。
在布线时应该遵循以下规范:(1)布线路径尽量直,减少折线和弯曲。
(2)高频电路的信号线和地线要尽量靠近,避免干扰。
(3)普通信号电路布线路径和电源线相隔远,减少干扰。
(4)避免信号和电源线的平行布线,避免电磁兼容干扰。
(5)布线路径不能干扰到焊盘、元器件和标识。
PCB焊盘的设计要遵循以下规范:(1)焊盘与元器件之间的间距要够大,以方便手工/机械焊接。
(2)焊盘的大小要适当,不宜太小,避免给生产和维护造成麻烦。
(3)焊盘应该统一,避免出现大小不一、排列杂乱的情况。
(4)焊盘间应该有足够的间隙,以确保信号之间的电气隔离。
(5)焊盘应该有正确的标识和编号系统,以便后续操作。
4.元器件安装规范在PCB元器件的安装和设计时,需要遵循以下规范:(1)元器件的安装位置与焊盘匹配,避免安装反向,造成电路不通。
(2)在安装元器件时需要留足够的间距,以避免相邻件之间的干扰。
(3)在安装元器件时应该留出足够的空间,以便元器件的调整和维护。
(4)元器件的标识应该清晰、准确、统一,以便后续的维护和操作。
PCB接地规范主要包括以下几个方面:(1)整个PCB板需要有一个统一的接地系统,以确保电路的稳定性。
(2)接地线路应该尽量短,以避免接地线路电感和电容的影响。
(3)高频电路的接地和普通信号的接地要分开,避免互相干扰。
(4)接地的引脚和焊盘要足够的强壮,以防止接地不良等问题。
目录第一章概述 (1)1.1 “地”的定义 (3)1.2 “接地”的分类及目的 (4)1.2.1 接“系统基准地” (4)1.2.2 接“静电防护与屏蔽地” (4)1.2.3 接“大地” (4)1.3 接地设计的基本原则 (4)1.4 各种地相连的六种情况 (5)1.5 静电防护与屏蔽地 (5)1.5.1功能单板静电防护与屏蔽地的设计 (5)1.5.2后背板静电防护与屏蔽地的设计 (6)第二章设备的接地设计 (7)2.1 立式大机架设备的接地设计 (7)2.1.1 多层机框的接地 (7)2.1.2 设备接大地 (7)2.2 台式设备的接地设计 (8)2.3 射频设备的接地设计 (10)2.3.1 接地要求 (10)2.3.2 射频设备的接地设计 (10)2.3.3 射频设备天馈系统的接地设计 (10)2.4 监控设备的接地设计 (10)2.4.1 监控设备的特殊性及其接地要求 (10)2.4.2 模拟量输入电路 (11)2.4.3 开关量输入电路 (12)2.4.4 开关量输出电路 (12)2.4.5 视(音)频模拟电路 (13)2.4.6 监控设备接大地 (13)2.5 浮地设备的接地设计 (13)2.5.1 浮地的基本概念 (13)2.5.2 浮地设备的特殊问题 (14)2.5.3 浮地设备的接地设计 (14)2.5.4设计案例 (15)2.5.4.1 问题描述和原因分析 (15)2.5.4.2 设计改进和实验结果 (15)第三章PCB的接地设计 (16)3.1 共模干扰、信号串扰和辐射 (16)3.1.1 共模干扰 (16)3.1.2 串扰 (16)3.1.3 辐射与干扰 (17)3.2 PCB接地设计原则 (17)3.2.1 确定高di/dt电路 (17)3.2.2 确定敏感电路 (17)3.2.3 最小化地电感和信号回路 (18)3.2.4 地层分割和地层不分割的合理应用 (18)3.2.5 接口地保持“干净”,使噪声无法通过耦合出入系统 (18)3.2.6 电路合理分区,控制不同模块之间的共模电流 (18)3.2.7贯彻系统的接地方案 (18)3.3 双面板的接地设计 (18)3.3.1 梳形电源、地结构 (18)3.3.2 栅格形地结构 (19)3.4 多层板的接地设计 (20)3.4.1 多层板的好处 (20)3.4.2 信号回路 (20)3.4.2.1 信号回流路径 (20)3.4.2.2 回流分布 (20)3.4.2.3 信号回路的构成 (21)3.4.3 参考平面被分割的影响 (22)3.4.3.1 参考平面分割或开槽 (22)3.4.3.2 时钟信号走在地平面上 (22)3.4.3.3 参考平面上通孔的隔离盘尺寸过大 (22)3.4.4 参考平面的设计 (23)3.4.4.1 数字电路与模拟电路之间没有信号联系 (24)3.4.4.2 数字电路与模拟电路之间联系的信号线较少且集中 (24)3.4.4.3 数字电路与模拟电路之间联系的信号线较多且难以集中在一块 (26)3.4.5 后背板的接地设计 (27)3.4.6 PCB的叠层设计 (27)3.4.6.1 PCB的叠层设计的原则 (27)3.4.6.2 PCB的叠层设计举例 (28)3.4.7 地平面的处理 (29)3.5 有金属外壳接插件的印制板的接地设计 (31)3.6 PCB的布局设计 (31)3.6.1 混合电路的分区 (31)3.6.2 数字电路的分区 (32)3.6.3 高频高速电路和敏感电路的布局 (32)3.6.4 保护器件的布局 (32)3.6.5 去耦电容的放置 (32)3.6.6 与后背板相连的插座上地线插针的设计 (33)3.7 PCB的布线设计 (33)3.7.1 3W原则 (33)3.7.2 保护线 (34)3.7.3 高频高速信号走线 (34)3.7.4 敏感信号信号走线 (34)3.7.5 I/O信号走线 (34)3.7.6 金属壳体的高频高速器件 (34)3.8 设计案例 (35)3.8.1 问题描述 (35)3.8.2 原因分析 (35)3.8.3 改进措施 (35)3.8.4 试验结果 (35)第四章元器件的接地设计 (36)4.1 机壳上的元器件的接地设计 (36)4.2 功能单板上元器件的接地设计 (37)4.3 后背板上元器件的接地设计 (37)4.4 金属部件和解插件的接地设计 (37)第五章线缆的接地设计 (38)5.1 信号电缆的类型 (38)5.1.1 双绞线 (38)5.1.2 同轴电缆 (38)5.1.3 带状电缆 (38)5.2 信号电缆线的接地设计 (38)5.2.1 屏蔽双绞线的接地 (38)5.2.2 同轴电缆的接地 (38)5.2.3 带状电缆的接地 (39)第六章搭接 (39)6.1 搭接及其目的 (39)6.2 搭接的方式与方法 (39)6.2.1 搭接的方式 (39)6.2.2 搭接的方法 (40)6.2.2.1 直接搭接的方法 (40)6.2.2.2 间接搭接的方法 (40)6.3 搭接的要求和处理 (40)第一章概述1.1 “地”的定义大地——地球工作地——信号回路的电位基准点(直流电源的负极或零伏点),在单板上可分为数字地GNDD与模拟地GNDA。
内部公开▲印制电路板设计规范——工艺性要求(仅适用射频板)内部公开▲目次前言 (II)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 印制板基板 (3)5 PCB设计基本工艺要求 (5)6 拼板设计 (6)7 射频元器件的选用原则 (7)8 射频板布局设计 (7)9 射频板布线设计 (9)10 射频PCB设计的EMC (14)11 射频板ESD工艺 (18)12 表面贴装元件的焊盘设计 (19)13 射频板阻焊层设计 (19)附录A (21)附录B (23)附录C (24)附录D (27)附录E (31)附录F (32)附录G (33)附录H (39)前言1范围本标准规定了射频电路板设计应遵守的基本工艺要求。
本标准适用于射频电路板的PCB设计。
2规范性引用文件IPC-SM-782 Surface Mount Design and Land Pattern StandardIPC 2252-2002 Design Guide for RF-Microwave Circuit Boards3术语和定义下列术语和定义适用于本标准。
3.1微波 Microwaves微波是电磁波按频谱划分的定义,是指波长从1m至0.1mm范围内的电磁波, 其相应的频率从0.3GHz至3000GHz。
这段电磁频谱包括分米波(频率从0.3GHz至3GHz)\厘米波(频率从3GHz至30GHz)\毫米波(频率从30GHz至300GHz)和亚毫米波(频率从300GHz至3000GHz,有些文献中微波定义不含此段)四个波段(含上限,不含下限)。
具有似光性、似声性、穿透性、非电离性、信息性五大特点。
3.2射频 RF(Radio Frequency)射频是电磁波按应用划分的定义,专指具有一定波长可用于无线电通信的电磁波。
频率范围定义比较混乱,资料中有30MHz至3GHz, 也有300MHz至40GHz,与微波有重叠;另有一种按频谱划分的定义, 是指波长从1兆m至1m范围内的电磁波, 其相应的频率从30Hz至300MHz;射频(RF)与微波的频率界限比较模糊,并且随着器件技术和设计方法的进步还有所变化。
PCB 设计与接地方法1. 整体考虑2. 音频考虑3. 噪声考虑4. EMC 考虑5.PCB 走线的3-W 法则 6. PCB 拐角走线 个别论述: 1. 整体考虑1.1 常用星点接地(一点接地)方法 优点: 不会产生串联相互干涉如果不能100%遵循, 需要个别小心考虑 当中如何选择星点? 有2个板本: 第一板本 – 电源滤波大电容为星点第二板本 – 机壳为星点最短最粗1.2调谐器(RF)接地及小信号接地调谐器RF前端及它的屏蔽壳必须接机壳为地线, 低信号接地可以调谐器地线分支出1.3MCU及KB 接地MCU及KB可共同接地, 该接地点经由窄小引线接上主地或机壳1.4 伺服PCB 接地方法四类接地分类, 马达驱动器/音频/数字/RF 电路接地方法. 各自一块单独铜箔为地, 经由窄小引线连通. 马达地经螺丝钉收紧机芯.1.5 信号输送方法信号线及信号地线同时并行输送可以减小噪音2. 音频考虑信号电流产生磁场, 电源线有许多噪音信号及噪音大电流产生的噪音电磁场,清楚信号电流方向及它的大小强度, 将信号电流电路面积减小, 可以减小电感耦合. 相应的电源线的地线应平行分布(并行的或并列的)以使回路面积最小化进而降低回路阻抗接主板地L ch.信号地线R ch小信号线路走线应该不许接近数字电路或噪音信号, 可加屏蔽在PCB板相邻层上的信号线应相互垂直(成90º),这样能使串音最小化。
3.噪声考虑电源在PCB的入口点应被去耦。
电源应位于PCB的电源入口点,并尽快靠近大电流电路(功放IC)。
使导线间面积最小化进而使电感最小化)。
当将排线附于PCB上时,可能的话要提供多路接地回路以使回路面积最小化。
分散地线的运用VCC(干净电源)线路和信号线绝不能与未过滤的(不干净的)传送电池、点火、高电流或快速转换信号的线路平行。
通常将信号线和相关的接地回路放得越近越好以使电流回路面积最小化(见图)。
a) 低频信号电流经最小电阻线路b) 高频信号电流经最小电感线路小信号或外围电路应离I/O连接器越近越好,并远离高速数字电路、高电流电路或未过滤的电源电路。
PCB板布局布线技巧及原则2009-10-27 15:15一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC 元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB 板边≤1mm 的区域内,以及安装孔周围1mm 内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu 入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W 电阻: 51*55mil(0805 表贴);直插时焊盘62mil,孔径42mil;无极电容: 51*55mil(0805 表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
PCB版接地设计在PCB设计中,接地是非常重要的一步,它在电路中起着引导电流和提供电路引用点的作用。
接地设计的好坏直接影响到电路的可靠性和抗干扰能力。
在本文中,我们将讨论如何进行PCB版接地设计。
首先,我们需要知道接地的类型。
在电路设计中,有三种常见的接地类型:信号接地,功率接地和屏蔽接地。
信号接地主要用于处理电路中的信号线,功率接地主要用于处理电路中的电源线,而屏蔽接地主要用于处理电路中的屏蔽线。
在接地设计中,通常需要同时考虑这三种接地类型。
接下来,我们需要选择适当的接地技术。
在PCB设计中,常见的接地技术包括单点接地、多点接地和平面接地。
单点接地是将所有的地线连接到一个点上,适用于简单的小型电路。
多点接地是将地线分布在整个电路板上,适用于复杂的大型电路。
平面接地是在整个电路板上创建一个接地平面,适用于高频和模拟电路。
在接地设计中,还需要注意以下几点。
首先,要确保接地路径短而直接。
较长的接地路径会增加电流的回路阻抗,从而导致信号失真和干扰。
其次,要避免形成接地环路。
接地环路会引入环路电流,从而导致电磁干扰。
因此,在设计中要合理规划接地线路的走向,避免形成接地环路。
另外,要确保地线的宽度足够。
地线的宽度决定了其导电能力,宽度不足会导致电流过载,从而影响电路的工作稳定性。
最后,要进行接地的分层设计。
分层设计可以将信号层、电源层和地线层分隔开来,以减少信号间的干扰。
此外,在PCB设计中,还有一些常见的接地技巧值得注意。
例如,通过使用过孔连接地线,可以增加地线的连接强度。
通过在接地线上添加过滤电阻或电容,可以减少电磁噪声和干扰。
通过添加接地孔,可以提高接地的可靠性和稳定性。
总结起来,PCB版接地设计是非常重要的一步,它直接影响到电路的可靠性和抗干扰能力。
在进行接地设计时,我们需要选择适当的接地类型和技术,确保接地路径短而直接,避免形成接地环路,保证地线的宽度足够,并进行接地的分层设计。
同时,还可以运用一些接地技巧来提高接地的可靠性和稳定性。
PCB布局布线设计规范和要求预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制PCB布局布线设计规范和要求PCB布局规范一:布局设计原则1:距板边距离应大于5mm2:先放置与结构关系密切的元件,如接插件,开关,电源插座等3:优先摆放电路功能块的核心元件及体积较大的元器件,再以核心元件为中心摆放周围电路元器件4:功率大的元件摆放在有利于散热的位置上5:质量较大的元器件应避免放在板的中心,应靠近机箱中的固定边放置6:有高频连线的元件尽可能靠近,以减少高频信号的分布和电磁干扰7:输入,输出元件尽量远离8:带高压的元器件尽量放在调试时手不易触及的地方9:热敏元件应远离发热元件10:可调元件的布局应便于调节11:考虑信号流向,合理安排布局使信号流向尽可能保持一致12:布局应均匀,整齐,紧凑13:SMT元件应注意焊盘方向尽量一致,以利于装焊,减少桥联的可能14:去藕电容应在电源输入端就近位置15:波峰焊面的元件高度限制为4mm16:对于双面都有的元件的PCB,较大较密的IC,插件元件放在板的顶层,底层只能放较小的元件和管脚数少且排列松散的贴片元件17:对小尺寸高热量的元件加散热器尤为重要,大功率元件下可以通过敷铜来散热,而且这些元件周围尽量不要放热敏元件.18:高速元件尽量靠近连接器;数字电路和模拟电路尽量分开,最好用地隔开,再单点接地19:定位孔到附近焊盘的距离不小于7.62mm(300mil),定位孔到表贴器件边缘的距离不小于5.08mm(200mil)二:布线设计原则1:线应避免锐角,直角,应采用四十五度走线2:相邻层信号线为正交方向3:高频信号尽可能短4:输入,输出信号尽量避免相邻平行走线,最好在线间加地线,以防反馈耦合5:双面板电源线,地线的走向最好与数据流向一致,以增强抗噪声能力6:数字地,模拟地要分开7:时钟线和高频信号线要根据特性阻抗要求考虑线宽,做到阻抗匹配8:整块线路板布线,打孔要均匀9:单独的电源层和地层,电源线,地线尽量短和粗,电源和地构成的环路尽量小10:时钟的布线应少打过孔,尽量避免和其他信号线并行走线,且应远离一般信号线,避免对信号线的干扰;同时避开板上的电源部分,防止电源和时钟互相干扰;当一块电路板上有多个不同频率的时钟时,两根不同频率的时钟线不可并行走线;时钟线避免接近输出接口,防止高频时钟耦合到输出的CABLE线并发射出去;如板上有专门的时钟发生芯片,其下方不可走线,应在其下方铺铜,必要时对其专门割地;11:成对差分信号线一般平行走线,尽量少打过孔,必须打孔时,应两线一起打,以做到阻抗匹配12:两焊点间距很小时,焊点间不得直接相连;从贴盘引出的过孔尽量离焊盘远些Q:众所周知PCB板包括很多层,但其中某些层的含义我还不是很清楚。
PCB设计规范在前文中,我们已经介绍了PCB设计规范的一部分内容,包括组件布局、走线规则和封装规范等。
在本文中,我们将继续介绍更多的PCB设计规范,以帮助您更好地完成高质量的PCB设计。
1.地线规则地线是PCB电路板中非常重要的一部分,它承载着电路板上的共地信号。
为了确保地线的良好连接和电流传输,以下是一些地线规则:-尽量宽一些:地线的宽度应大于信号线宽度。
这是因为地线需要承载比信号线更多的电流,宽一些可以降低电流密度,减小电流热损失。
-确保连续性:地线应该是连续的,避免在地线中间插入其他信号线或孔。
如果有必要,可以通过设置连接孔来连接不同地区的地线。
-使用复合地线:对于高频或EMI敏感的电路板,最好使用复合地线。
复合地线是由多个地线平行并排连接而成,可以减小地线的电感和抗干扰能力。
-利用地面层:如果电路板的层数允许,尽量使用内部地面层。
内部地面层可以提供更好的电磁屏蔽和散热效果。
2.电源布局电源是PCB设计中不可或缺的一部分,良好的电源布局可以确保电路板的正常工作和可靠性。
以下是一些电源布局规则:-远离干扰源:电源线应尽量远离其他信号线和干扰源,特别是高频或大功率电路。
这可以避免电源线上出现噪声和干扰。
-减少电阻:电源线的电阻应尽量降到最低,以确保电压稳定性。
这可以通过增加电源线的宽度、缩短电源线长度以及合理选择电源线材料来实现。
-使用电源平面:如果电路板的层数允许,尽量在内部地面层或电源层上布置电源线和电容。
这样可以提供更好的电源过滤和绕回路径。
-导线宽度的选择:导线的宽度应根据电流要求和电阻控制来选择。
可以使用在线计算工具或根据设计经验进行选择。
3.引脚布局和走线引脚布局是PCB设计中非常关键的一部分,它涉及到组件之间的连接和信号传输。
-尽量简洁:引脚布局和走线应尽量简洁,减少交叉和纠缠。
这可以提高电路板的可读性和可维护性。
-分隔高频和低频信号:高频信号和低频信号应尽量分开布局和走线,以防止相互干扰。