中考复习专题一次函数知识点及习题
- 格式:docx
- 大小:374.16 KB
- 文档页数:9
初中数学一次函数知识点总复习附答案一、选择题1.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂重物的质量x (kg )有下面的关系,那么弹簧总长y (cm )与所挂重物x (kg )之间的关系式为( )A .y=0.5x+12B .y=x+10.5C .y=0.5x+10D .y=x+12 【答案】A【解析】分析:由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量.故弹簧总长y (cm )与所挂重物x (㎏)之间的函数关系式.详解:由表可知:常量为0.5;所以,弹簧总长y (cm )与所挂重物x (㎏)之间的函数关系式为y=0.5x+12. 故选A .点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式.2.已知过点()2?3,-的直线()0y ax b a =+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( )A .352s -≤≤-B .362s -<≤-C .362s -≤≤-D .372s -<≤- 【答案】B【解析】 试题分析:∵过点()2?3,-的直线()0y ax b a =+≠不经过第一象限, ∴0{023a b a b <≤+=-.∴23b a =--. ∵s a 2b =+,∴4636s a a a =--=--.由230b a =--≤得399333662222a a a ≥-⇒-≤⇒--≤-=-,即32s ≤-. 由0a <得3036066a a ->⇒-->-=-,即6s >-. ∴s 的取值范围是362s -<≤-.考点:1.一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.3.如图,函数4y x =-和y kx b =+的图象相交于点()8A m-,,则关于x 的不等式()40k x b ++>的解集为( )A .2x >B .02x <<C .8x >-D .2x <【答案】A【解析】【分析】 直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.【详解】解:∵函数y =−4x 和y =kx +b 的图象相交于点A (m ,−8),∴−8=−4m ,解得:m =2,故A 点坐标为(2,−8),∵kx +b >−4x 时,(k +4)x +b >0,则关于x 的不等式(k +4)x +b >0的解集为:x >2.故选:A .【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.4.函数k y x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .【答案】C【解析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.5.已知点M (1,a )和点N (3,b )是一次函数y =﹣2x+1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .无法确定【答案】A【解析】【分析】根据一次函数的图像和性质,k <0,y 随x 的增大而减小解答.【详解】解:∵k =﹣2<0,∴y 随x 的增大而减小,∵1<3,∴a >b .故选A .【点睛】考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.6.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为( ).A .1x >-B .2x <-C .1x <-D .无法确定【答案】C【解析】【分析】 求关于x 的不等式12k x b k x +>的解集就是求:能使函数1y k x b =+的图象在函数2y k x =的上边的自变量的取值范围.【详解】解:能使函数1y k x b =+的图象在函数2y k x =的上边时的自变量的取值范围是1x <-. 故关于x 的不等式12k x b k x +>的解集为:1x <-.故选:C .【点睛】本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y ax b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.7.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.8.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的107继续行驶,小轿车保持速度不变.两车距学校的路程S (单位:km )和大客车行驶的时间t (单位:min )之间的函数关系如图所示.下列说法中正确的个数是( )①学校到景点的路程为40km ;②小轿车的速度是1km /min ;③a =15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km ,故①正确,小轿车的速度是:40÷(60﹣20)=1km /min ,故②正确,a =1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km /min ,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷10(0.5)7⨯﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.9.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,∴a −b<0,∴反比例函数y=a b x-的图象过二、四象限, 所以此选项不正确; C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a −b>0,∴反比例函数y=a b x-的图象过一、三象限, 所以此选项正确; D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小10.已知正比例函数0()y mx m =≠中,y 随x 的增大而减小,那么一次函数y mx m =-的图象大致是如图中的( )A .B .C .D .【答案】D【解析】【分析】由y 随x 的增大而减小即可得出m <0,再由m <0、−m >0即可得出一次函数y mx m =-的图象经过第一、二、四象限,对照四个选项即可得出结论.【详解】解:∵正比例函数y =mx (m≠0)中,y 随x 的增大而减小,∴m <0,∴一次函数y =mx−m 的图象经过第一、二、四象限.故选:D .【点睛】本题考查了一次函数的图象、正比例函数的性质以及一次函数图象与系数的关系,熟练掌握“k <0,b >0⇔y =kx +b 的图象在一、二、四象限”是解题的关键.11.如图,经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),4x +2<kx +b <0的解集为( )A .x <﹣2B .﹣2<x <﹣1C .x <﹣1D .x >﹣1【答案】B【解析】【分析】 由图象得到直线y=kx+b 与直线y=4x+2的交点A 的坐标(-1,-2)及直线y=kx+b 与x 轴的交点坐标,观察直线y=4x+2落在直线y=kx+b 的下方且直线y=kx+b 落在x 轴下方的部分对应的x 的取值即为所求.【详解】∵经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),∴直线y =kx +b 与直线y =4x +2的交点A 的坐标为(﹣1,﹣2),直线y =kx +b 与x 轴的交点坐标为B (﹣2,0),又∵当x <﹣1时,4x +2<kx +b ,当x >﹣2时,kx +b <0,∴不等式4x +2<kx +b <0的解集为﹣2<x <﹣1.故选B .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.12.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0<【答案】B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,∴k-2>0,∴k >2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.13.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11A B 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3A 作x 轴的垂线,交直线2y x =于点3B ;按3B 此规律作下去,则点n B 的坐标为( )A .(2n ,2n-1)B .(12n -,2n )C .(2n+1,2n )D .(2n ,12n +)【答案】B【解析】【分析】 先根据题意求出点A 2的坐标,再根据点A 2的坐标求出B 2的坐标,以此类推总结规律便可求出点n B 的坐标.【详解】∵1(1,0)A∴11OA =∵过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B∴()11,2B∵2(2,0)A∴22OA =∵过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B∴()12,4B∵点3A 与点O 关于直线22A B 对称∴()()334,0,4,8A B以此类推便可求得点A n 的坐标为()12,0n -,点B n 的坐标为()12,2n n - 故答案为:B .【点睛】本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键.14.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B【解析】【分析】【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则123k b {507k b =+=+, 解得:3k 5{21b 5=-=.∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .15.一辆慢车和一辆快车沿相同的路线从A 地到B 地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h ;④慢车速度为46km/h ; ⑤A 、B 两地相距828km ;⑥快车从A 地出发到B 地用了14小时 A .2个 B .3个C .4个D .5个【答案】B 【解析】 【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答. 【详解】解:①两车在276km 处相遇,此时快车行驶了4个小时,故错误. ②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km ,可求出速度为69km/h ,错误. ④慢车6个小时走了276km ,可求出速度为46km/h ,正确.⑤慢车走了18个小时,速度为46km/h ,可得A,B 距离为828km ,正确. ⑥快车2时出发,14时到达,用了12小时,错误. 故答案选B .【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.16.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表: 砝码的质量x/g 0 50 100 150 200 250 300 400 500 指针位置y/cm2 345677.57.57.5则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案. 【详解】解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=k x +b ,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x +2.显然当y=7.5时,x =275,故选B. 【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.17.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x=图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D 【解析】 【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可. 【详解】 当12x =时,2y = ,当2x =时,12y = ,∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB 的解析式为y kx b =+ , 将11(,2),(2,)22A B 代入解析式中得122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+. 当0y =时,52x = ,即5(,0)2P ',115522222AOPA SOP y '∴=⋅=⨯⨯=. 故选:D .【点睛】何时取最大值是本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP解题的关键.18.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是()A.B.C.D.【答案】B【解析】【分析】过C作CD⊥AB于D,先求出A,B的坐标,分别为(4,0),(0,3),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=n,DA=OA=4,则DB=5-4=1,BC=3-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.【详解】过C作CD⊥AB于D,如图,对于直线,当x=0,得y=3;当y=0,x=4,∴A(4,0),B(0,3),即OA=4,OB=3,∴AB=5,又∵坐标平面沿直线AC折叠,使点B刚好落在x轴上,∴AC平分∠OAB,∴CD=CO=n,则BC=3-n,∴DA=OA=4,∴DB=5-4=1,在Rt△BCD中,DC2+BD2=BC2,∴n2+12=(3-n)2,解得n=,∴点C 的坐标为(0,). 故选B. 【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.19.已知直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于不等式12k x b k x +>的解集为( )A .1x <B .1x >C .2x >D .0x <【答案】A 【解析】 【分析】根据函数图象可知直线l 1:y=k 1x+b 与直线l 2:y=k 2x 的交点是(1,2),从而可以求得不等式12k x b k x +>的解集. 【详解】 由图象可得,12k x b k x +>的解集为x <1,故选:A . 【点睛】此题考查一次函数与一元一次不等式的关系,解题的关键是明确题意,利用数形结合的思想解答问题.20.一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( ) A .m≠2,n=2 B .m=2,n=2C .m≠2,n=1D .m=2,n=1【答案】A 【解析】 【分析】直接利用一次函数的定义分析得出答案.【详解】解:∵一次函数y=(m-2)x n-1+3是关于x的一次函数,∴n-1=1,m-2≠0,解得:n=2,m≠2.故选A.【点睛】此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.。
2024年中考数学专题复习:一次函数的图像与性质一、选择题(本大题共10道小题)1. (2023•沈阳)一次函数y =-3x+1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2. (2023八上·太原期中)课堂上,同学们研究正比例函数y=-x 的图象时,得到如下四个结论,其中错误的是( )A.当x=0时,y=0,所以函数y=-x 的图象经过原点B.点P(t,-t)一定在函数y=-x 的图象上C.当x>0时,y<0,当x<0时,y>0,所以函数y=-x 的图象经过二、四象限D.将函数的图象向左平移2个单位,即可得到函数y=-x+2的图象3. (2023·太原模拟)已知y 是x 的正比例函数,当x =3时,y =-6,则y 与x 的函数关系式为( )A.y =2xB.y =-2xC.y =12 xD.y =-12x 4. (2023•柳州)若一次函数y =kx+b 的图象如图所示,则下列说法正确的是( )A.k >0B.b =2C.y 随x 的增大而增大D.x =3时,y =0 5. (2023·贵州毕节·二模)已知正比例函数y=kx(k ≠0)的图象过点(2,3),把正比例函数y=kx(k ≠0)的图象平移,使它过点(1,-1),则平移后的函数图象大致是( )A. B. C.D. 6. (2023秋•会宁县)已知关于x 的一次函数y =(k 2+1)x-2图象经过点A(3,m)、B(-1,n),则m,n 的大小关系为( )A.m ≥nB.m >nC.m ≤nD.m <n7. (2023·随州模拟)如图,在平面直角坐标系中,动点A,B 分别在x 轴上和函数y =x 的图象上,AB =4,CB ⊥AB,BC =2,则OC 的最大值为( )A.222B.224C.2 5D.2528. (2023·鄂州中考)数形结合是解决数学问题常用的思想方法.如图,直线y =2x -1与直线y =kx +b(k ≠0)相交于点P(2,3).根据图象可知,关于x 的不等式2x -1>kx +b 的解集是( )A.x <2B.x <3C.x >2D.x >39. (2023•贵阳)小星在“趣味数学”社团活动中探究了直线交点个数的问题.现有7条不同的直线y =k n x+b n (n =1,2,3,4,5,6,7),其中k 1=k 2,b 3=b 4=b 5,则他探究这7条直线的交点个数最多是( )A.17个B.18个C.19个D.21个10. (2023·湖南永州·中考真题)已知点P(x 0,y 0)和直线y=kx+b,求点P 到直线y=kx+b 的距离d 可用公式0021kx y b d k -+=+计算.根据以上材料解决下面问题:如图,⊙C 的圆心C 的坐标为(1,1),半径为1,直线l 的表达式为y=-2x+6,P 是直线l 上的动点,Q 是⊙C 上的动点,则PQ 的最小值是( )A.355B.3515-C.6515-D.2二、填空题(本大题共8道小题)11. (2023•毕节市)将直线y =-3x 向下平移2个单位长度,平移后直线的解析式为 .12. (2023·四川成都市)在正比例函数y=kx 中,y 的值随着x 值的增大而增大,则点P(3,k)在第_____象限.13. (2023·贵州黔西·二模)如图,平面直角坐标系中,经过点B(-4,0)的直线y =kx+b 与直线y =mx+2相交于点3(,1)2A --,则关于x 的方程mx+2=kx+b 的解为________.14. (2023秋•宁化县)若函数y =4x ﹣1与y =﹣x+a 的图象交于x 轴上一点,则a 的值为( )A.4B.﹣4C.D.±415. (2023黔西南州)如图,正比例函数的图象与一次函数y =-x +1的图象相交于点P,点P 到x 轴的距离是2,则这个正比例函数的解析式是 .16. (2023·湖南湘西·中考真题)在平面直角坐标系中,O 为原点,点A(6,0),点B 在y 轴的正半轴上,∠ABO=30o .矩形CODE 的顶点D,E,C 分别在OA,AB,OB 上,OD=2.将矩形CODE 沿x 轴向右平移,当矩形CODE 与△ABO 重叠部分的面积为63时,则矩形CODE 向右平移的距离为___________.17. (2023•毕节市)如图,在平面直角坐标系中,点N 1(1,1)在直线l:y =x 上,过点N 1作N 1M 1⊥l,交x 轴于点M 1;过点M 1作M 1N 2⊥x 轴,交直线于N 2;过点N 2作N 2M 2⊥l,交x 轴于点M 2;过点M 2作M 2N 3⊥x 轴,交直线l 于点N 3;…,按此作法进行下去,则点M 2023的坐标为 .18. (2023•泰安)如图,点B 1在直线l:y =21x 上,点B 1的横坐标为2,过点B 1作B 1A 1⊥l,交x 轴于点A 1,以A 1B 1为边,向右作正方形A 1B 1B 2C 1,延长B 2C 1交x 轴于点A 2;以A 2B 2为边,向右作正方形A 2B 2B 3C 2,延长B 3C 2交x 轴于点A 3;以A 3B 3为边,向右作正方形A 3B 3B 4C 3,延长B 4C 3交x 轴于点A 4;…;照这个规律进行下去,则第n 个正方形A n B n B n+1∁n 的边长为 (结果用含正整数n 的代数式表示).三、解答题(本大题共6道小题)19. (2023秋•安徽月考)已知经过点A(4,-1)的直线y =kx+b 与直线y =-x 相交于点B(2,a),求两直线与x 轴所围成的三角形的面积.20. (2023春•西丰县)如图,一次函数y=kx+b的图象经过A(2,4),B(﹣2,﹣2)两点,与y轴交于点C.(1)求k,b的值,并写出一次函数的解析式;(2)求点C的坐标.21. (2023秋•兰州)如图,直线l1:y=-x+4分别与x轴,y轴交于点D,点A,直线l2:y x+1与x轴交于点C,两直线l1,l2相交于点B,连AC.(1)求点B的坐标和直线AC的解析式;(2)求△ABC的面积.22. (2023•滨州)如图,在平面直角坐标系中,直线y x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.23. (2023·河北中考真题)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l ,如图.而某同学为观察k,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线l '.(1)求直线l 的解析式; (2)请在图上画出..直线l '(不要求列表计算),并求直线l '被直线l 和y 轴所截线段的长; (3)设直线y=a 与直线l ,l '及y 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值.24. (2023•黑龙江)如图,矩形ABOC 在平面直角坐标系中,点A 在第二象限内,点C 在y 轴正半轴上,OA 2-9x+20=0的两个根.解答下列问题:(1)求点A 的坐标;(2)若直线MN 分别与x 轴,AB,AO,y 轴交于点D,M,F,N,E,S △AMN =2,tan ∠AMN =1,求直线MN 的解析式;(3)在(2)的条件下,点P 在第二象限内,使以E,F,P,Q 为顶点的四边形是正方形?若存在;若不存在,请说明理由.。
一次函数及其运用复习考点攻略考点01 一次函数相关概念1.正比例函数:一般地.形如y=kx(k是常数.k≠0)的函数.叫做正比例函数.其中k叫做正比例系数.2. 一次函数:一般地.形如y=kx+b(k.b为常数.且k≠0)的函数叫做x的一次函数。
特别地.当一次函数y=kx+b中的b=0时.y=kx(k是常数.k≠0).这时.y叫做x的正比例函数.3. 一次函数的一般形式:一次函数的一般形式为y=kx+b.其中k.b为常数.k≠0.一次函数的一般形式的结构特征:(1)k≠0.(2)x的次数是1;(3)常数b可以为任意实数.【注意】(1)正比例函数是一次函数.但一次函数不一定是正比例函数.(2)一般情况下.一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数.就是判断它是否能化成y=kx+b(k≠0)的形式. 【例1】下列函数中.正比例函数是A.y=23xB.y=213x-C.y=34x D.y=12(x-1)【答案】C【解析】A.分母中含有自变量x.不是正比例函数.故A错误;B.y=213x-是一次函数.故B错误;C.y=34x是正比例函数.故C正确;D.y=12(x-1)可变形为y=12x-12是一次函数.故D错误.故选C.【例2】下列函数关系式:(1)y=﹣x;(2)y=x﹣1;(3)y=1x;(4)y=x2.其中一次函数的个数是()A.1B.2C.3D.4【答案】B【解析】解:(1)y=﹣x是正比例函数.是特殊的一次函数.故正确;(2)y=x﹣1符合一次函数的定义.故正确;(3)y=1x属于反比例函数.故错误;(4)y=x2属于二次函数.故错误.综上所述.一次函数的个数是2个.故选:B.考点2 一次函数的图像和性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0.0)的一条直线.k的符号函数图象图象的位置性质k>0图象经过第一、三象限y随x的增大而增大k <0 图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象一次函数y=kx+b(k≠0)的图象是经过点(0.b)和(-bk.0)的一条直线图象关系一次函数y=kx+b(k≠0)的图象可由正比例函数y=kx(k≠0)的图象平移得到;b>0.向上平移b个单位长度;b<0.向下平移|b|个单位长度图象确定因为一次函数的图象是一条直线.由两点确定一条直线可知画一次函数图象时.只要取两点即可(2)一次函数的性质函数字母取值图象经过的象限函数性质y=kx+b (k≠0)k>0.b>0 一、二、三y随x的增大而增大k>0.b<0 一、三、四y=kx+b (k≠0)k<0.b>0一、二、四y随x的增大而减小k<0.b<0 二、三、四(3)两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2.b1≠b2.两直线平行;②当k1=k2.b1=b2.两直线重合;③当k1≠k2.b1=b2.两直线交于y轴上一点;④当k1·k2=–1时.两直线垂直.【例3】已知正比例函数y=x的图象如图所示.则一次函数y=mx+n图象大致是A.B.C. D.【答案】C【解析】利用正比例函数的性质得出>0.根据m、n同正.同负进行判断.由正比例函数图象可得:>0.mn同正时.y=mx+n经过第一、二、三象限;mn同负时.经过第二、三、四象限.故选C.【例4】已知一次函数的图象经过点.且y随x的增大而减小.则点的坐标可以是()A.()1,2-B.()1,2-C.()2,3D.()3,4【答案】Bmnmnmn【解析】∵一次函数3y kx =+的函数值y 随x 的增大而减小.∴k ﹤0.A .当x=-1.y=2时.-k+3=2.解得k=1﹥0.此选项不符合题意;B .当x=1.y=-2时.k+3=-2,解得k=-5﹤0.此选项符合题意;C .当x=2.y=3时.2k+3=3.解得k=0.此选项不符合题意;D .当x=3.y=4时.3k+3=4.解得k=13﹥0.此选项不符合题意.故选:B .考点3 待定系数法求一次函数解析式(1)待定系数法:先设出函数解析式.再根据条件确定解析式中未知数的系数.从而得出函数解析式的方法叫做待定系数法.(2)待定系数法求正比例函数解析式的一般步骤: ①设含有待定系数的函数解析式为y =kx (k ≠0).②把已知条件(自变量与函数的对应值)代入解析式.得到关于系数k 的一元一次方程. ③解方程.求出待定系数k .④将求得的待定系数k 的值代入解析式. (3)待定系数法求一次函数解析式的一般步骤: ①设出含有待定系数k 、b 的函数解析式y =kx +b .②把两个已知条件(自变量与函数的对应值)代入解析式.得到关于系数k .b 的二元一次方程组.③解二元一次方程组.求出k .b . ④将求得的k .b 的值代入解析式.【例5】一次函数图象经过(3.1).(2.0)两点. (1)求这个一次函数的解析式; (2)求当x =6时.y 的值. 【答案】y =x –2;4【解析】(1)设一次函数解析式为y =kx +b .把(3.1).(2.0)代入得.解得. 所以这个一次函数的解析式为y =x –2; (2)当x =6时.y =x –2=6–2=4.考点4 一次函数与正比例函数的区别与联系正比例函数一次函数区一般形式y =kx +b (k 是常数.且k ≠0) y =kx +b (k .b 是常数.且k ≠0)3120k b k b +=+=⎧⎨⎩12k b ==-⎧⎨⎩别图象经过原点的一条直线一条直线k.b符号的作用k的符号决定其增减性.同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k.b的符号共同决定直线经过的象限求解析式的条件只需要一对x.y的对应值或一个点的坐标需要两对x.y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样.都是过两点画直线.但画一次函数的图象需取两个不同的点.而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y 轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b (k≠0.b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时.y的值随x值的增大而增大;b.当k<0时.y的值随x值的增大而减小.A.y=2x+3B.y=2x﹣3C.y=2(x+3)D.y=2(x﹣3)【答案】A【解析】解:∵将函数y=2x的图象向上平移3个单位.∴所得图象的函数表达式为:y=2x+3.故选:A.考点5.一次函数与方程(组)、不等式(1)一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k.b为常数.且k≠0)的形式.从函数的角度来看.解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑.解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.(2)一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a.b为常数.且a≠0)的形式.从函数的角度看.解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看.就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.(3)一次函数与二元一次方程组一般地.二元一次方程mx+ny=p(m.n.p是常数.且m≠0.n≠0)都能写成y=ax+b(a.b为常数.且a≠0)的形式.因此.一个二元一次方程对应一个一次函数.又因为一个一次函数对应一条直线.所以一个二元一次方程也对应一条直线.进一步可知.一个二元一次方程对应两个一次函数.因而也对应两条直线.从数的角度看.解二元一次方程组相当于考虑自变量为何值时.两个函数的值相等.以及这两个函数值是何值;从形的角度看.解二元一次方程组相当于确定两条直线的交点坐标.一般地.如果一个二元一次方程组有唯一解.那么这个解就是方程组对应的两条直线的交点坐标.【例7】已知直线y=mx+n(m.n为常数)经过点(0.–2)和(3.0).则关于x的方程mx+n=0的解为A.x=0 B.x=1C.x=–2 D.x=3【答案】D【解析】直线y=mx+n与x轴的交点横坐标的值即为方程mx+n=0的解.∵直线y=mx+n(m.n为常数)经过点(3.0).∴当y=0时.x=3.∴关于x的方程mx+n=0的解为x=3.故选D.【例8】如图为y=kx+b的图象.则kx+b=0的解为x= ()A.2 B.–2C.0 D.–1【答案】D【解析】从图象上可知.一次函数y=kx+b与x轴交点的横坐标为–1.所以关于x的方程kx+b=0的解为x=–1.故选D.【例9】如图.正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m.2).一次函数的图象经过点B(−2.−1).(1)求一次函数的解析式;(2)请直接写出不等式组−1<kx+b<2x的解集.【答案】(1)y =x +1;(2)x >1【解析】(1)∵点A (m.2)在正比例函数y =2x 的图象上.∴2=2m .解得:m =1. ∴点A 的坐标为(1.2)将A (1.2)、B (−2.−1)代入y =kx +b .221k b k b +=⎧⎨-+=-⎩解得:k =b =1∴一次函数的解析式为y =x +1 (2))∵在y =x +1中.1>0. ∴y 值随x 值的增大而增大. ∴不等式–1<x +1的解集为x >–2.观察函数图象可知.当x >1时.一次函数y =x +1的图象在正比例函数y =2x 的图象的下方. ∴不等式组–1<x +1<2x 的解集为x >1.【例10】如图.函数y =kx +b 与y =mx +n 的图象交于点P (1.2).那么关于x .y 的方程组的解是A .B .C .D . 【答案】A【解析】方程组的解就是两个相应的一次函数图象的交点坐标.所以方程组的解是.故选A .y kx by mx n =+=+⎧⎨⎩12x y ==⎧⎨⎩21x y ==⎧⎨⎩23x y ==⎧⎨⎩13x y ==⎧⎨⎩y kx by mx n =+=+⎧⎨⎩12x y ==⎧⎨⎩考点6.一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标.或两条直线的交点坐标.进而将点的坐标转化成三角形的边长.或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行.可以采用“割”或“补”的方法.【例11】在平面直角坐标系中.O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x 交于点A、B.则△AOB的面积为()A.2B.3C.4D.6【答案】B【解析】解:在y=x+3中.令y=0.得x=﹣3.解32y xy x=+⎧⎨=-⎩得.12xy=-⎧⎨=⎩.∴A(﹣3.0).B(﹣1.2).∴△AOB的面积=12⨯3×2=3.故选:B.考点7.一次函数的实际应用(1)主要题型:①求相应的一次函数表达式;②结合一次函数图象求相关量、求实际问题的最值等.(2)用一次函数解决实际问题的一般步骤为:①设定实际问题中的自变量与因变量;②通过列方程(组)与待定系数法求一次函数关系式;③确定自变量的取值范围;④利用函数性质解决问题;⑤检验所求解是否符合实际意义;⑥答.(3)方案最值问题:对于求方案问题.通常涉及两个相关量.解题方法为根据题中所要满足的关系式.通过列不等式.求解出某一个事物的取值范围.再根据另一个事物所要满足的条件.即可确定出有多少种方案.(4)方法技巧求最值的本质为求最优方案.解法有两种:①可将所有求得的方案的值计算出来.再进行比较;②直接利用所求值与其变量之间满足的一次函数关系式求解.由一次函数的增减性可直接确定最优方案及最值;若为分段函数.则应分类讨论.先计算出每个分段函数的取值.再进行比较.【例12】某县组织20辆汽车装运食品、药品、生活用品三种扶贫物资共100吨到某乡实施扶贫工作.按计划20辆汽车都要装运.每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息.解答下列问题:物资种类 食品 药品 生活用品每辆汽车运载量(吨) 6 5 4 每吨所需运费(元/吨)120160100(1)设装运食品的车辆数为x .装运药品的车辆数为y .求y 与x 的函数关系式; (2)如果装运食品的车辆数不少于5辆.装运药品的车辆数不少于4辆.那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下.若要求总运费最少.应如何安排车辆?并求出最少总运费. 【解析】(1)由题意可得.6x +5y +4(20-x -y )=100.化简.得y =20-2x .即y 与x 的函数关系式是y =-2x +20;(2)由题意可得..解得5≤x ≤8.即车辆的安排有四种方案. 方案一:运食品的5辆车.装运药品的10辆车.装运生活用品的5辆车; 方案二:运食品的6辆车.装运药品的8辆车.装运生活用品的6辆车; 方案三:运食品的7辆车.装运药品的6辆车.装运生活用品的7辆车; 方案四:运食品的8辆车.装运药品的4辆车.装运生活用品的8辆车; (3)由题意可得.w =120×6x +160×5y +100×4(20-x -y )=-480x +16000.∵5≤x ≤8.∴当x =8时.w 最小.此时w =-480×8+16000=12160(元). 即在(2)的条件下.若要求总运费最少.应安排运食品的8辆车.装运药品的4辆车.装运生活用品的8辆车.最少总运费是12160元.第一部分 选择题一、选择题(本题有10小题.每题4分.共40分)52204x x ≥-+≥⎧⎨⎩1.下列函数①y =﹣2x +1.②y =ax ﹣b .③y =﹣6x.④y =x 2+2中.是一次函数的有 A .①② B .①C .②③D .①④【答案】B【解析】①y =﹣2x +1符合一次函数定义.故正确; ②y =ax ﹣b 中当a =0时.它不是一次函数.故错误; ③y =﹣6x属于反比例函数.故错误; ④y =x 2+2属于二次函数.故错误; 综上所述.是一次函数的有1个. 故选B .2.一次函数y =–2x +b .b <0.则其大致图象正确的是A .B .C .D .【答案】B【解析】因为k =–2.b <0.所以图象在第二、三、四象限.故选B . 3.一次函数y =kx +b 的图象如图所示.则关于x 的方程kx +b =–1的解为A .x =0B .x =1C .x =12D .x =–2【答案】C【解析】∵一次函数y =kx +b 的图象过点(.–1).∴关于x 的方程kx +b =–1的解是x =.故选C4. 如图.一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1.3).则关于x 的不等式x +b >kx +4的解集是1212A .x >﹣2B .x >0C .x >1D .x <1【答案】C【解析】当x >1时.x +b >kx +4.即不等式x +b >kx +4的解集为x >1.故选C .5. 如图.直线(0)y kx b k =+<经过点(1,1)P .当kx b x +≥时.则x 的取值范围为( )A .1x ≤B .1x ≥C .1x <D .1x >【答案】A【解析】解:由题意将(1,1)P 代入(0)y kx b k =+<.可得1k b +=.即1k b -=-. 整理kx b x +≥得.()10k x b -+≥.∴0bx b -+≥.由图像可知0b >.∴10x -≤.∴1x ≤.故选:A .6.新龟兔赛跑的故事:龟兔从同一地点同时出发后.兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先.就躺在路边呼呼大睡起来.当它一觉醒来.发现乌龟已经超过它.于是奋力直追.最后同时到达终点.用S 1、S 2分别表示乌龟和兔子赛跑的路程.t 为赛跑时间.则下列图象中与故事情节相吻合的是( )A .B .C .D .【答案】C【解析】对于乌龟.其运动过程可分为两段:从起点到终点乌龟没有停歇.其路程不断增加;最后同时到达终点.可排除B .D 选项 对于兔子.其运动过程可分为三段:据此可排除A 选项.开始跑得快.所以路程增加快;中间睡觉时路程不变;醒来时追赶乌龟路程增加快.故选:C7.若一次函数y =ax +b 的图象经过一、二、四象限.则下列不等式中能成立的是( ) A .a >0 B .b <0C .a +b >0D .a ﹣b <0【答案】D【解析】∵一次函数y =ax +b 的图象经过一、二、四象限. ∴a <0.b >0. ∴a ﹣b <0.即选项A 、B 、C 都错误.只有选项D 正确; 故选:D .8.如图.直线y =kx +b 交直线y =mx +n 于点P (1.2).则关于x 的不等式kx +b >mx +n 的解集为( )A .x >1B .x >2C .x <1D .x <2【答案】C【解析】如图所示.直线y =kx +b 交直线y =mx +n 于点P (1.2). 所以.不等式kx +b >mx +n 的解集为x <1. 故选:C .9.如图.一束光线从点()4,4A 出发.经y 轴上的点C 反射后经过点()10B ,.则点C 的坐标是( )A .10,2⎛⎫ ⎪⎝⎭B .40,5⎛⎫ ⎪⎝⎭C .()0,1D .()0,2【答案】B【解析】如图所示.延长AC 交x 轴于点D .设()0,C c∵这束光线从点()4,4A 出发.经y 轴上的点C 反射后经过点()10B ,.∴由反射定律可知.1OCB ∠=∠.∵∠1=∠OCD .∴OCB OCD ∠=∠.∵CO DB ⊥于O .∴COD COB ∠=∠=90°.在COD ∆和COB ∆中OCD OCBOC OC COD COB ∠=∠⎧⎪=⎨⎪∠=∠⎩.∴()COD COB ASA ∆≅∆.∴1OD OB ==.∴()1,0D -.设直线AD 的解析式为y kx b =+.∴将点()4,4A .点()1,0D -代入得:440k bk b =+⎧⎨=-+⎩.解得:4545k b ⎧=⎪⎪⎨⎪=⎪⎩. ∴直线AD 的解析式为:4455y x =+.∴点C 坐标为40,5⎛⎫⎪⎝⎭.故选B . 10.如图1.点F 从菱形ABCD 的顶点A 出发.沿A →D →B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时.△FBC 的面积y (cm 2)随时间x (s )变化的关系图象.则a 的值为A 5B .2C .52D .5【答案】C【解析】如图.过点D作DE⊥BC于点E..由图象可知.点F由点A到点D用时为a s.△FBC的面积为a cm2.∴AD=a.∴DE•AD=a.∴DE=2.当点F从D到B时.∴BD.Rt△DBE中.BE.∵四边形ABCD是菱形.∴EC=a–1.DC=a.Rt△DEC中.a2=22+(a–1)2.解得a=.故选C.第二部分填空题二、填空题(本题有6小题.每题4分.共24分)11.已知函数y=(m+2)是正比例函数.则m的值是__________.【答案】2【解析】∵函数y=(m+2)x m2−3是正比例函数.∴m2–3=1.m+2≠0.解得:m=2.故答案为:2.12.把直线y=2x﹣1向左平移1个单位长度.再向上平移2个单位长度.则平移后所得直线的解析式为_____.【答案】y=2x+3【解析】解:把直线y=2x﹣1向左平移1个单位长度.得到y=2(x+1)﹣1=2x+1.再向上平移2个单位长度.得到y=2x+3.故答案为:y=2x+3.13.如图.直线542y x=+与x轴、y轴分别交于A、B两点.把AOB绕点B逆时针旋转90°1255()2222=521BD DE--=5223mx-后得到11AO B .则点1A 的坐标是_____.【答案】(4.125) 【解析】解:在542y x =+中.令x=0得.y=4.令y=0.得5042x =+.解得x=8-5. ∴A (8-5.0).B (0.4).由旋转可得△AOB ≌△A 1O 1B .∠ABA 1=90°. ∴∠ABO=∠A 1BO 1.∠BO 1A 1=∠AOB=90°.OA=O 1A 1=85.OB=O 1B=4. ∴∠OBO 1=90°.∴O 1B ∥x 轴.∴点A 1的纵坐标为OB -OA 的长.即为48-5=125; 横坐标为O 1B=OB=4.故点A 1的坐标是(4.125).故答案为:(4.125). 14.如图.直线y =kx +b (k 、b 是常数k ≠0)与直线y =2交于点A (4.2).则关于x 的不等式kx +b <2的解集为_____.【答案】x <4【解析】解:∵直线y =kx +b 与直线y =2交于点A (4.2).∴x <4时.y <2. ∴关于x 的不等式kx +b <2的解集为:x <4.故答案为:x <4.15.直线2y x =+经过()11,M y .()23,N y 两点.则1y ______2y (填“>”“<”或“=”). 【答案】<【解析】根据直线2y x =+经过()11,M y .()23,N y 两点.可分别将M 、N 的坐标代入得.1123y =+=.2325y =+=.则12y y <.故答案为:<16.如图.直线AM 的解析式为1y x =+与x 轴交于点M .与y 轴交于点A .以OA 为边作正方形ABCO .点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E .交x 轴于点1O .过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C .点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E .交x 轴于点2O .过点2O 作x 轴的垂线交MA 于点2A .以22O A 为边作正方形2222O A B C ..则点2020B 的坐标______.【答案】()20202020231,3⨯-【解析】解:∵AM 的解析式为1y x =+.∴M (-1.0).A (0.1).即AO=MO=1.∠AMO=45°. 由题意得:MO=OC=CO 1=1.O 1A 1=MO 1=3.∵四边形1111O A B C 是正方形.∴O 1C 1=C 1O 2=MO 1=3.∴OC 1=2×3-1=5.B 1C 1=O 1C 1=3.B 1(5.3). ∴A 2O 2=3C 1O 2=9.B 2C 2=9.OO 2=OC 2-MO=9-1=8.综上.MC n =2×3n .OC n =2×3n -1.B n C n =A n O n =3n . 当n=2020时.OC 2020=2×32020-1.B 2020C 2020 =32020.点B()20202020231,3⨯-.故答案为:()20202020231,3⨯-第三部分 解答题三、解答题(本题有6小题.共56分)17. 已知一次函数y =kx +b.当x =3时.y =14.当x =–1时.y =–6. (1)求k 与b 的值;(2)当y 与x 相等时.求x 的值.【答案】(1)51k b =⎧⎨=-⎩ (2)14 【解析】(1)∵当x =3时.y =14.当x =–1时.y =–6.∴3146k b k b +=⎧⎨-+=-⎩.∴51k b =⎧⎨=-⎩;(2)∵51k b =⎧⎨=-⎩.∴y =5x –1. 当y 与x 相等时.则x =5x –1. ∴x =14. 18. 已知y –3与3x +1成正比例.且x =2时.y =6.5.(1)求y 与x 之间的函数关系式.并指出它是什么函数; (2)若点(a .2)在这个函数的图象上.求a 的值. 【答案】(1)一次函数。
中考数学复习《一次函数》经典题型及测试题(含答案)命题点分类集训命题点1 一次函数的图象与性质【命题规律】1.考查内容:①一次函数所在象限;②一次函数(含正比例函数)解析式的确定;③一次函数的增减性与其系数之间的关系;④一次函数与方程(组)的关系;⑤一次函数与不等式的关系;⑥一次函数图象平移;⑦一次函数与几何图形结合.2.三大题型均有考查,但解答题的设题一般多与反比例函数结合(试题详见反比例函数).【命题预测】一次函数的图象与性质是命题的焦点与趋势,值得关注. 1. 一次函数y =-2x +3的图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 1. C2.在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( ) A. M (2,-3),N (-4,6) B. M (-2,3),N (4,6) C. M (-2,-3),N (4,-6) D. M (2,3),N (-4,6) 2. A3.若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的图象可能是( )3. B4.如图,直线y =ax +b 过点A (0,2)和点B (-3,0),则方程ax +b =0的解是( ) A. x =2 B. x =0 C. x =-1 D. x =-34. D 【解析】方程ax +b =0的解就是一元一次函数y =ax +b 的图象与x 轴交点的横坐标,即x =-3.5.设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A.2a +3b =0B.2a -3b =0C.3a -2b =0D.3a +2b =05. D 【解析】把点A (a ,b )代入y =-32x ,得b =-32a ,即2b =-3a ,∴3a +2b =0.6.关于直线l :y =kx +k (k ≠0),下列说法不正确...的是( ) A. 点(0,k )在l 上 B. l 经过定点(-1,0)C. 当k >0,y 随x 的增大而增大D. l 经过第一、二、三象限6. D 【解析】逐项分析如下:选项 逐项分析正误 A点(0,k )在直线l 上,是直线与y 轴的交点√B 当x =-1时,函数值y =-k +k =0,所以直线l 经过定点(-1,0)√ C当k >0时,y 随x 的增大而增大√D直线l 经过第一、二、三象限仅仅当k 是正数时成立,当k 是负数时,函数图象经过二、三、四象限×7.一次函数y =43x -b 与y =43x -1的图象之间的距离等于3,则b 的值为( )A. -2或4B. 2或-4C. 4或-6D. -4或67. D 【解析】∵直线y =43x -1 与x 轴的交点A 的坐标为(34 ,0),与y 轴的交点C 的坐标为(0,-1),∴OA =34,OC =1,直线y =43x -b 与直线y =43x -1的距离为3,可分为两种情况:(1)如解图①,点B 的坐标为(0,-b ),则OB =-b ,BC =-b +1,易证△OAC ∽△DBC ,则OA DB =ACBC ,即343=12+(34)2-b +1,解得b =-4;(2)如解图②,点F 的坐标为(0,-b ),则CF =b -1,易证△OAC ∽△ECF ,则OA EC =ACCF ,即343=12+(34)2b -1,解得b =6,故b =-4或6.8.将直线y =2x +1向下平移3个单位长度后所得直线的解析式是____________.8. y =2x -2 【解析】根据直线的平移规律:上加下减,可得到平移后的解析式为y =2x +1-3=2x -2. 9.若函数y =(m -1)x |m |是正比例函数,则该函数的图象经过第________象限. 9. 二、四 【解析】∵函数y =(m -1)x |m|是正比例函数,则⎩⎪⎨⎪⎧|m|=1m -1≠0,∴m =-1.则这个正比例函数为y =-2x ,其图象经过第二、四象限.10.若一次函数y =-2x +b (b 为常数)的图象经过第二、三、四象限,则b 的值可以是________(写出一个即可).10. -1(答案不唯一,满足b <0即可) 【解析】∵一次函数y =-2x +b 的图象经过第二、三、四象限,∴b <0,故b 的值可以是-1.11.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.11. -1 【解析】∵一次函数图象与y 轴的交点在y 轴的正半轴上,∴2k +3>0,∴k>-1.5;又∵函数值y 随x 的增大而减小,∴k<0,则-1.5<k<0,∵k 取整数,∴k =-1.12.如图,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB =13. (1)求点B 的坐标;(2)若△ABC 的面积为4,求直线l 2的解析式. 12. 解:(1)∵点A 的坐标为(2,0),∴AO =2.在Rt △AOB 中,OA 2+OB 2=AB 2,即22+OB 2=(13)2, ∴OB =3, ∴B(0,3).(2)∵S △ABC =12BC·OA ,即4=12BC ×2,∴BC =4,∴OC =BC -OB =4-3=1, ∴C(0,-1).设直线l 2的解析式为y =kx +b(k ≠0), ∵直线l 2经过点A(2,0),C(0,-1),∴⎩⎪⎨⎪⎧0=2k +b -1=b, 解得⎩⎪⎨⎪⎧k =12b =-1.∴直线l 2的解析式为y =12x -1.命题点2 一次函数的实际应用【命题规律】1.考查内容:①结合一次函数图象分析实际问题;②结合表格考查一次函数的实际应用;③以阶梯费用问题为背景,考查分段函数;④根据文字中的变量列一次函数解决实际问题;⑤与方程不等式综合的一次函数实际问题.2.主要以解答题形式出题,设问以两问为主.【命题预测】一次函数的实际应用是全国命题趋势之一,一次函数图象分析题和一次函数与方程综合题是重点.13.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.13. 120 【解析】从函数图象可知,小茜是正比例函数图象,小静是分段函数图象,小静第二段函数图象与小茜的函数图象的交点的横坐标便是她们第一次相遇的时间.可求出小茜的函数解析式为S =4t ,设小静第二段函数图象的解析式为S =kt +b ,把(60,360)和(150,540)代入得⎩⎪⎨⎪⎧60k +b =360150k +b =540,解得⎩⎪⎨⎪⎧k =2b =240,∴此段函数解析式为S =2t +240,解方程组⎩⎪⎨⎪⎧S =2t +240S =4t ,得⎩⎪⎨⎪⎧t =120S =480,故她们第一次相遇时间为起跑后第120秒.14.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回.如图,是小明昨天出行的过程中,他距西安的距离y (千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB 所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家? 确定14. (1)【思路分析】利用待定系数法可求出函数解析式,再根据图象出自变量的取值范围.解:设线段AB 所表示的函数关系式为y =kx +b(k ≠0),则根据题意,得⎩⎪⎨⎪⎧b =1922k +b =0,解得⎩⎪⎨⎪⎧k =-96b =192, ∴线段AB 所表示的函数关系式为y =-96x +192(0≤x ≤2).(2)【思路分析】利用待定系数法求出线段CD 的解析式,令y =192,解方程即可求出小明到家的时间.解:由题意可知,下午3点时,x =8,y =112.设线段CD 所表示的函数关系式为y =k′x +b′(k′≠0),则根据题意,得⎩⎪⎨⎪⎧8k′+b′=1126.6k′+b′=0,解得⎩⎪⎨⎪⎧k′=80b′=-528.∴线段CD 的函数关系式为y =80x -528.∴当y =192时,80x -528=192,解得x =9. ∴他当天下午4点到家.15.根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8∶00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11∶30全部排完,游泳池内的水量Q (m 3)和开始排水后的时间t (h)之间的函数图象如图所示,根据图象解答下列问题: (1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数表达式.15. 解:(1)暂停排水时间为30分钟(半小时);排水孔的排水速度为900÷(3.5-0.5)=300 (m 3/h ).(2)由图可知排水 1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 (m 3),设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b(k ≠0),把(2,450),(3.5,0)代入得⎩⎨⎧450=2k +b ,0=3.5k +b ,解得⎩⎪⎨⎪⎧b =1050k =-300.∴函数表达式为Q =-300t +1050.16.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如下表所示(教师按成人票价购买,学生按学生票价购买):若师生均购买二等座票,则共需1020元.(1)参加活动的教师有________人,学生有________人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x 人,购买一、二等座票全部费用为y 元. ①求y 关于x 的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?16. 解:(1)10,50;【解法提示】设有教师x 人,则有学生(60-x)人, 由题意列方程得: 22x +16(60-x)=1020, 解得x =10, ∴60-x =50(人),∴有教师10人,学生50人. (2)①由题意知:y =26x +22(10-x)+50×16 =26x +220-22x +800 =4x +1020; ②由题意得: 4x +1020≤1032, 解得x ≤3,∴提早前往的教师最多只能3人.中考冲刺集训一、选择题1.已知一次函数y =kx +5和y =k ′x +7,假设k >0且k ′<0,则这两个一次函数图象的交点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限1. A 【解析】根据题意画出两个函数的图象,大致图象如解图所示,∴这两个一次函数图象的交点在第一象限.2.若k ≠0,b <0,则y =kx +b 的图象可能是( )2. B3.已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A. k >1,b <0B. k >1,b >0C. k >0,b >0D. k >0,b <03. A 【解析】原解析式可变形为y =(k -1)x +b ,∵函数值y 随自变量x 的增大而增大,∴k -1>0,∴k >1,∵图象与x 轴正半轴相交,∴b <0,即k >1,b <0.4.如图,一直线与两坐标轴的正半轴分别交于A 、B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( ) A. y =x +5 B. y =x +10 C. y =-x +5 D. y =-x +104. C 【解析】设P (x ,y ),则由题意得2(x +y )=10,∴x +y =5,∴过点P 的直线函数表达式为y =-x +5,故选C.5.若式子k -1+(k -1)0有意义,则一次函数y =(1-k )x +k -1的图象可能是( )5. C 【解析】式子k -1+(k -1)0有意义,则k >1,∴1-k <0,k -1>0,∴一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.结合图象,故选C.6.在坐标平面上,某个一次函数的图象经过(5,0)、(10,-10)两点,则此函数图象还会经过下列哪点( ) A. (17,947) B. (18,958) C. (19,979) D. (110,9910)6. C 【解析】设该一次函数的解析式为y =kx +b (k ≠0),将点(5,0)、(10,-10)代入到y =kx +b 中得,⎩⎪⎨⎪⎧0=5k +b -10=10k +b ,解得⎩⎪⎨⎪⎧k =-2b =10,∴该一次函数的解析式为y =-2x +10.A.y =-2×17+10=957≠947,该点不在直线上;B.y =-2×18+10=934≠958,该点不在直线上;C.y =-2×19+10=979,该点在直线上;D.y =-2×110+10=945≠9910,该点不在直线上.二、填空题7.将正比例函数y =2x 的图象向上平移3个单位,所得的直线不经过第________象限.7. 四 【解析】根据平移规律“上加下减,左加右减”,将直线y =2x 向上平移3个单位,得到的直线解析式为y =2x +3,因为2>0,3>0,所以图象过第一、第二和第三象限,故不经过第四象限. 8.已知二元一次方程组⎩⎪⎨⎪⎧x -y =-5x +2y =-2的解为⎩⎪⎨⎪⎧x =-4y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为________.8. (-4,1) 【解析】二元一次方程x -y =-5对应一次函数y =x +5,即直线l 1;二元一次方程x +2y =-2对应一次函数y =-12x -1,即直线l 2.∴原方程组的解即是直线l 1与l 2的交点坐标,∴交点坐标为(-4,1).9.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是________. 9. x >3 【解析】由题可知,当x =3时,x +b =kx +6,在点P 左边即x <3时,x +b <kx +6,在点P 右边即x >3时,x +b >kx +6,故答案为x >3.10.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当C 点落在直线y =2x -6上时,线段BC 扫过的区域面积为________.10. 16 【解析】平移后如解图所示.∵点A 、B 的坐标分别为(1,0)、(4,0),∴AB =3,∵∠CAB =90°,BC =5,∴AC =4,∴A ′C ′=4,∵点C′在直线y =2x -6上,∴2x -6=4,解得x =5,即OA′=5,∴CC ′=5-1=4,∴S ▱BCC ′B ′=4×4=16,即线段BC 扫过的面积为16. 三、解答题11.为保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨.若从甲、乙两仓库运送物资到港口的费用(元/吨)如下表所示.(1)设从甲仓库运送到A 港口的物资为x 吨,求总费用y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明总费用最低时的调配方案.港口 费用(元/吨)甲库 乙库 A 港 14 20 B 港10811. 解:(1)∵从甲仓库运往A 港口的物资为x 吨, ∴从甲仓库运往B 港口的物资为(80-x)吨, ∴从乙仓库运往A 港口的物资为(100-x)吨,∴乙仓库运往B 港口的物资为70-(100-x)=(x -30)吨, ∴y =14x +10(80-x)+20(100-x)+8(x -30) =-8x +2560,∵80-x ≥0,x -30≥0,100-x ≥0∴30≤x ≤80.(2)由(1)知,y =-8x +2560, ∵k =-8<0,∴y 随x 的增大而减小,∴当x =80时,y 最小,最小值为1920元.此时的调配方案是,将甲仓库所有物资运往A 港口,乙仓库的20吨货物运往A 港口,50吨货物运往B 港口.12.某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运.如图,线段OG 表示A 种机器人的搬运量y A (千克)与时间x (时)的函数图象,线段EF 表示B 种机器人的搬运量y B (千克)与时间x (时)的函数图象.根据图象提供的信息,解答下列问题: (1)求y B 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时,那么B 种机器人比A 种机器人多搬运了多少千克?12. 解:(1)设y B 关于x 的解析式为y B =k 1x +b(k 1≠0),把E(1,0)和P(3,180)代入y B =k 1x +b 中,得:⎩⎪⎨⎪⎧k 1+b =03k 1+b =180, 解得⎩⎪⎨⎪⎧k 1=90b =-90,∴y B 关于x 的解析式为y B =90x -90.(2)设y A 关于x 的解析式为y A =k 2x(k 2≠0),由题意得: 180=3k 2,即k 2=60, ∴y A =60x ,当x =5时,y A =5×60=300(千克), 当x =6时,y B =90×6-90=450(千克)450-300=150(千克).答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克.13.下图中的折线ABC 表示某汽车的耗油量y (单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x ≤120).已知线段BC 表示的函数关系中,该汽车的速度每增加1 km/h ,耗油量增加0.002 L/km. (1)当速度为50 km/h 、100 km/h 时,该汽车的耗油量分别为________L/km 、________L/km ; (2)求线段AB 所表示的y 与x 之间的函数表达式; (3)速度是多少时,该汽车的耗油量最低?最低是多少?13. 解:(1)0.13,0.14.【解法提示】x 轴表示速度,从30到60之间为40,50,对应的y 轴汽车耗油的量由0.15到0.12,列表如下:速度(km /h ) 30 40 50 60 耗油量(L /km )0.150.140.130.12∴当速度为50 km /h 时,该汽车耗油量为0.13 L /km ,当速度为100 km /h 时,该汽车耗油量为 0.12+0.002×(100-90)=0.14 L /km .(2)设线段AB 所表示的y 与x 之间的函数表达式为y =kx +b(k ≠0), ∵y =kx +b 的图象过点(30,0.15)与(60,0.12),∴⎩⎪⎨⎪⎧30k +b =0.1560k +b =0.12, 解得⎩⎪⎨⎪⎧k =-0.001b =0.18.∴线段AB 所表示的y 与x 之间的函数表达式为y =-0.001x +0.18. (3)根据题意,得线段BC 所表示的y 与x 之间的函数表达式为y =0.12+0.002(x -90)=0.002x -0.06, 由图象可知,B 是折线ABC 的最低点,也是AB 与BC 的交点,解方程组⎩⎪⎨⎪⎧y =-0.001x +0.18y =0.002x -0.06,得⎩⎪⎨⎪⎧x =80y =0.1. 因此,速度是80km /h 时,该汽车的耗油量最低,最低是0.1 L /km .11。
一次函数考点1:一次函数图象与性质1.(2021·辽宁丹东市·中考真题)若实数k 、b 是一元二次方程(3)(1)0x x +-=的两个根.且k b <.则一次函数y kx b =+的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C 【分析】根据一元二次方程的解法求出k 、b 的值.由一次函数的图像即可求得. 【详解】∵实数k 、b 是一元二次方程(3)(1)0x x +-=的两个根.且k b <. ∵3,1k b =-=,∵一次函数表达式为31y x =-+.有图像可知.一次函数不经过第三象限. 故选:C .2.(2021·黑龙江大庆市·中考真题)已知反比例函数ky x=.当0x <时.y 随x 的增大而减小.那么一次的数y kx k =-+的图像经过第( ) A .一.二.三象限 B .一.二.四象限 C .一.三.四象限 D .二.三.四象限【答案】B 【分析】根据反比例函数的增减性得到0k >.再利用一次函数的图象与性质即可求解.解:∵反比例函数ky x=.当0x <时.y 随x 的增大而减小. ∵0k >.∵y kx k =-+的图像经过第一.二.四象限. 故选:B .3.(2021·湖北中考真题)下列说法正确的是( ) A .函数2y x =的图象是过原点的射线 B .直线2y x =-+经过第一、二、三象限C .函数()20y x x=-<.y 随x 增大而增大 D .函数23y x =-.y 随x 增大而减小 【答案】C 【分析】根据一次函数的图象与性质、反比例函数的图象与性质逐项判断即可得. 【详解】A 、函数2y x =的图象是过原点的直线.则此项说法错误.不符题意;B 、直线2y x =-+经过第一、二、四象限.则此项说法错误.不符题意;C 、函数()20y x x=-<.y 随x 增大而增大.则此项说法正确.符合题意; D 、函数23y x =-.y 随x 增大而增大.则此项说法错误.不符题意; 故选:C .4.(2020•成都)一次函数y =(2m ﹣1)x +2的值随x 值的增大而增大.则常数m 的取值范围为 .【分析】先根据一次函数的性质得出关于m 的不等式2m ﹣1>0.再解不等式即可求出m 的取值范围.【解析】∵一次函数y =(2m ﹣1)x +2中.函数值y 随自变量x 的增大而增大.∵2m ﹣1>0.解得m >12.故答案为:m >12.考点2:一次函数解析式的确定5.(2021·甘肃武威市·中考真题)将直线5y x =向下平移2个单位长度.所得直线的表达式为( ) A .52y x =- B .52y x =+C .()52y x =+D .()52y x =-【答案】A只向下平移.让比例系数不变.常数项减去平移的单位即可. 【详解】解:直线5y x =向下平移2个单位后所得直线的解析式为5-2y x = 故选:A6.(2021·安徽)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm.44码鞋子的长度为27cm.则38码鞋子的长度为( ) A .23cm B .24cmC .25cmD .26cm【答案】B 【分析】设y kx b =+.分别将()22,16和()44,27代入求出一次函数解析式.把38x =代入即可求解. 【详解】解:设y kx b =+.分别将()22,16和()44,27代入可得:16222744k bk b =+⎧⎨=+⎩. 解得125k b ⎧=⎪⎨⎪=⎩ .∵152y x =+. 当38x =时.1385242y cm =⨯+=.故选:B .7.(2021·陕西中考真题)在平面直角坐标系中.若将一次函数21y x m =+-的图象向左平移3个单位后.得到个正比例函数的图象.则m 的值为( ) A .-5 B .5C .-6D .6【答案】A 【分析】根据函数图像平移的性质求出平移以后的解析式即可求得m 的值. 【详解】解:将一次函数21y x m =+-的图象向左平移3个单位后 得到的解析式为:2(3)1y x m =++-. 化简得:25y x m =++.∵平移后得到的是正比例函数的图像.∵50m+=.解得:5m=-.故选:A.8.(2021·山东中考真题)甲、乙、丙三名同学观察完某个一次函数的图象.各叙述如下:甲:函数的图象经过点(0.1);乙:y随x的增大而减小;丙:函数的图象不经过第三象限.根据他们的叙述.写出满足上述性质的一个函数表达式为_______.【答案】y=-x+1(答案不唯一).【分析】设一次函数解析式为y=kx+b.根据函数的性质得出b=1.k<0.从而确定一次函数解析式.本题答案不唯一.【详解】解:设一次函数解析式为y=kx+b.∵函数的图象经过点(0.1).∵b=1.∵y随x的增大而减小.∵k<0.取k=-1.∵y=-x+1.此函数图象不经过第三象限.∵满足题意的一次函数解析式为:y=-x+1(答案不唯一).9.(2021·四川泸州市·中考真题)一次函数y=kx+b(k≠0)的图像与反比例函数m yx =的图象相交于A(2.3).B(6.n)两点(1)求一次函数的解析式(2)将直线AB沿y轴向下平移8个单位后得到直线l.l与两坐标轴分别相交于M.N.与反比例函数的图象相交于点P.Q.求PQMN的值【答案】(1)一次函数y=142x-+.(2)12PQMN=.【分析】(1)利用点A(2.3).求出反比例函数6yx=.求出B(6.1).利用待定系数法求一次函数解析式;(2)利用平移求出y=142x--.联立1426y xyx⎧=--⎪⎪⎨⎪=⎪⎩.求出P(-6,-1),Q(-2,-3),在Rt∵MON中.由勾股定理MN=45PQ=5【详解】解:(1)∵反比例函数myx=的图象过A(2.3).∵m=6,∵6n=6.∵n=1.∵B(6,1)一次函数y=kx+b(k≠0)的图像与反比例函数6yx=的图象相交于A(2.3).B(6.1)两点.∵61 23 k bk b+=⎧⎨+=⎩.解得124kb⎧=-⎪⎨⎪=⎩.一次函数y=14 2x-+.(2)直线AB沿y轴向下平移8个单位后得到直线l.得y=14 2x--.当y=0时.1402x.8x=-.当x=0时.y=-4.∵M(-8.0).N(0.-4).1426y x y x ⎧=--⎪⎪⎨⎪=⎪⎩. 消去y 得28120x x ++=. 解得122,6x x =-=-. 解得1123x y =-⎧⎨=-⎩.2261x y =-⎧⎨=-⎩.∵P (-6,-1),Q (-2,-3), 在Rt ∵MON 中.∵MN 2245OM ON +=, ∵PQ ()()22261325-++-+=∵251245PQ MN ==.考点3:一次函数与方程、不等式的关系10.(2021·内蒙古赤峰市·中考真题)点(),P a b 在函数43y x =+的图象上.则代数式821a b -+的值等于( )A .5B .-5C .7D .-6【答案】B 【分析】把点P 的坐标代入一次函数解析式可以求得a 、b 间的数量关系.所以易求代数式8a -2b +1的值. 【详解】解:∵点P (a .b )在一次函数43y x =+的图象上. ∵b =4a +3.8a -2b +1=8a -2(4a +3)+1=-5.即代数式821a b -+的值等于-5. 故选:B .11.(2020•乐山)直线y =kx +b 在平面直角坐标系中的位置如图所示.则不等式kx +b ≤2的解集是( )A .x ≤﹣2B .x ≤﹣4C .x ≥﹣2D .x ≥﹣4【分析】根据待定系数法求得直线的解析式.然后求得函数y =2时的自变量的值.根据图象即可求得.【解析】∵直线y =kx +b 与x 轴交于点(2.0).与y 轴交于点(0.1). ∵{2k +b =0b =1.解得{k =−12b =1 ∵直线为y =−12x +1.当y =2时.2=−12x +1.解得x =﹣2.由图象可知:不等式kx +b ≤2的解集是x ≥﹣2. 故选:C .12.(2020•济宁)数形结合是解决数学问题常用的思想方法.如图.直线y =x +5和直线y =ax +b 相交于点P .根据图象可知.方程x +5=ax +b 的解是( )A .x =20B .x =5C .x =25D .x =15【分析】两直线的交点坐标为两直线解析式所组成的方程组的解. 【解析】∵直线y =x +5和直线y =ax +b 相交于点P (20.25) ∵直线y =x +5和直线y =ax +b 相交于点P 为x =20.故选:A .考点4:一次函数的实际应用13.(2021·甘肃武威市·中考真题)如图1.小刚家.学校、图书馆在同一条直线上.小刚骑自行车匀速从学校到图书馆.到达图书馆还完书后.再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离()m y 与他所用的时间()min x 的函数关系如图2所示.(1)小刚家与学校的距离为___________m .小刚骑自行车的速度为________m/min ; (2)求小刚从图书馆返回家的过程中.y 与x 的函数表达式; (3)小刚出发35分钟时.他离家有多远?【答案】(1)3000.200;(2)()20090002045y x x =-+≤≤;(3)2000m 【分析】(1)从起点处为学校出发去处为图书馆.可求小刚家与学校的距离为3000m.小刚骑自行车匀速行驶10分钟.从3000m 走到5000m 可求骑自行车的速度即可; (2)求出从图书馆出发时的时间与路程和回到家是的时间与路程.利用待定系数法求解析式即可;(3)小刚出发35分钟.在返回家的时间内.利用函数解析式求出当35x =时.函数值即可. 【详解】解:(1)小刚骑自行车匀速从学校到图书馆.从起点3000m 处为学校出发去5000m 处为图书馆.∵小刚家与学校的距离为3000m.小刚骑自行车匀速行驶10分钟.从3000m 走到5000m. 行驶的路程为5000-3000=2000m. 骑自行车的速度为2000÷10=200m/min. 故答案为:3000.200;(2)小刚从图书馆返回家的时间:()500020025min ÷=.总时间:()252045min +=. 设返回时y 与x 的函数表达式为y kx b =+. 把()()20,5000,45,0代入得:205000450k b k b +=⎧⎨+=⎩.解得.2009000k b =-⎧⎨=⎩.()20090002045y x x ∴=-+≤≤.(3)小刚出发35分钟.即当35x =时.2003590002000y =-⨯+=.答:此时他离家2000m .14.(2021·贵州毕节市·中考真题)某中学计划暑假期间安排2名老师带领部分学生参加红色旅游.甲、乙两家旅行社的服务质量相同,且报价都是每人1000元,经协商,甲旅行社的优惠条件是:老师、学生都按八折收费:乙旅行社的优惠条件是:两位老师全额收费,学生都按七五折收费,(1)设参加这次红色旅游的老师学生共有x 名,y 甲,y 乙(单位:元)分别表示选择甲、乙两家旅行社所需的费用,求y 甲,y 乙关于x 的函数解析式; (2)该校选择哪家旅行社支付的旅游费用较少?【答案】(1)甲800y x = ,乙750500y x =+ (2)当学生人数超过10人时,选择乙旅行社支付的旅游费最少;当学生人数少于10人时,选择甲旅行社支付的旅游费最少;学生人数等于10人时,选择甲、乙旅行社支付费用相等. 【分析】(1)根据旅行社的收费=老师的费用+学生的费用,再由总价=单价×数量就可以得出y 甲 、y 乙与x 的函数关系式;(2)根据(1)的解析式,若y y =甲乙,y y >甲乙,y y <甲乙,分别求出相应x 的取值范围,即可判断哪家旅行社支付的旅游费用较少. 【详解】 (1)由题意,得甲10000.8800y x x =⨯⨯=,乙1000210000.75(2)750500y x x =⨯+⨯-=+,答:y 甲 、y 乙 与x 的函数关系式分别是: 甲800y x = ,乙750500y x =+(2)当y y =甲乙时,800750500x x =+,解得10x = , 当y y >甲乙时,800750500x x =+,解得10x >, 当y y <甲乙时,800750500x x =+,解得10x <,答:当学生人数超过10人时,选择乙旅行社支付的旅游费最少;当学生人数少于10人时,选择甲旅行社支付的旅游费最少;学生人数等于10人时,选择甲、乙旅行社支付费用相等.15.(2021·辽宁大连市·中考真题)如图.四边形ABCD 为矩形.3AB =.4BC =.P 、Q 均从点B 出发.点P 以2个单位每秒的速度沿BA AC -的方向运动.点Q 以1个单位每秒的速度沿BC CD -运动.设运动时间为t 秒. (1)求AC 的长; (2)若BPQSS =.求S 关于t 的解析式.【答案】(1)5AC =;(2)223,023123,455228,4t t S t t t t t ⎧≤≤⎪⎪⎪=-+<≤⎨⎪->⎪⎪⎩【分析】(1)由题意易得90B ∠=︒.然后根据勾股定理可求解; (2)由题意易得∵当点P 在AB 上时.即302t ≤≤.则2,BP t BQ t ==.∵当点P 在AC 上.点Q 在BC 上时.即342t <≤.过点P 作PE ∵BC 于点E .然后可得()382,825PC t PE t =-=-.∵当点P 与点C 重合.点Q 在CD 上时.即4t >.则有4,7BP CQ t ==-.进而根据面积计算公式可求解.【详解】解:(1)∵四边形ABCD 是矩形.∵90B ∠=︒.∵3AB =.4BC =. ∵225AC AB +BC ;(2)由题意得当点P 到达点C 时.点Q 恰好到达点C .则有:当点P 在AB 上时.即302t ≤≤.如图所示:∵2,BP t BQ t ==. ∵211222S BP BQ t t t =⋅=⨯⨯=; 当点P 在AC 上.点Q 在BC 上时.即342t <≤.过点P 作PE ∵BC 于点E .如图所示:∵82PC t =-.由(1)可得3sin 5PCE ∠=. ∵()3sin 825PE CP PCE t =⋅∠=-. ∵()21133128222555S BQ PE t t t t =⋅=⨯⨯-⨯=-+; 当点P 与点C 重合.点Q 在CD 上时.即4t >.如图所示:∵4,4BP CQ t ==-. ∵()11442822S BP PQ t t =⋅=⨯⨯-=-; 综上所述:S 关于t 的解析式为223,023123,455228,4t t S t t t t t ⎧≤≤⎪⎪⎪=-+<≤⎨⎪->⎪⎪⎩. 16.(2021·黑龙江绥化市·中考真题)小刚和小亮两人沿着直线跑道都从甲地出发.沿着同一方向到达乙地.甲乙两地之间的距离是720米.先到乙地的人原地休息.已知小刚先从甲地出发4秒后.小亮从甲地出发.两人均保持匀速前行.第一次相遇后.保持原速跑一段时间.小刚突然加速.速度比原来增加了2米/秒.并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离S (米)与小亮出发时间t (秒)之间的函数图象.如图所示.根据所给信息解决以下问题.(1)m =_______.n =______;(2)求CD 和EF 所在直线的解析式;(3)直接写出t 为何值时.两人相距30米.【答案】(1)160163,;(2)80(4880)CD S t t =-+≤≤;40057201443EF S t t ⎛⎫-+≤≤ ⎝=⎪⎭;(3)t 为46 .50.110.138时.两人相距30米.【分析】(1)依次分析A 、B 、C 、D 、E 、F 各点坐标的实际意义:A 点是小刚先走了4秒.B 点小亮追上小刚.相遇.C 点是小刚开始加速.D 点是小刚追上小亮.E 点是小刚到达乙地.F 点是小亮到达乙地.则根据A 点的意义.可以求出m 的值.根据E 点的意义可以求出n 的值;(2)根据题意分别求得C 、D 、E 、F 各点坐标.代入直线解析式.用待定系数法求得解析式;(3)根据题意分别求出写出,,,BC CD DE EF 四 条直线的解析式.令S=30.即可求解.【详解】(1)∵小刚原来的速度1644=÷=米/秒.小亮的速度7201445=÷=米/秒B 点小亮追上小刚.相遇4165m m ∴⨯+=⨯=16m ∴E 点是小刚到达乙地720805160[(80)80](65)423-⨯∴+-⨯-=+ 1603n ∴=. (2)由题意可知点C 横坐标为801616482-+= ∵小刚原来的速度1644=÷=米/秒.小亮的速度7201445=÷=米/秒∵纵坐标为()()54481632-⨯-=()48,32C ∴设11(48,32)(80,0)CD S k t b C D =+,,11114832800k b k b +=⎧⎨+=⎩ 解得:11180k b =-⎧⎨=⎩ 80(4880)CD S t t ∴=-+≤≤E 的横坐标为7208054008063-⨯+= E 的纵坐标为40016080(65)33⎛⎫--= ⎪⎝⎭400160(,)33E ∴ (144,0)F 设22EF S k t b =+代入可得2222400160331440k b k b ⎧+=⎪⎨⎪+=⎩ 解得:225720k b =-=40057201443EF S t t =⎛⎫∴-+≤≤ ⎪⎝⎭. (3)(16,0)B ,()48,32C .(80,0)D .400160(,)33E .(144,0)F 设33(48,32)(16,0)BC S k t b C B =+,, 33334832160k b k b +=⎧⎨+=⎩ 解得:33=16k b -=1, ()161648BC S t t ∴<≤=- 设44400160(80,0),(,)33DE S k t b D E =+, 444440016033800k b k b ⎧+=⎪⎨⎪+=⎩ 解得:441,80k b ==-40083008DE S t t ⎛⎫∴<≤ ⎪⎝=⎭- 当S=30时 1630,46BC S t t =-==. 8030,50CD S t t =-+==. 80=30,110DE S t t =-=. 5720=30,138EF S t t -+== ∴t 为46 .50.110.138时.两人相距30米.。
中考数学复习考点知识讲解与练习专题10 一次函数-函数概念函数的概念;一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
因为函数具有唯一性,函数表达形式;表格法、图象法、公式法(解析法),本中考数学复习考点知识讲解与练习专题的题型:函数概念;函数的三种表达式;函数的值;函数的解析式;及其他典型函数概念题型。
题型一:函数的概念1.(2022·和平县和丰中学初一月考)水温随时间的变化而变化,其中__________是自变量,__________是因变量.2.(2022·四川锦江·初一期末)在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量B.2π是常量,C,R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量3.(2022·广西平桂·期中)如图,下列各曲线中能够表示y是x的函数的是().A.B.C.D.4.(2022·山东邹平·初二期末)下列各曲线中,不能表示y是x的函数的是().A.B.C.D.5.(2022·辽宁西丰·初二期末)下列曲线中表示y是x的函数的为()A.B.C.D.6.(2022·广西田东·初二期末)下列各图中,能表示y是x的函数的是()A.B.C.D.7.(2022·江西南昌二中初二期中)下列四个图象中,不是函数图象的是()A .B .C .D .题型二:函数的取值范围8.(2022·四川雁江·初三期末)若y x=有意义,则x 的取值范围是() A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤D .x 0≠9.(2022·察哈尔右翼前旗第三中学初二期末)函数11y x =-中自变量x 的取值范围是() A .2x ≤B .2x ≤且1x ≠C .x <2且1x ≠D .1x ≠10.(2022·湖北荆州·初二月考)函数y =x 的取值范围是() A .1x >B .1x <C .1x ≤D .1≥x11.(2022·南通市八一中学初二月考)已知函数y =1x -,则自变量x 的取值范围是( ) A .﹣1<x <1B .x ≥﹣1且x ≠1C .x ≥﹣1D .x ≠112.(2022·山东曲阜·初二期中)式子2x -中x 的取值范围是( ) A .x ≥1且x ≠2B .x >1且x ≠2C .x ≠2D .x >113x 的取值范围为______.14.(2022·湖南渌口·初三期中)在函数y =x 的取值范围是.15.(2022·平江县南江中学初三二模)函数中,自变量x 的取值范围在数轴上表示正确的是()A.B.C.D.16.(2022·四川雁江·初三其他)函数y=-x的取值范围是______.17.(2022·四川省成都七中育才学校学道分校中考模拟)函数12x-中自变量x的取值范围是.18.(2022·合肥市第四十六中学南校区初二月考)13yx=-中x的取值范围是__________题型三:函数的三种表达形式(1)列表法19.(2022·全国初一课时练习)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量x(千克)与售价y(元)之间的关系如下表:(1)变量x与y的关系式是__________.(2)卖__________kg苹果,可得14.5元;若卖出苹果10kg,则应得__________元.20.(2022·渝中·重庆巴蜀中学初一期末)弹簧挂上重物后会伸长,测得一弹簧的长度y(cm)于所挂的重物的质量x(kg)间有下面的关系(弹簧的弹性范围x≤10kg),当所挂的物体质量是8kg时,弹簧的长度是__________cm.21.(2022·山东宁阳·初一期中)下表记录了一次实验中的时间和温度的数据,写出T与t的关系式____.x的取值范围是_____.22.(2017·江苏常熟·中考模拟)函数23.(2022·广东盐田·初一期中)某地的温度T(℃)与海拔高度h(km)之间的关系如下所示:要算出海拔高度为6km时该地的温度,适宜用第________种形式。
《1.等腰三角形底角与顶角之间的函数关系A .正比例函数 B .一次函数【答案】B【分析】根据一次函数的定义,可得答案【解析】设等腰三角形的底角为y ,顶角为所以,y=﹣12x+90°,即等腰三角形底角与【点睛】本题考查了实际问题与一次函数2.已知y 关于x 成正比例,且当x 时A .3 B .3-【答案】B【分析】先利用待定系数法求出y =【详解】设y kx =,Q 当2x =时,3y x ∴=-,∴当1x =时,3y =-【点睛】本题考查了待定系数法求正比例函点的坐标代入求出k 即可.3. 已知函数y =kx +b 的部分函数值如表所示A .x =2 B .x =3 C 【答案】A【解析】∵当x =0时,y =1,当x =1,y 当y =–3时,–2x +1=–3,解得:x =2,4.如图,直线y=kx+3经过点(2,0,A .x >2B .x <2 《一次函数》专项练习数关系是( ) C .反比例函数D .二次函数答案.顶角为x ,由题意,得x+2y=180, 底角与顶角之间的函数关系是一次函数关系,故选函数,根据题意正确列出函数关系式是解题的关键2=时,6y =-,则当1x =时,y 的值为 C .12D .12-3x -,然后计算1x =对应的函数值. 6y =-,26k ∴=-,解得3k =-,13⨯=-.故选B .比例函数的解析式:设正比例函数解析式为y kx k =表所示,则关于x 的方程kx +b +3=0的解是x … –2 –1 01… y…531 –1….x =–2 D .x =–3 =–1,∴,解得:,∴y =–,故关于x 的方程kx +b +3=0的解是x =2,故选A ),则关于x 的不等式kx+3>0的解集是( )C .x≥2 D .x≤211b k b =+=-⎧⎨⎩21k b =-=⎧⎨⎩故选B . 关键. ()0≠,然后把一个已知2x +1,.【答案】B【分析】直接利用函数图象判断不等式【解析】由一次函数图象可知:关于x的不【点睛】本题考查了一次函数的图象与性质等式之间的内在联系.5.如图,在平面直角坐标系中,直线l与直线l1在第一象限交于点C.若∠BOCAB【答案】B【分析】过C作CD⊥OA于D,利用直线3.依据CD∥BO,可得OD13=AOk的值.【解析】如图,过C作CD⊥OA于D.即A(,0),B(0,1),∴Rt△∵∠BOC=∠BCO,∴CB=BO=1,∵CD∥BO,∴OD13=AO=,得:23=,即k =B式kx+3>0的解集在x轴上方,进而得出结果.的不等式kx+3>0的解集是x<2;故选B.与性质和一元一次不等式及其解法,解题的关键是掌1:y=x+1与x轴,y轴分别交于点A和点BOC=∠BCO,则k的值为( )C D.直线l1:y=+1,即可得到A(,0),B(0=CD23=BO23=,进而得到C23,),.直线l1:y=+1中,令x=0,则y=1,令AOB中,AB==3.AC=2.CD23=BO23=,即C23,),把C23,.键是掌握一次函数与一元一次不B,直线l2:y=kx(k≠0),1),AB==,代入直线l2:y=kx,可得令y=0,则x=,)代入直线l2:y=kx,可【点睛】本题考查了两直线相交或平行问题组成的二元一次方程组的解.6.已知点A (-5,a ),B (4,b )在直线y =-3x 【答案】>【分析】先根据一次函数的解析式判断出函【解析】∵直线y=-3x+2中,k=-3<0,∵-5<4,∴a >b ,故答案为>.【点睛】本题考查了一次函数的性质,根据如果k>0,直线就从左往右上升,y 随7.如图,四边形ABCD 的顶点坐标分别ABCD 分成面积相等的两部分时,直线A .116105y x =+ B .23y =【答案】D【分析】由已知点可求四边形ABCD 分成y=-x+3,设过B 的直线l 为y=kx+b ,并求1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪⎪+⎝⎭⎝⎭,即可【解析】解:由()()4,0,2,1,A B ---∴四边形ABCD 分成面积(12AC =⨯设过B 的直线l 为y kx b =+,将点B 代入∴直线CD 与该直线的交点为45,k k -⎛+⎝∴1125173121k k k k --⎛⎫⎛=⨯-⨯+ ⎪ +⎝⎭⎝,∴直线解析式为5342y x =+;故选:【点睛】本题考查一次函数的解析式求法式的方法是解题的关键.行问题,两条直线的交点坐标,就是由这两条直线相+2上,则a ________b .(填“>”“<”或“=”号 断出函数的增减性,再比较出-5与4的大小即可解答,∴此函数是减函数, 根据题意判断出一次函数的增减性是解答此题的关x 的增大而增大,如果k<0,直线就从左往右下降分别()()()()4,0,2,1,3,0,0,3A B C D ---,当过点直线l 所表示的函数表达式为( ) 13x + C .1y x =+ D .54y x =+分成面积()113741422B AC y =⨯⨯+=⨯⨯=;并求出两条直线的交点,直线l 与x 轴的交点坐标即可求k 。
一次函数复习课知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数.(4)当b=0,k=0时,它不是一次函数.知识点2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb ,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点3 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点4 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点5 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点6 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k ,b 就是待定系数.知识点7 用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.解:设一次函数的关系式为y =kx+b (k ≠0),由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).思想方法小结 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交;当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交.②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b=0时,即-kb =0时,直线经过原点; 当k ,b 同号时,即-kb ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限;当k >0,b=0时,图象经过第一、三象限;当b >O ,b <O 时,图象经过第一、三、四象限;当k ﹤O ,b >0时,图象经过第一、二、四象限;当k ﹤O ,b=0时,图象经过第二、四象限;当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系.直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ;当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b .(3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.典例讲解 基本题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ;(4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2. [分析] 本题主要考查对一次函数及正比例函数的概念的理解.解:(1)(3)(5)(6)是一次函数,(l )(6)是正比例函数.例2 当m 为何值时,函数y=-(m-2)x 32-m +(m-4)是一次函数?[分析] 某函数是一次函数,除应符合y=kx+b 外,还要注意条件k ≠0. 解:∵函数y=(m-2)x 32-m +(m-4)是一次函数,∴⎩⎨⎧≠--=-,0)2(,132m m ∴m=-2.∴当m=-2时,函数y=(m-2)x 32-m +(m-4)是一次函数.小结 某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.基础应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.[分析] (1)弹簧每挂1kg 的物体后,伸长0.5cm ,则挂xkg 的物体后,弹簧的长度y 为(l5+0.5x )cm ,即y=15+0.5x .(2)自变量x 的取值范围就是使函数关系式有意义的x 的值,即0≤x ≤18.(3)由y=15+0.5x 可知,y 是x 的一次函数.解:(l )y=15+0.5x .(2)自变量x 的取值范围是0≤x ≤18.(3)y 是x 的一次函数.学生做一做 乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米/时,则火车离库尔勒的距离s (千米)与行驶时间t (时)之间的函数关系式是 .老师评一评 研究本题可采用线段图示法,如图11-19所示.火车从乌鲁木齐出发,t 小时所走路程为58t 千米,此时,距离库尔勒的距离为s 千米,故有58t+s=600,所以,s=600-58t .例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.[分析] 本题给出了函数关系式,欲求函数值,但没有直接给出t 的具体值.从题中可以知道,t=0表示中午12时,t=1表示下午1时,则上午10时应表示成t=-2,当t=-2时,M=(-2)3-5×(-2)+100=102(℃).答案:102例5 已知y-3与x 成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系式;(2)当x=4时,求y 的值;(3)当y=4时,求x 的值.[分析] 由y-3与x 成正比例,则可设y-3=kx ,由x=2,y=7,可求出k ,则可以写出关系式.解:(1)由于y-3与x 成正比例,所以设y-3=kx .把x=2,y=7代入y-3=kx 中,得7-3=2k ,∴k =2.∴y 与x 之间的函数关系式为y-3=2x ,即y=2x+3.(2)当x=4时,y=2×4+3=11.(3)当y =4时,4=2x+3,∴x=21. 学生做一做 已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数关系式是 .老师评一评 由y 与x+1成正比例,可设y 与x 的函数关系式为y=k (x+1).再把x=5,y=12代入,求出k 的值,即可得出y 关于x 的函数关系式. 设y 关于x 的函数关系式为y=k (x+1).∵当x=5时,y=12,∴12=(5+1)k ,∴k=2.∴y 关于x 的函数关系式为y=2x+2.【注意】 y 与x+1成正比例,表示y=k(x+1),不要误认为y=kx+1.例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M[分析] 本题考查正比例函数的图象和性质,因为当x 1<x 2时,y 1>y 2,说明y 随x 的增大而减小,所以1-2m ﹤O,∴m >21,故正确答案为D 项. 学生做一做 某校办工厂现在的年产值是15万元,计划今后每年增加2万元.(1)写出年产值y (万元)与年数x (年)之间的函数关系式;(2)画出函数的图象;(3)求5年后的产值.老师评一评 (1)年产值y (万元)与年数x (年)之间的函数关系式为y=15+2x .(2)画函数图象时要特别注意到该函数的自变量取值范围为x ≥0,因此,函数y=15+2x 的图象应为一条射线.画函数y=12+5x 的图象如图11-21所示.(3)当x=5时,y =15+2×5=25(万元)∴5年后的产值是25万元.例7 已知一次函数y=kx+b 的图象如图11-22所示,求函数表达式. [分析] 从图象上可以看出,它与x 轴交于点(-1,0),与y 轴交于点(0,-3),代入关系式中,求出k 为即可.解:由图象可知,图象经过点(-1,0)和(0,-3)两点,代入到y=kx+b 中,得⎩⎨⎧+=-+-=,03,0b b k ∴⎩⎨⎧-=-=.3,3b k ∴此函数的表达式为y=-3x-3.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.[分析]图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b,再将点(2,-1)代入,求出b即可.解:由题意可设所求函数表达式为y=2x+b,∴图象经过点(2,-1),∴-l=2×2+b.∴b=-5,∴所求一次函数的表达式为y=2x-5.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例8 已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?[分析]判断某函数是一次函数,只要符合y=kx+b(k,b中为常数,且k≠0)即可;判断某函数是正比例函数,只要符合y=kx(k为常数,且k ≠0)即可.解:(1)y是x的一次函数.∵y+a与x+b是正比例函数,∴设y+a=k(x+b)(k为常数,且k≠0)整理得y=kx+(kb-a).∵k≠0,k,a,b为常数,∴y=kx+(kb-a)是一次函数.(2)当kb-a=0,即a=kb时,y是x的正比例函数.例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?[分析]这是一道实际生活中的应用题,解题时必须对两种不同的收费方式仔细分析、比较、计算,方可得出正确结论.解:(1)y1=50+0.4x(其中x≥0,且x是整数)y2=0.6x(其中x≥0,且x是整数)(2)∵两种通讯费用相同,∴y 1=y 2,即50+0.4x=0.6x .∴x =250.∴一个月内通话250分时,两种通讯方式的费用相同.(3)当y 1=200时,有200=50+0.4x ,∴x=375(分).∴“全球通”可通话375分.当y 2=200时,有200=0.6x ,∴x=33331(分). ∴“神州行”可通话33331分. ∵375>33331, ∴选择“全球通”较合算.例10 已知y+2与x 成正比例,且x=-2时,y=0.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x 取何值时,y ≥0?(4)若点(m ,6)在该函数的图象上,求m 的值;(5)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于A ,B 两点,且S △ABP =4,求P 点的坐标.[分析] 由已知y+2与x 成正比例,可设y+2=kx ,把x=-2,y=0代入,可求出k ,这样即可得到y 与x 之间的函数关系式,再根据函数图象及其性质进行分析,点(m ,6)在该函数的图象上,把x=m ,y=6代入即可求出m 的值.解:(1)∵y+2与x 成正比例,∴设y+2=kx (k 是常数,且k ≠0)∵当x=-2时,y=0.∴0+2=k ·(-2),∴k =-1.∴函数关系式为x+2=-x ,即y=-x-2.(2)列表;x0 -2(3)由函数图象可知,当x ≤-2时,y ≥0.∴当x ≤-2时,y ≥0.(4)∵点(m ,6)在该函数的图象上,∴6=-m-2,∴m =-8.(5)函数y=-x-2分别交x 轴、y 轴于A ,B 两点,∴A (-2,0),B (0,-2).∵S △ABP =21·|AP|·|OA|=4, ∴|BP|=428||8==OA . ∴点P 与点B 的距离为4.又∵B 点坐标为(0,-2),且P 在y 轴负半轴上,∴P 点坐标为(0,-6).例11 已知一次函数y=(3-k )x-2k 2+18.(1)k 为何值时,它的图象经过原点?(2)k 为何值时,它的图象经过点(0,-2)?(3)k 为何值时,它的图象平行于直线y=-x ?(4)k 为何值时,y 随x 的增大而减小?[分析] 函数图象经过某点,说明该点坐标适合方程;图象与y 轴的交点在y 轴上方,说明常数项b >O ;两函数图象平行,说明一次项系数相等;y 随x 的增大而减小,说明一次项系数小于0.解:(1)图象经过原点,则它是正比例函数.∴⎩⎨⎧≠-=+-,03,01822k k ∴k =-2. ∴当k=-3时,它的图象经过原点. (2)该一次函数的图象经过点(0,-2).∴-2=-2k 2+18,且3-k ≠0,∴k=±10∴当k=±10时,它的图象经过点(0,-2)(3)函数图象平行于直线y=-x ,∴3-k=-1,∴k =4.∴当k =4时,它的图象平行于直线x=-x .(4)∵随x 的增大而减小,∴3-k ﹤O .∴k >3.∴当k >3时,y 随x 的增大而减小.例12 判断三点A (3,1),B (0,-2),C (4,2)是否在同一条直线上.[分析] 由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上.解:设过A ,B 两点的直线的表达式为y=kx+b .由题意可知,⎩⎨⎧+=-+=,02,31b b k ∴⎩⎨⎧-==.2,1b k ∴过A ,B 两点的直线的表达式为y=x-2.∴当x=4时,y=4-2=2.∴点C (4,2)在直线y=x-2上.∴三点A (3,1), B (0,-2),C (4,2)在同一条直线上.学生做一做 判断三点A (3,5),B (0,-1),C (1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例13 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x 从0开始逐渐增大时,y=2x+8和y=6x 哪一个的函数值先达到30?这说明了什么?(2)直线y=-x 与y=-x+6的位置关系如何?甲生说:“y=6x 的函数值先达到30,说明y=6x 比y=2x+8的值增长得快.” 乙生说:“直线y=-x 与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?[分析] (1)可先画出这两个函数的图象,从图象中发现,当x >2时,6x >2x+8,所以,y=6x 的函数值先达到30.(2)直线y=-x 与y=-x+6中的一次项系数相同,都是-1,故它们是平行的,所以这两位同学的说法都是正确的.解:这两位同学的说法都正确.例14 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x ,甲旅行社的收费为y 甲元,乙旅行社的收费为y 乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.[分析] 先求出甲、乙两旅行社的收费与学生人数之间的函数关系式,再通过比较,探究结论.解:(1)甲旅行社的收费y 甲(元)与学生人数x 之间的函数关系式为 y 甲=240+21×240x=240+120x. 乙旅行社的收费y 乙(元)与学生人数x 之间的函数关系式为y 乙=240×60%×(x+1)=144x+144.(2)①当y 甲=y 乙时,有240+120x=144x+144,∴24x =96,∴x=4.∴当x=4时,两家旅行社的收费相同,去哪家都可以.②当y 甲>y 乙时,240+120x >144x+144,∴24x <96,∴x <4.∴当x ﹤4时,去乙旅行社更优惠.③当y 甲﹤y 乙时,有240+120x ﹤140x+144,∴24x >96,∴x >4.∴当x >4时,去甲旅行社更优惠.小结 此题的创新之处在于先通过计算进行讨论,再作出决策,另外,这两个函数都是一次函数,利用图象来研究本题也不失为一种很好的方法.学生做一做 某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y (元)与所购买的水果量x (千克)之间的函数关系式,并写出自变量X 的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由. 老师评一评 先求出两种购买方案的付款y (元)与所购买的水果量x (千克)之间的函数关系式,再通过比较,探索出结论.(1)甲方案的付款y 甲(元)与所购买的水果量x (千克)之间的函数关系式为y 甲=9x (x ≥3000);乙方案的付款y 乙(元)与所购买的水果量x (千克)之间的函数关系式为y 乙=8x+500O (x ≥3000).(2)有两种解法:解法1:①当y 甲=y 乙时,有9x=8x+5000,∴x=5000.∴当x=5000时,两种方案付款一样,按哪种方案都可以.②当y 甲﹤y 乙时,有9x ﹤8x+5000,∴x <5000.又∵x ≥3000,∴当3000≤x ≤5000时,甲方案付款少,故采用甲方案.③当y 甲>y 乙时,有9x >8x+5000,∴x >5000.∴.当x >500O 时,乙方案付款少,故采用乙方案.解法2:图象法,作出y 甲=9x 和y 乙=8x+5000的函数图象,如图11-24所示,由图象可得:当购买量大于或等于3000千克且小于5000千克时,y 甲﹤y 乙,即选择甲方案付款少;当购买量为5000千克时,y 甲﹥y 乙即两种方案付款一样;当购买量大于5000千克时,y 甲>y 乙,即选择乙方案付款最少.【说明】 图象法是解决问题的重要方法,也是考查学生读图能力的有效途径.例15 一次函数y=kx+b 的自变量x 的取值范围是-3≤x ≤6,相应函数值的取值范围是-5≤y ≤-2,则这个函数的解析式为 .[分析] 本题分两种情况讨论:①当k >0时,y 随x 的增大而增大,则有:当x=-3,y=-5;当x=6时,y=-2,把它们代入y=kx+b 中可得⎩⎨⎧+=-+-=-,62,35b k b k ∴⎪⎩⎪⎨⎧-==,4,31b k ∴函数解析式为y=-31x-4.②当k ﹤O 时则随x 的增大而减小,则有:当x=-3时,y=-2;当x=6时,y=-5,把它们代入y=kx +b 中可得⎩⎨⎧+=-+-=-,65,32b k b b ∴⎪⎩⎪⎨⎧-=-=,3,31b k ∴函数解析式为y=-31x-3. ∴函数解析式为y=31x-4,或y=-31x-3. 答案:y=31x-4或y=-31x-3. 【注意】 本题充分体现了分类讨论思想,方程思想在一次函数中的应用,切忌考虑问题不全面.中考试题预测例1 某地举办乒乓球比赛的费用y (元)包括两部分:一部分是租用比赛场地等固定不变的费用b (元),另一部分与参加比赛的人数x (人)成正比例,当x=20时y=160O ;当x=3O 时,y=200O .(1)求y 与x 之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?[分析] 设举办乒乓球比赛的费用y (元)与租用比赛场地等固定不变的费用b (元)和参加比赛的人数x (人)的函数关系式为y=kx+b (k ≠0).把x=20,y=1600;x=30,y=2000代入函数关系式,求出k ,b 的值,进而求出y 与x 之间的函数关系式,当x=50时,求出y 的值,再求得y ÷50的值即可.解:(1)设y 1=b ,y 2=kx (k ≠0,x >0),∴y=kx+b .又∵当x=20时,y=1600;当x=30时,y=2000,∴⎩⎨⎧+=+=,302000,201600b k b k ∴⎩⎨⎧==.800,40b k∴y 与x 之间的函数关系式为y=40x+800(x >0).(2)当x=50时,y=40×50+800=2800(元).∴每名运动员需支付2800÷50=56(元〕答:每名运动员需支付56元.例2 已知一次函数y=kx+b ,当x=-4时,y 的值为9;当x=2时,y 的值为-3.(1)求这个函数的解析式。
一次函数知识点总结【基本要点】1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。
在圆的周长公式C=2πr 中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
注:这是课本对于函数 的定义,在理解与实际运用中我们要注意以下几点:1、函数只能描述两个变量之间的关系,多一个少一个变量都是不对的;如:y=xz 中有三个变量,就不是函数;y=0中只有一个变量,也不是函数;而y=0(x >0)却是函数,因为括号中标明了自变量的取值范围;2、当自变量去每一个确定的值时因变量只能取唯一确定的值相对应,反之,当因变量取每一个确定的值时自变量可以去若干个值相对应;因为这两个变量有先变与后变的问题,让后变的先取一个值,先变的就不一定只取一个值;3、我们只能说函数值是自变量的函数,或用自变量来表示函数值,如:a 是b 的函数就说明a 是函数值,b 是自变量;用y 表示x 就说明y 是自变量,x 是函数值;任何函数都要标明谁是谁的函数,不能随便说一个解析式是不是函数,如: Y=x 2,只能说y 是x 的函数,就不能说x 是y 的函数;4、函数解析式的表示:只有函数值写在等号左边,含有自变量的式子写在等号右边;注意不能写成2y=3x-3或y 2=3x-3的形式;5、任何函数都包含自变量的取值范围,如果没指明说明自变量的取值范围是任意实数。
自变量的取值范围从以下几个方面把握:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
中考数学专项复习《一次函数》练习题及答案一、单选题1.如图,在一次函数y=﹣x+10的图象上取一点P,作PA⊥x轴,PB⊥y轴,垂足为B,且矩形PBOA的面积为9,则这样的点P个数共有()A.1个B.2个C.3个D.4个2.在同一坐标系内,函数y=kx2和y=kx+2(k≠0)的图象大致如图()A.B.C.D.3.有甲、乙两个不同的水箱,容量分别为a升和b升,且已各装了一些水.若将甲中的水全倒入乙箱之后,乙箱还可以继续装20升水才会满;若将乙箱中的水倒入甲箱,装满甲箱后,乙箱里还剩10升水,则a,b之间的数量关系是()A.b=a+15B.b=a+20C.b=a+30D.b=a+404.关于一次函数y=5x-3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.y随x的增大而增大D.图象经过点(-3,0)5.已知函数y=kx(k≠0)的大致图象如图所示,则函数y=kx-k的图象大致是()A.B.C.D.6.防汛期间,下表记录了某水库16h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8h时,达到警戒水位,开始开闸放水,此时,y与xx/h012810121416y/m1414.5151814.412119)A.第1小时B.第10小时C.第14小时D.第16小时7.若点P(2,4)在正比例函数y=kx的图象上,则下列各点在此函数图象上的是()A.(−3,4)B.(−2,−4)C.(0.5,4)D.(1,5)8.已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴,下列结论:①k>0,b>0;②k>0,b<0;③k<0,b>0;④k<0,b<0.其中正确的结论的个数是()A.1B.2C.3D.49.下列y关于x的函数中是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,一次函数y=kx+b与y=﹣x+4的图象相交于点P(m,1),则关于x、y的二元一次方程组{y=kx+by=−x+4的解是()A .{x =3y =1B .{x =2.6y =1C .{x =2y =1D .{x =1y =111.关于函数y=ax 2和函数y=ax+a (a≠0)在同一坐标系中的图象,A ,B ,C ,D 四位同学各画了一种,你认为可能画对的图象是( )A .B .C .D .12.已知一次函数y=kx ﹣k 与反比例函数 y =k x在同一直角坐标系中的大致图象是( )A .B .C .D .二、填空题13.如图,直线y =kx −3与x 轴、y 轴分别交于点B 与点A ,OB =13OA ,点C 是直线AB 上的一点,且位于第二象限,当⊥OBC 的面积为3时,点C 的坐标为 .14.如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是.15.若直线y=kx+b平行直线y=3x+4,且过点(1,﹣2),则直线的关系式为.16.若函数y=−x+3与y=2x+b的图象相交于x轴上的一点,则b的值为.17.在平面直角坐标系中将直线y=x+2沿着y轴向下平移3个单位长度,平移后的直线所对应的函数解析式为.18.某自行车存车处在星期日的存车为4000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车总收入y(元)与x的函数关系式是.三、综合题19.作出函数y=2x+6的图象并回答:(1)x取何值时,y=0;(2)x取何值时,y>0?(3)x取何值时,y<0?20.某家电集团公司研制生产的新家电,前期投资200万元,每生产一台这种新家电,后期还需投资0.3万元,已知每台新家电售价为0.5万元.设总投资为P万元,总利润为Q万元(总利润=总产值-总投资),新家电总产量为x台.(假设可按售价全部卖出)(1)试用x的代数式表示P和Q;(2)当总产量达到900台时,该公司能否盈利?(3)当总产量达到多少台时,该公司开始盈利?21.如图所示,已知二次函数y1=−x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,与y轴的交点为点C.(1)求m的值;(2)若经过点B的一次函数y2=kx+b平分⊥ABC的面积.求k、b的值.22.阅读下列材料:实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.小带根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y是时间x的函数,其中y表示血液中酒精含量(毫克/百毫升),x表示饮酒后的时间(小时).下表记录了6小时内11个时间点血液中酒精含量y(毫克/百毫升)随饮酒后的时间x(小时)(x >0)的变化情况.下面是小带的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中以上表中各对数值为坐标描点,图中已给出部分点,请你描出剩余的点,画出血液中酒精含量y随时间x变化的函数图象;(2)观察表中数据及图象可发现此函数图象在直线x=32两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式;(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:30在家喝完250毫升低度白酒,第二天早上7:00能否驾车去上班?请说明理由.23.在平面直角坐标系xOy中直线l1:y1=kx+b与直线y=2x平行,且经过点(1,0).(1)求直线l1的解析式;(2)已知直线l2:y2=mx+1,过点p(n,0)作x轴的垂线,与直线l1交于点M,与直线l2交于点N.结合图象回答:①若m=1,当点M在点N的上方时,直接写出n的取值范围;②若对任意的n>2,都有点M在点N的上方,直接写出m的取值范围.24.如图,已知直线y=﹣2x+12分别与Y轴,X轴交于A,B两点,点M在Y轴上,以点M为圆心的⊥M与直线AB相切于点D,连接MD.(1)求证:⊥ADM⊥⊥AOB;(2)如果⊥M的半径为2 √5,请写出点M的坐标,并写出以(﹣52,292)为顶点,且过点M的抛物线的解析式;(3)在(2)条件下,试问在此抛物线上是否存在点P使以P、A、M三点为顶点的三角形与⊥AOB相似?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.参考答案1.【答案】D2.【答案】D3.【答案】C4.【答案】C5.【答案】A6.【答案】C7.【答案】B8.【答案】B9.【答案】C10.【答案】A11.【答案】D12.【答案】B13.【答案】(−3,6)14.【答案】x<﹣215.【答案】y=3x﹣316.【答案】-617.【答案】y=x-118.【答案】y=-0.1x+120019.【答案】(1)解答: 由图象得:x=-3时,y=0;(2)解答:y=2x+6>0,解x>-3当x>-3时,y>0;(3)解答:y=2x+6<0,解x<-3当x<-3时,y<0.20.【答案】(1)解:P=200+0.3x,Q=0.5x-(200+0.3x)=0.2 x-200.(2)解:当x=900时即当总产量达到900台时,没有盈利,亏了20万元.(3)解:当Q >0时,开始盈利,即0.2x −200>0,解得x >1000 当总产量超过1000台时,公司开始盈利.21.【答案】(1)解:∵ 二次函数y 1=−x 2+2x +m 的图象与x 轴的一个交点为A (3,0)∴0=−9+6+m ∴ m=3; (2)解:如图∵一次函数y 2=kx +b 平分⊥ABC 的面积 ∴一次函数y 2=kx +b 平分线段AC ∴ 一次函数y 2=kx +b 经过AC 的中点E ∵m=3∴−x 2+2x +3=0时,解得x 1=−1 x 2=3 ∴ 点B 的坐标为B (-1,0) 当x =0时,y =3∴ 点C 的坐标为C (0,3) ∴ 点E 的坐标为E (32,32)∵ 一次函数y 2=kx +b 经过点B ∴{0=−k +b32=32k +b 解得:{k =35b =3522.【答案】(1)解:图象如图所示.(2)解:y=-200x2+400x(0≤x≤ 32)或y=225x(x> 32)(3)解:不能.理由如下:把y=20代入反比例函数y=225x得x=11.25.∵晚上20:30经过11.25小时为第二天早上7:45∴第二天早上7:45以后才可以驾车上路∴第二天早上7:00不能驾车去上班23.【答案】(1)解:∵直线l1:y1=kx+b与直线y=2x平行∴k=2把点(1,0)代入直线y=2x+b中得到0=2+b解得b=−2∴直线l1的解析式为y=2x−2;(2)解:如图①若m=1,则直线l2:y2=x+1联立{y=x+1y=2x−2解得{x=3y=4由图象可知当n>3时,点M在点N的上方;②把x=2代入y=2x−2求得y=2把x=2,y=2代入y=mx+1得解得m=1 2∴若对任意的n>2,都有点M在点N的上方,m的取值范围是m⩽12.24.【答案】(1)证明:∵AB是⊥M切线,D是切点∴MD⊥AB.∴⊥MDA=⊥AOB=90°又⊥MAD=⊥BAO∴⊥ADM⊥⊥AOB(2)解:设M(0,m)由直线y=2x+12得,OA=12,OB=6则AM=12﹣m,而DM=2 √5在Rt⊥AOB中AB= √OA2+OB2= √122+62=6 √5∵⊥ADM⊥⊥AOB∴AMDM=ABOB即2√5= 6√56,解得m=2∴M(0,2)设顶点为(﹣52,292)的抛物线解析式为y=a(x+52)2+ 292将M点坐标代入,得a(0+ 52)2+ 292=2解得a=﹣2所以,抛物线解析式为y=﹣2(x+ 52)2+ 292(3)解:存在.①当顶点M为直角顶点时,M、P两点关于抛物线对称轴x=﹣52轴对称此时MP=5,AM=12﹣2=10,AM:MP=2:1,符合题意∴P(﹣5,2);②当顶点A为直角顶点时,P点纵坐标为12,代入抛物线解析式,得﹣2(x+ 52)2+ 292=12解得x=﹣52± √52,此时AP=﹣52± √52,AM=10,不符合题意;③当顶点P为直角顶点时,则由相似三角形的性质可知,P(n,﹣2n+2 )或(2n,﹣n+2)若P(n,2n+2),则﹣2n﹣12n=10,解得n=﹣4,当x=﹣4,y=﹣2(﹣4+52)2+292=10,﹣2n+2=10,符合题意若P(2n,﹣n+2),则﹣n﹣4n=10,解得n=﹣2,而当x=2n=﹣4时,y=﹣2(﹣4+ 52)2+292=10,﹣n+2=4,不符合题意所以,符合条件的P点坐标为(5,2),(4,10).。
中考数学总复习《一次函数》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________命题点1一次函数的图象与性质 1(2022株洲)在平面直角坐标系中,一次函数y=5x+1的图象与y 轴的交点的坐标为( )A.(0,-1)B.(-15,0) C.(15,0) D.(0,1) 2(2022凉山州)一次函数y=3x+b (b ≥0)的图象一定不经过 ( )A.第一象限B.第二象限C.第三象限 D .第四象限3(2022广安)在平面直角坐标系中,将函数y=3x+2的图象向下平移3个单位长度,所得的函数的解析式是( )A.y=3x+5B.y=3x-5C.y=3x+1D.y=3x-1 4(2022邵阳)在直角坐标系中,已知点A (32,m ),点B (√72,n )是直线y=kx+b (k<0)上的两点,则m ,n 的大小关系是( )A .m<nB .m>nC .m ≥nD .m ≤n5(2022抚顺)如图,在同一平面直角坐标系中,一次函数y=k 1x+b 1与y=k 2x+b 2的图象分别为直线l 1和直线l 2,下列结论正确的是( )A.k 1·k 2<0B.k 1+k 2<0C.b 1-b 2<0D.b 1·b 2<06(2022河南)请写出一个y 随x 的增大而增大的一次函数的表达式: . 7(2022德阳)如图,已知点A (-2,3),B (2,1),直线y=kx+k 经过点P (-1,0).试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是 .8(2022北京)在平面直角坐标系xOy 中,函数y=kx+b (k ≠0)的图象过点(4,3),(-2,0),且与y 轴交于点A.(1)求该函数的解析式及点A 的坐标;(2)当x>0时,对于x 的每一个值,函数y=x+n 的值大于函数y=kx+b (k ≠0)的值,直接写出n 的取值范围.命题点2一次函数与方程、不等式结合9(2022陕西)在同一平面直角坐标系中,直线y=-x+4与y=2x+m 相交于点P (3,n ),则关于x ,y 的方程组{x +y -4=0,2x -y +m =0的解为 ( )A.{x =−1,y =5B.{x =1,y =3C.{x =3,y =1D.{x =9,y =−5 10(2022鄂州)数形结合是解决数学问题常用的思想方法.如图,一次函数y=kx+b (k ,b 为常数,且k<0)的图象与直线y=13x 都经过点A (3,1),当kx+b<13x 时,根据图象可知,x 的取值范围是( )A.x>3B.x<3C.x<1D.x>111(2021嘉兴)已知点P (a ,b )在直线y=-3x-4上,且2a-5b ≤0,则下列不等式一定成立的是( )A.a b ≤52B.a b ≥52C.b a ≥25D.b a ≤25命题点3一次函数的实际应用 角度1行程问题12(2021陕西)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1 min 后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”“猫”距起点的距离y (m)与时间x (min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是m/min;(2)求AB的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.13(2022湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/时,轿车行驶的速度是60千米/时.(1)轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式.(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.角度2方案选取问题14(2021宁波)某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用/元20 56 266每月免费使用流1 024 m无限量/兆超出后每兆收费/n n元A,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1 024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?角度3最值问题15(2022云南)某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍,怎样购买,才能使总费用W最少?并求出最少费用.16(2022福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰, 问可购买绿萝和吊兰分别多少盆.(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.17(2022南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种商品,它们的进价和售价如下表.用15 000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价-进价)种类真丝衬衣真丝围巾进价/(元/件) a80售价/(元/件) 300 100(1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?角度4其他问题18(2022哈尔滨)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35 L时,那么该汽车已行驶的路程为()A.150 kmB.165 kmC.125 kmD.350 km19(2022吉林)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快,在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系,根据记录的数据,画函数图象如图所示.(1)加热前水温是℃.(2)求乙壶中水温y关于加热时间x的函数解析式.(3)当甲壶中水温刚达到80 ℃时,乙壶中水温是℃.20(2022绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:时),y表示水位高度(单位:米).x0 0.5 1 1.5 2y 1 1.5 2 2.5 3为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选(k≠0).择:y=kx+b(k≠0),y=ax2+bx+c(a≠0),y=kx(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.命题点4一次函数与几何知识的综合21(2022泸州)如图,在平面直角坐标系xOy 中,矩形OABC 的顶点B 的坐标为(10,4),四边形ABEF 是菱形,且tan ∠ABE=43.若直线l 把矩形OABC 和菱形ABEF 组成的图形的面积分成相等的两部分,则直线l 的解析式为( )A.y=3xB.y=-34x+152 C.y=-2x+11 D .y=-2x+1222(2021扬州)如图,一次函数y=x+√2的图象与x 轴、y 轴分别交于点A ,B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为( )A .√6+√2B .3√2C .2+√3D .√3+√223(2021成都)如图,在平面直角坐标系xOy 中,直线y=√33x+2√33与☉O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为 .分类训练7 一次函数1.D 【解析】 当x=0时,y=5x+1=1,故该一次函数图象与y 轴的交点坐标为(0,1).2.D3.D4.A 【解析】 对于一次函数y=kx+b ,∵k<0,∴y 随x 的增大而减小.又∵32>√72,∴m<n.5.D 【解析】 由题图可得k 1>k 2>0,b 1>0>b 2,∴k 1·k 2>0,k 1+k 2>0,b 1-b 2>0,b 1·b 2<0,故选D .6.y=2x+3(答案不唯一)7.k ≤-3或k ≥13 【解析】 当直线y=kx+k 经过点A (-2,3)时,-2k+k=3,解得k=-3;当直线y=kx+k 经过点B (2,1)时,2k+k=1,解得k=13.分析可知,当直线与线段AB 有交点时,k ≤-3或k ≥13.8.【参考答案】 (1)把(4,3),(-2,0)分别代入y=kx+b 得{4k +b =3,-2k +b =0,解得{k =12,b =1,∴该函数的解析式为y=12x+1. 对于y=12x+1,当x=0时,y=1∴A (0,1). (2)n ≥1.解法提示:函数y=12x+1的图象如图所示,易知当直线y=x+n 与y 轴的交点与点A 重合或在点A 上方时符合题意,故n ≥1.9.C 【解析】 把(3,n )代入y=-x+4,可知n=1,故关于x ,y 的方程组{x +y -4=0,2x -y +m =0的解为{x =3,y =1.故选C .10.A11.D 【解析】 ∵点P (a ,b )在直线y=-3x-4上,∴-3a-4=b.又∵2a-5b ≤0,∴2a-5(-3a-4)≤0,解得a ≤-2017.易得a=b+4-3,∴b ≥-817.易知当b=0时,ab 无意义,故A,B 错误.∵2a-5b ≤0,∴2a -5b a≥0,即2-5·b a≥0,∴b a ≤25.故选D .12.【参考答案】 (1)1解法提示:由题图可知,“鼠”的平均速度为30÷6=5(m/min) “猫”的平均速度为30÷(6-1)=6(m/min)故“猫”的平均速度与“鼠”的平均速度的差是6-5=1(m/min).(2)设AB 的函数表达式为y=kx+b (k ≠0),则{30=7k +b ,18=10k +b ,解得{k =−4,b =58,∴y=-4x+58.(3)令y=0,则-4x+58=0,∴x=14.5. 14.5-1=13.5(min)∴“猫”从起点出发到返回至起点所用的时间为13.5 min .13.【参考答案】 (1)设轿车行驶的时间为x 小时,则大巴行驶的时间为(x+1)小时. 根据题意,得60x=40(x+1) 解得x=2则60x=60×2=120.答:轿车出发2小时后追上大巴,此时两车与学校相距120千米. (2)∵轿车追上大巴时,大巴行驶了3小时∴点B 的坐标是(3,120).由题意,得点A 的坐标为(1,0).设AB 所在直线的解析式为s=kt+b则{3k +b =120,k +b =0,解得{k =60,b =−60,∴AB 所在直线的解析式为s=60t-60.(3)由题意,得40(a+1.5)=60×1.5解得a=34 ∴a 的值为34.14.【参考答案】 (1)m=3 072,n=0.3.(2)设函数关系式为y=kx+b (k ≠0)把(1 024,20),(1 144,56)代入y=kx+b得{20=1024k +b ,56=1144k +b ,解得{k =0.3,b =−287.2, ∴y 关于x 的函数表达式为y=0.3x-287.2(x ≥1 024).(注:x 的取值范围对考生不作要求)(3)3 072+(266-56)÷0.3=3 772(兆).由题中图象得,当每月使用的流量超过3 772兆时,选择C 方案最划算.15.【参考答案】 (1)设每桶甲消毒液的价格为x 元,每桶乙消毒液的价格为y 元根据题意,得{9x +6y =615,8x +12y =780,解得{x =45,y =35.答:每桶甲消毒液、每桶乙消毒液的价格分别是45元、35元.(2)由题意,得W=45a+35(30-a )=10a+1 050. 根据题意,得{a ≥30−a +5,a ≤2(30−a ),解得17.5≤a ≤20 ∴a 的取值范围是17.5≤a ≤20,且a 是正整数.∵10>0,∴W 随a 的增大而增大∴当a=18时,W 的值最小,最小值为1 230此时30-a=12.答:当购买甲消毒液18桶、乙消毒液12桶时,总费用最少,最少费用是1 230元.16.【参考答案】 (1)设购买绿萝x 盆,吊兰y 盆.根据题意,得{x +y =46,9x +6y =390,解得{x =38,y =8.因为38>2×8,所以答案符合题意.答:可购买绿萝38盆,吊兰8盆.(2)设购买绿萝m盆,吊兰(46-m)盆,购买两种绿植的总费用为W元则W=9m+6(46-m)=3m+276.根据题意,得m≥2(46-m),解得m≥923.因为3>0,所以W随m的增大而增大.又m为整数,所以m取最小值31时,W的值最小.当m=31时,W=3×31+276=369.答:购买两种绿植总费用的最小值为369元.17.【参考答案】(1)根据题意,得50a+25×80=15 000.解得a=260.(2)设购进真丝衬衣x件,销售利润为y元,则购进真丝围巾(300-x)件.根据题意得y=(300-260)x+(100-80)(300-x)化简得y=20x+6 000.∵300-x≥2x,x≥0,∴0≤x≤100.∵20>0,∴y随x的增大而增大∴当x=100时,y有最大值,为20×100+6 000=8 000.故购进真丝衬衣100件,真丝围巾200件时,获得的利润最大,最大利润为8 000元.(3)设余下围巾每件降价m元,根据题意得100×40+100×20+100×(20-m)≥8 000×90%解得m≤8故余下围巾每件最多降价8元.18.A【解析】设y与x的函数关系式为y=kx+b,将(0,50),(500,0)分别代入,得{b=50,500k+b=0,解得{b=50,k=−110,故y=-110x+50.当y=35时,-110x+50=35,解得x=150.故选A.一题多解500÷50=10(km/L),故该汽车每行驶10 km耗油1 L.由题可知汽车已耗油50-35=15(L),故该汽车已行驶的路程为15×10=150(km).19.【参考答案】(1)20(2)由甲壶比乙壶加热速度快,可知乙壶中水温y关于加热时间x的函数图象经过点(0,20),(160,80).设乙壶中水温y关于加热时间x的函数解析式为y=kx+b将(0,20),(160,80)分别代入得{b =20,160k +b =80,解得{k =38,b =20,故乙壶中水温y 关于加热时间x 的函数解析式为y=38x+20.(3)65解法提示:由甲壶中水温y 关于加热时间x 的函数图象经过点(0,20),(80,60) 易求得甲壶中水温y 关于加热时间x 的函数解析式为y=12x+20.令12x+20=80,解得x=120 将x=120代入y=38x+20中,得y=38×120+20=65.故当甲壶中水温刚达到80 ℃时,乙壶中水温是65 ℃.20. 【参考答案】 (1)画图略.选择y=kx+b ,将(0,1),(1,2)代入得{b =1,k +b =2,解得{k =1,b =1, ∴y=x+1(0≤x ≤5).(2)当y=5时,x+1=5∴x=4.答:当水位高度达到5米时,进水用时x 为4小时.21.D 【解析】 连接OB ,AC 交于点M ,连接AE ,BF 交于点N ,则直线MN 为符合条件的直线l ,如图.∵四边形OABC 是矩形,∴OM=BM.∵点B 的坐标为(10,4),∴M (5,2),AB=10,BC=4.∵四边形ABEF 为菱形,∴BE=AB=10.过点E 作EG ⊥AB 于点G.在Rt △BEG 中,∵tan ∠ABE=43,∴EG BG =43.设EG=4k ,则BG=3k ,∴BE=√EG 2+BG 2=5k ,∴5k=10,∴k=2,∴EG=8,BG=6,∴AG=4,∴E (4,12).又∵A (0,4),点N 为AE 的中点,∴N (2,8).设直线l 的解析式为y=ax+b ,则{5a +b =2,2a +b =8,解得{a =−2,b =12,∴直线l 的解析式为y=-2x+12.22.A 【解析】 当x=0时,y=√2;当y=0时,x=-√2.∴A (-√2,0),B (0,√2),∴OA=OB ,∴△OAB 为等腰直角三角形,∴∠ABO=∠BAO=45°,AB=√(√2)2+(√2)2=2.如图(1),过点C 作CD ⊥AB ,垂足为点D ,∵∠CAD=∠OAB=45°,∴△ACD 为等腰直角三角形.设CD=AD=m ,∴AC=√AD 2+CD 2=√2m.由旋转可知∠ABC=30°,∴BC=2CD=2m.在Rt △BCO 中,BC 2=OC 2+OB 2,即(2m )2=(√2+√2m )2+(√2)2,解得m=1+√3(负值不合题意,已舍去),∴AC=√2m=√2(√3+1)=√6+√2.故选A .图(1) 一题多解当x=0时,y=√2.当y=0时,x=-√2.∴A (-√2,0),B (0,√2),∴OA=OB ,∴△OAB 为等腰直角三角形,∴∠ABO=∠BAO=45°.由旋转可知,∠ABC=30°,∴∠BCO=15°.如图(2),作线段BC 的垂直平分线,交OC 于点E ,连接BE ,则BE =CE ,∴∠EBC=∠ECB=15°,∴∠BEO=30°,∴BE=2BO=2√2,OE=√3OB=√6,∴AC=CE+OE-OA=2√2+√6-√2=√6+√2.图(2)23.2√3 【解析】 如图,设☉O 与x 轴的另一个交点为点C ,AB 交y 轴于点D ,连接BC.对于y=√33x+2√33,当x=0时,y=2√33,当y=0时,x=-2,∴A (-2,0),D (0,2√33),∴AC=4,tan ∠OAD=OD OA =2√332=√33,∴∠OAD=30°.∵AC 为☉O 的直径,∴∠ABC=90°,∴AB=AC cos 30°=4×√32=2√3.。
中考数学总复习《一次函数与一元一次方程》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.一次函数图象如图所示,下列说法错误的是( )A .解析式为223y x =-+ B .()3,3-是图象上的点 C .该图象y 随x 的增大而减小 D .3x >时0y <2.如图,直线1y k x =与2y k x b =+交于点(1,2)A --,则不等式21k x b k x +>的解集是( ).A .1x <-B .1x >-C .<2x -D .2x >-3.一次函数6y kx =+的图象与x 轴的交点坐标为()0,0x ,且013,101x p k <≤=+,则p 的取值范围是( )A .6121p -<≤-B .6121p -≤<-C .5919p -<≤-D .5919p -≤<- 4.一次函数1y ax b 与2y cx d =+的图象如图所示,下列结论:①当0x >时10y >,20y >;①函数y ax d =+的图象不经过第一象限;①3d b a c --=;①d a b c <++.其中正确的个数是( )6.直线()0y kx b k =+≠的图象如图所示, 由图象可知当10y -<<时x 的取值范围是( )1798.一次函数1y ax b 与2y cx d =+的图象如图所示,下列说法:①对于函数1y ax b 来说,y 随x 的增大而减小;①函数y ax d =+的图象不经过第一象限;①不等式ax b cx d +>+的解集是3x >;①()23a b a c -=-.其中正确的有( )A .①①B .①①①C .①①①D .①①二、填空题9.如图,一次函数1y x b =+的图象与一次函数21y kx =-的图象相交于点P ,则关于x 的不等式(1)10k x b ---<的解集为 .10.一次函数y kx b =+(k ,b 为常数且0k ≠),若函数经过点()2,0-和()0,1,则关于x 的不等式1kx b +>的解集为11.如图,一次函数()0y kx b k =+>的图象过点()1,0-,则不等式()20k x b -+<的解集是 .1ax b与2y=1ax b来说,的增大而增大;①函数的解集是x≥)4b其中正确的是三、解答题 17.若直线21y x =--与直线于3y x m =+相交于第三象限内一点,求m 得取值范围.18.如图,已知函数12y x b =+和23y ax =-的图象交于点()2,5P --,这两个函数的图象与x 轴分别交于点A 、B .(1)=a ______,b = ______;(2)求ABP 的面积;(3)根据图象,不等式23x b ax +<-的解集为 _______.19.根据一次函数y kx b =+的图象,写出下列问题的答案:(1)关于x 的方程0kx b +=的解是 ; (2)关于x 的方程3kx b +=-的解是 ;(3)当0x ≥时y 的取值范围是 .20.如图,直线()1111:0l y k x k =≠与直线()2222:0l y k x b k =+≠交于点()2,3C -,直线2l 与x 轴、y 轴分别交于点A ()0,4B .(1)求1k 和2k ,b 的值;(2)直接写出不等式组210k x b k x +≥≥的解集:_____________;(3)点P 是直线2l 上一点,且满足2AOP BOC S S =,求点P 的坐标.参考答案:1.B2.A3.C 4.C 5.C 6.A 7.C 8.A 9.1x >- 10.0x > 11.1x < 12.0> 13.2<<1x -- 14.①①① 15.2或3-/3-或2 16.2k >- 17.312m -<<18.(1)1,1-(2)254(3)<2x -19.(1)2x =(2)=1x -(3)2y ≥-20.(1)32- 12 4(2)20x -≤≤(3)()4,2-或()12,2--。
中考数学复习----《一次函数之实际应用》知识点总结与专项练习题(含答案解析)知识点总结1.分段函数:在一次函数的实际应用中,最常见为分段函数。
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。
关键点:①分段函数各段的函数解析式。
②各个拐点的实际意义。
③函数交点的实际意义。
专项练习题1、(2022•攀枝花)中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km.一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM表示货车离西昌距离y1(km)与时间x(h)之间的函数关系:折线OABN表示轿车离西昌距离y2(km)与时间x(h)之间的函数关系,则以下结论错误的是()A.货车出发1.8小时后与轿车相遇B.货车从西昌到雅安的速度为60km/hC.轿车从西昌到雅安的速度为110km/hD.轿车到雅安20分钟后,货车离雅安还有20km【分析】根据“速度=路程÷时间”分别求出两车的速度,进而得出轿车出发的时间,再对各个选项逐一判断即可.【解答】解:由题意可知,货车从西昌到雅安的速度为:140÷4=60(km/h),故选项B不合题意;轿车从西昌到雅安的速度为:(240﹣75)÷(3﹣1.5)=110(km/h),故选项C不合题意;轿车从西昌到雅安所用时间为:240÷110=(小时),3﹣=(小时),设货车出发x小时后与轿车相遇,根据题意得:,解得x=1.8,∴货车出发1.8小时后与轿车相遇,故选项A不合题意;轿车到雅安20分钟后,货车离雅安还有60×=40(km),故选项D符合题意.故选:D.2、(2022•恩施州)如图1是我国青海湖最深处的某一截面图,青海湖水面下任意一点A的压强P(单位:cmHg)与其离水面的深度h(单位:m)的函数解析式为P=kh+P0,其图象如图2所示,其中P0为青海湖水面大气压强,k为常数且k≠0.根据图中信息分析(结果保留一位小数),下列结论正确的是()A.青海湖水深16.4m处的压强为189.36cmHgB.青海湖水面大气压强为76.0cmHgC.函数解析式P=kh+P0中自变量h的取值范围是h≥0D.P与h的函数解析式为P=9.8×105h+76【分析】由图象可知,直线P=kh+P0过点(0,68)和(32.8,309.2).由此可得出k和P0的值,进而可判断B,D;根据实际情况可得出h的取值范围,进而可判断C;将h=16.4代入解析式,可求出P的值,进而可判断A.【解答】解:由图象可知,直线P=kh+P0过点(0,68)和(32.8,309.2),∴,解得.∴直线解析式为:P=7.4h+68.故D错误,不符合题意;∴青海湖水面大气压强为68.0cmHg,故B错误,不符合题意;根据实际意义,0≤h≤32.8,故C错误,不符合题意;将h=16.4代入解析式,∴P=7.4×16.4+68=189.36,即青海湖水深16.4m处的压强为189.36cmHg,故A正确,符合题意.故选:A.3、(2022•绥化)小王同学从家出发,步行到离家a米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y(单位:米)与出发时间x(单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为()A.2.7分钟B.2.8分钟C.3分钟D.3.2分钟【分析】根据题意和函数图象中的数据,可以先表示出两人的速度,然后即可计算出两人第一次和第二次相遇的时间,然后作差即可.【解答】解:由图象可得,小王的速度为米/分钟,爸爸的速度为:=(米/分钟),设小王出发m分钟两人第一次相遇,出发n分钟两人第二次相遇,m=(m﹣4)•,n+[n﹣4﹣(12﹣4)÷2]=a,解得m=6,n=9,n﹣m=9﹣6=3,故选:C.4、(2022•毕节市)现代物流的高速发展,为乡村振兴提供了良好条件.某物流公司的汽车行驶30km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地.汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,判断以下说法正确的是()A.汽车在高速路上行驶了2.5hB.汽车在高速路上行驶的路程是180kmC.汽车在高速路上行驶的平均速度是72km/hD.汽车在乡村道路上行驶的平均速度是40km/h【分析】由3.5h到达目的地,在乡村道路上行驶1h可得下高速公路的时间,从而可判断A,由图象直接可判断B,根据速度=路程除以时间可判断C和D.【解答】解:∵3.5h到达目的地,在乡村道路上行驶1h,∴汽车下高速公路的时间是2.5h,∴汽车在高速路上行驶了2.5﹣0.5=2(h),故A错误,不符合题意;由图象知:汽车在高速路上行驶的路程是180﹣30=150(km),故B错误,不符合题意;汽车在高速路上行驶的平均速度是150÷2=75(km/h),故C错误,不符合题意;汽车在乡村道路上行驶的平均速度是(220﹣180)÷1=40(km/h),故D正确,符合题意;故选:D.5、(2022•桂林)桂林作为国际旅游名城,每年吸引着大量游客前来观光.现有一批游客分别乘坐甲乙两辆旅游大巴同时从旅行社前往某个旅游景点.行驶过程中甲大巴因故停留一段时间后继续驶向景点,乙大巴全程匀速驶向景点.两辆大巴的行程s(km)随时间t (h)变化的图象(全程)如图所示.依据图中信息,下列说法错误的是()A.甲大巴比乙大巴先到达景点B.甲大巴中途停留了0.5hC.甲大巴停留后用1.5h追上乙大巴D.甲大巴停留前的平均速度是60km/h【分析】根据函数图象中的数据,可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:由图象可得,甲大巴比乙大巴先到达景点,故选项A正确,不符合题意;甲大巴中途停留了1﹣0.5=0.5(h),故选项B正确,不符合题意;甲大巴停留后用1.5﹣1=0.5h追上乙大巴,故选项C错误,符合题意;甲大巴停留前的平均速度是30÷0.5=60(km/h),故选项D正确,不符合题意;故选:C.6、(2022•玉林)龟兔赛跑之后,输了比赛的兔子决定和乌龟再赛一场.图中的函数图象表示了龟兔再次赛跑的过程(x表示兔子和乌龟从起点出发所走的时间,y1,y2分别表示兔子与乌龟所走的路程).下列说法错误的是()A.兔子和乌龟比赛路程是500米B.中途,兔子比乌龟多休息了35分钟C.兔子比乌龟多走了50米D.比赛结果,兔子比乌龟早5分钟到达终点【分析】根据函数图象中的数据可以判断各个选项中的结论是否正确.【解答】解:A、“龟兔再次赛跑”的路程为500米,原说法正确,故此选项不符合题意;B、乌龟在途中休息了35﹣30=5(分钟),兔子在途中休息了50﹣10=40(分钟),兔子比乌龟多休息了35分钟,原说法正确,故此选项不符合题意;C、兔子和乌龟同时从起点出发,都走了500米,原说法错误,故此选项符合题意;D、比赛结果,兔子比乌龟早5分钟到达终点,原说法正确,故此选项不符合题意.故选:C.7、(2022•乐山)甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是()A.前10分钟,甲比乙的速度慢B.经过20分钟,甲、乙都走了1.6千米C.甲的平均速度为0.08千米/分钟D.经过30分钟,甲比乙走过的路程少【分析】观察函数图象,逐项判断即可.【解答】解:由图象可得:前10分钟,甲的速度为0.8÷10=0.08(千米/分),乙的速度是1.2÷10=0.12(千米/分),∴甲比乙的速度慢,故A正确,不符合题意;经过20分钟,甲、乙都走了1.6千米,故B正确,不符合题意;∵甲40分钟走了3.2千米,∴甲的平均速度为3.2÷40=0.08(千米/分钟),故C正确,不符合题意;∵经过30分钟,甲走过的路程是2.4千米,乙走过的路程是2千米,∴甲比乙走过的路程多,故D错误,符合题意;故选:D.8、(2022•阜新)快递员经常驾车往返于公司和客户之间.在快递员完成某次投递业务时,他与客户的距离s(km)与行驶时间t(h)之间的函数关系如图所示(因其他业务,曾在途中有一次折返,且快递员始终匀速行驶),那么快递员的行驶速度是km/h.【分析】根据图象求出快递员往返的时间为2(0.35﹣0.2)h,然后再根据速度=路程÷时间.【解答】解:∵快递员始终匀速行驶,∴快递员的行驶速度是=35(km/h).故答案为:35.9、(2022•资阳)女子10千米越野滑雪比赛中,甲、乙两位选手同时出发后离起点的距离y(千米)与时间t(分钟)之间的函数关系如图所示,则甲比乙提前分钟到达终点.【分析】根据图象求出20分钟后甲的速度,进而求出32分钟,甲和乙所处的交点位置,再根据速度公式求出20分钟后乙的速度,进而求出达到终点时乙所需的时间,即可求出答案.【解答】解:由图象可知,甲20~35分钟的速度为:(千米/分钟),∴在32分钟时,甲和乙所处的位置:(千米),乙20分钟后的速度为:(千米/分钟),∴乙到达终点的时间为:(分钟),∴甲比乙提前:36﹣35=1(分钟),故答案为:1.10、(2022•呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了千克糯米;设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额x(x>10)的函数解析式为.【分析】根据糯米的价格为5元/千克,如果一次购买2千克以上糯米,超过2千克的部分的糯米的价格打8折,即可得出解析式;再把x=14代入即可.【解答】解:∵x>10时,∴一次购买的数量超过2千克,∴y=,=.∵14>10,∴y=,=,=3.故答案为:3;y=.11、(2022•苏州)一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y(升)与时间x(分钟)之间的函数关系如图所示,则图中a的值为.【分析】设出水管每分钟排水x升.由题意进水管每分钟进水10升,则有80﹣5x=20,求出x,再求出8分钟后的放水时间,可得结论.【解答】解:设出水管每分钟排水x升.由题意进水管每分钟进水10升,则有80﹣5x=20,∴x=12,∵8分钟后的放水时间==,8+=,∴a=,故答案为:.。
中考专题复习《一次函数》真题练习一、选择题1.(2012•南充)下列函数中,是正比例函数的是()A.y=-8x B.8yx-=C.y=5x2+6 D.y=-0.5x-11.A2.(2012•温州)一次函数y=-2x+4的图象与y轴的交点坐标是()A.(0,4)B.(4,0)C.(2,0)D.(0,2)2.A3.(2012•陕西)在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,-3),(-4,6)B.(-2,3),(4,6)C.(-2,-3),(4,-6)D.(2,3),(-4,6)3.A4.(2012•泉州)若y=kx-4的函数值y随x的增大而增大,则k的值可能是下列的()A.-4 B.12-C.0 D.34.D5.(2012•山西)如图,一次函数y=(m-1)x-3的图象分别与x轴、y轴的负半轴相交于A、B,则m的取值范围是()A.m>1 B.m<1 C.m<0 D.m>05.B6.(2012•娄底)对于一次函数y=-2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与x轴的交点坐标是(0,4)6.D8.(2012•乐山)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.8.A9.(2012•阜新)如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0 B.x<0 C.x>1 D.x<19.B9.解:由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点(0,1),∴当x<0时,关于x的不等式kx+b>1.故选B.10.(2012•河南)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<32B.x<3 C.x>32D.x>310.A10.解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=32,∴点A的坐标是(32,3),∴不等式2x<ax+4的解集为x<32;故选A.11.(2012•陕西)在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为()A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)11.D12.(2012•哈尔滨)李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x<12)B.y=-12x+12(0<x<24)C.y=2x-24(0<x<12)D.y=12x-12(0<x<24)12.B13.(2012•武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③13.A解:甲的速度为:8÷2=4米/秒;乙的速度为:500÷100=5米/秒;b=5×100-4×(100+2)=92米;5a-4×(a+2)=0,解得a=8,c=100+92÷4=123,∴正确的有①②③.故选A.15.(2012•黔东南州)如图,是直线y=x﹣3的图象,点P(2,m)在该直线的上方,则m 的取值范围是()A.m>﹣3B.m>﹣1C.m>0D.m<3考点:一次函数图象上点的坐标特征。
知识回顾微专题专题14一次函数考点一:一次函数之定义、图像与性质1.一次函数的定义:一般地,形如()0≠+=k b k b kx y 是常数且,的函数叫做一次函数。
2.一次函数的图像:是不经过原点的一条直线。
3.一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛-0 ,kb ;与y 轴的交点坐标公式为:()b ,0。
1.(2022•沈阳)在平面直角坐标系中,一次函数y=﹣x+1的图象是()A.B.C.D.【分析】依据一次函数y=x+1的图象经过点(0,1)和(1,0),即可得到一次函数y=﹣x+1的图象经过一、二、四象限.【解答】解:一次函数y=﹣x+1中,令x=0,则y=1;令y=0,则x=1,∴一次函数y=﹣x+1的图象经过点(0,1)和(1,0),∴一次函数y=﹣x+1的图象经过一、二、四象限,故选:C.2.(2022•安徽)在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A.B.C.D.【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图象都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.3.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图象分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图象位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图象过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图象过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.4.(2022•六盘水)如图是一次函数y=kx+b的图象,下列说法正确的是()A.y随x增大而增大B.图象经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【分析】根据一次函数的图象和性质进行判断即可.【解答】解:由图象得:图象过一、二、四象限,则k<0,b>0,当k<0时,y随x的增大而减小,故A、B错误,由图象得:与y轴的交点为(0,b),所以当x≥0时,从图象看,y≤b,故C正确,符合题意;当x<0时,y>b>0,故D错误.故选:C.5.(2022•兰州)若一次函数y=2x+1的图象经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<4即可得出结论.【解答】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图象上的两个点,﹣3<4,∴y1<y2.故选:A.6.(2022•凉山州)一次函数y=3x+b(b≥0)的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,∴当b=0时,此函数的图象经过一、三象限,不经过第四象限;当b>0时,此函数的图象经过一、二、三象限,不经过第四象限.则一定不经过第四象限.故选:D.7.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值(写出一个即可),使x>2时,y1>y2.【分析】由题意可知,当b>﹣1时满足题意,故b可以取0.【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).8.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).9.(2022•无锡)请写出一个函数的表达式,使其图象分别与x轴的负半轴、y轴的正半轴相交:.【分析】设函数的解析式为y=kx+b(k≠0),再根据一次函数的图象分别与x轴的负半轴、y轴的正半轴相交可知k>0,b>0,写出符合此条件的函数解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图象分别与x轴的负半轴、y轴的正半轴相交,∴k>0,b>0,∴符合条件的函数解析式可以为:y=x+1(答案不唯一).故答案为:y=x+1(答案不唯一).10.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式.【分析】根据y随着x的增大而增大时,比例系数k>0即可确定一次函数的表达式.【解答】解:在y=kx+b中,若k>0,则y随x增大而增大,∴只需写出一个k>0的一次函数表达式即可,比如:y=x﹣2,故答案为:y=x﹣2(答案不唯一).11.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图象经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图象经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.(2022•甘肃)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).13.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y 轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.6【分析】由于P的纵坐标为2P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P在直线y=2上,如图所示,当P为直线y=2与直线y2的交点时,m取最大值,当P为直线y=2与直线y1的交点时,m取最小值,∵y2=﹣x+3中令y=2,则x=1,y1=x+3中令y=2,则x=﹣1,∴m 的最大值为1,m 的最小值为﹣1.则m 的最大值与最小值之差为:1﹣(﹣1)=2.故选:B .14.(2022•遵义)若一次函数y =(k +3)x ﹣1的函数值y 随x 的增大而减小,则k 值可能是()A .2B .23C .﹣21D .﹣4【分析】根据一次项系数小于0时,一次函数的函数值y 随x 的增大而减小列出不等式求解即可.【解答】解:∵一次函数y =(k +3)x ﹣1的函数值y 随着x 的增大而减小,∴k +3<0,解得k <﹣3.所以k 的值可以是﹣4,故选:D .15.(2022•包头)在一次函数y =﹣5ax +b (a ≠0)中,y 的值随x 值的增大而增大,且ab >0,则点A (a ,b )在()A .第四象限B .第三象限C .第二象限D .第一象限【分析】根据一次函数的增减性,确定自变量x 的系数﹣5a 的符号,再根据ab >0,确定b 的符号,从而确定点A (a ,b )所在的象限.【解答】解:∵在一次函数y =﹣5ax +b 中,y 随x 的增大而增大,∴﹣5a >0,∴a <0.∵ab >0,∴a ,b 同号,∴b <0.∴点A (a ,b )在第三象限.故选:B .16.(2022•眉山)一次函数y =(2m ﹣1)x +2的值随x 的增大而增大,则点P (﹣m ,m )所在象限为()A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【解答】解:∵一次函数y =(2m ﹣1)x +2的值随x 的增大而增大,∴2m ﹣1>0,解得:m >,∴P (﹣m ,m )在第二象限,故选:B .17.(2022•天津)若一次函数y =x +b (b 是常数)的图象经过第一、二、三象限,则b 的值可以是(写出一个即可).【分析】根据一次函数的图象可知b >0即可.【解答】解:∵一次函数y =x +b (b 是常数)的图象经过第一、二、三象限,∴b >0,可取b =1,故答案为:1.(答案不唯一,满足b >0即可)18.(2022•邵阳)在直角坐标系中,已知点A (23,m ),点B (27,n )是直线y =kx +b (k <0)上的两点,则m ,n 的大小关系是()A .m <nB .m >nC .m ≥nD .m ≤n【分析】根据k <0可知函数y 随着x 增大而减小,再根>即可比较m 和n 的大小.【解答】解:点A (,m ),点B (,n )是直线y =kx +b 上的两点,且k <0,∴一次函数y 随着x 增大而减小,∵>,∴m <n ,故选:A .19.(2022•株洲)在平面直角坐标系中,一次函数y =5x +1的图象与y 轴的交点的坐标为()A .(0,﹣1)B .(﹣51,0)C .(51,0)D .(0,1)【分析】一次函数的图象与y 轴的交点的横坐标是0,当x =0时,y =1,从而得出答案.【解答】解:∵当x =0时,y =1,∴一次函数y =5x +1的图象与y 轴的交点的坐标为(0,1),故选:D .20.(2022•绍兴)已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3,则以下判断正确的是()A.若x1x2>0,则y1y3>0B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y=﹣2x+3,∴y随x的增大而减小,当y=0时,x=1.5,∵(x1,y1),(x2,y2),(x3,y3)为直线y=﹣2x+3上的三个点,且x1<x2<x3,∴若x1x2>0,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意;故选:D.21.(2022•盘锦)点A(x1,y1),B(x2,y2)在一次函数y=(a﹣2)x+1的图象上,当x1>x2时,y1<y2,则a的取值范围是.【分析】根据一次函数的性质,建立不等式计算即可.【解答】解:∵当x1>x2时,y1<y2,∴a﹣2<0,∴a<2,故答案为:a<2.22.(2022•永州)已知一次函数y=x+1的图象经过点(m,2),则m=.【分析】由一次函数y=x+1的图象经过点(m,2),利用一次函数图象上点的坐标特征可得出2=m+1,解之即可求出m的值.【解答】解:∵一次函数y=x+1的图象经过点(m,2),∴2=m+1,∴m=1.故答案为:1.考点二:一次函数之几何变换与求函数解析式知识回顾1.一次函数的平移:微专题①若函数进行左右平移,则在函数的自变量上进行加减。
中考复习专题一次函数知识点及习题集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#中考复习 — 一次函数考点1、一次函数的意义知识点:一次函数:若两个变量x 、y 间的关系式可以表示成b kx y +=(k 、b 为常数,0≠k )的形式,称y 是x 的一次函数。
正比例函数:形如kx y =(0≠k )的函数,称y 是x 的正比例函数,此时也可说y 与x 成正比例,正比例函数是一次函数,但一次函数并不一定是正比例函数例题演练1、下列函数(1)y=3πx ;(2)y=8x-6;(3)1y x =;(4)1y 8x 2=-;(5)2y 541x x =-+中,是一次函数的有( )A 、4个B 、3个C 、2个D 、1个2、当k_____________时,()2323y k x x =-++-是一次函数;3、当m_____________时,()21345m y m x x +=-+-是一次函数;4、当m_____________时,()21445m y m x x +=-+-是一次函数; 考点2、求一次函数的解析式知识点:确定正比例函数kx y =的解析式:只须一个条件,求出待定系数k 即可.确定一次函数b kx y +=的解析式:只须二个条件,求出待定系数k 、b 即可.A 、设——设出一次函数解析式,即b kx y +=;B 、代——把已知条件代入b kx y +=中,得到关于k 、b 的方程(组);C 、求——解方程(组),求k 、b ;D 、写——写出一次函数解析式.例题演练1、已知A (0,0),B (3,2)两点,经过A 、B 两点的图象的解析式为( )A 、y=3xB 、y=32x C 、y= 23x D 、y= 13x+12、如上图,直线AB 对应的函数表达式是( )A 、3y x 32=-+B 、3y x 32=+C 、2y x 33=-+ D 、2y x 33=+3、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________;4、如图,已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标. 考点3、一次函数的图象一次函数b kx y +=的图象是一条 ,与x 轴的交点为 , 与y 轴的交点为 。
正比例函数kx y =的图象也是一条 ,它过点 , 例题演练1、正比例函数y=kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y=x+k 的图象大致是( )A 、B 、C 、D 、2、一次函数y=kx+b 的图象如图所示,当y <0时,x 的取值范围是( )A 、x >0B 、x0C 、x >2D 、x <23、如图,直线(0)y kx b k =+<与x 轴交于点(30),,关于x 的不等式0kx b +>的解集是( ) A .3x <B .3x >C .0x >D .0x <4、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )xy3y O M 1 1A 、x >1B 、x <1C 、x >-2D 、x <-2考点4、一次函数的性质例题演练1、如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <2、P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y = -x 图象上的两点,则下列判断正确的是( ) A .y 1>y 2B .y 1<y 2C .当x 1<x 2时,y 1>y 2D .当x 1<x 2时,y 1<y 23.若一次函数y=kx+b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,•则一次函数的解析式为________.+k 1x考点5、平移知识点:直线11b x k y +=与直线22b x k y +=的位置关系:两直线平行⇔ ;两直线垂直⇔ 。
一次函数图象平移(1)一次函数y=kx+b 的图象可以看做是y=kx 平移|b|个单位长度而得到(b>0时,向上平移,b<0时,向下平移) (2)图象上下平移与k 无关,与b 有关,图象向上移动b 的值增加,图象向下移动b 的值减小 (3)图象的左右平移与k ,b 无关,与自变量x 有关系,向左移动增加,向右移动减小例题演练1. 直线y=5x-3向左平移2个单位得到直线 。
2. 直线y=21x 向右平移2个单位得到直线 3. 直线y=2x+1向上平移4个单位得到直线4. 直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。
5. 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________。
6. 过点(2,-3)且平行于直线y=-3x+1的直线是___________.7.直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________; 考点6、交点问题及直线围成的面积问题方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形);往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;例题演练1、直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。
2、已知一个正比例函数与一个一次函数的图象交于点A(1)求两个函数的解析式;(2)求△AOB的面积;3、已知直线m经过两点(1,6)、(-3,-2),它和x轴、y轴的交点式B、A,直线n过点(2,-2),且与y轴交点的纵坐标是-3,它和x轴、y轴的交点是D、C;(1)分别写出两条直线解析式,并画草图;(2)计算四边形ABCD的面积;(3)若直线AB与DC交于点E,求△BCE的面积。
4.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个5. 如图,已知点A(2,4),B(-2,2),C(4,0),求△ABC的面积。
巩固练习一、选择题:1.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限2.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+33.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限4.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)16 5.若甲、乙两弹簧的长度y(cm)与所挂物体质量x (kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2(B)y1=y2(C)y1<y2(D)不能确定6.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是()7.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为()(A)m>-14(B)m>5 (C)m=-14(D)m=511.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<13二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是________.3.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.4.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.5.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.6.y=23x与y=-2x+3的图像的交点在第_________象限.三、解答题1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y= -1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.4、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,△AOP的面积为6;(1) 求△COP 的面积; (2) 求点A 的坐标及p 的值;(3) 若△BOP 与△DOP 的面积相等,求直线BD的函数解析式。
5、已知:经过点(-3,-2),它与x 轴,y轴分别交于点B 、A ,直线经过点(2,-2),且与y 轴交于点C (0,-3),它与x 轴交于点D (1)求直线的解析式;(2)若直线与交于点P ,求的值。
6.已知:一次函数y=12x-3的图象与x 轴、y 轴分别交于A 、B 两点,过点C (4,0)作AB 的垂线交AB 于点E ,交y 轴于点D ,求点D 、E 的坐标.7.在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数.当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取( ) (A )2个 (B )4个 (C )6个 (D )8个(2,p)yxP O F E D CB A。