随机信号分析基础第三章习题
- 格式:pdf
- 大小:1.56 MB
- 文档页数:25
1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。
随机信号分析课后习题答案随机信号分析课后习题答案随机信号分析是现代通信系统设计和信号处理领域中的重要基础知识。
通过对随机信号的分析,我们可以更好地理解和处理噪声、干扰等随机性因素对通信系统性能的影响。
下面是一些关于随机信号分析的课后习题及其答案,希望对大家的学习有所帮助。
1. 什么是随机信号?随机信号是在时间域上具有随机性质的信号。
与确定性信号不同,随机信号的每个样本值都是随机变量,其取值不是确定的。
随机信号可以用统计特性来描述,如均值、方差、功率谱密度等。
2. 什么是平稳随机信号?平稳随机信号是指在统计性质上不随时间变化的随机信号。
具体来说,平稳随机信号的均值和自相关函数不随时间变化。
平稳随机信号在实际应用中较为常见,因为它们具有一些方便的数学性质,可以简化信号处理的分析和设计。
3. 如何计算随机信号的均值?随机信号的均值可以通过对信号样本值的求平均来计算。
对于离散时间随机信号,均值可以表示为:E[x[n]] = (1/N) * Σ(x[n])其中,E[x[n]]表示信号x[n]的均值,N表示信号的样本数,Σ表示求和运算。
4. 如何计算随机信号的方差?随机信号的方差可以用均方差来表示。
对于离散时间随机信号,方差可以表示为:Var[x[n]] = E[(x[n] - E[x[n]])^2]其中,Var[x[n]]表示信号x[n]的方差,E[x[n]]表示信号的均值。
5. 什么是自相关函数?自相关函数是用来描述随机信号与其自身在不同时间延迟下的相似性的函数。
自相关函数可以用来分析信号的周期性、相关性等特性。
对于离散时间随机信号,自相关函数可以表示为:Rxx[m] = E[x[n] * x[n-m]]其中,Rxx[m]表示信号x[n]的自相关函数,E[ ]表示期望运算。
6. 如何计算随机信号的自相关函数?随机信号的自相关函数可以通过对信号样本值的乘积进行求平均来计算。
对于离散时间随机信号,自相关函数可以表示为:Rxx[m] = (1/N) * Σ(x[n] * x[n-m])其中,Rxx[m]表示信号x[n]的自相关函数,N表示信号的样本数,Σ表示求和运算。
、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。
求(1)证明X(t)是平稳过程。
(2)X(t)是各态历经过程吗?给出理由。
(3)画出该随机过程的一个样本函数。
(1)(2)3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率? ②ω取值在(4,4)-范围内的平均功率?解[][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=⎡⎤⎣⎦+=+=+与相互独立()()()21521()lim2TT T E X t X t X t X t dt AT-→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程()()[]()()4112211222222242'4(1)24()()444(0)41132(1)224414414(2)121tan 13224X X XE X t G d RFG F e R G d d d arc x x ττωωωωωππωωπωωπωπωω∞----∞∞-∞-∞∞--∞∞⎡⎤⨯⎡⎤==⋅=⋅⎢⎥+⎣⎦====+==⎛⎫+ ⎪==⎣⎦=++⎝⎭=⎰⎰⎰⎰⎰P P P P 方法一()方:时域法取值范围为法二-4,4内(频域的平均率法功)2d ω=3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。
证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-[][]:()[()()]{()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-⇒⇒=+=--+-+-=--=+=-⇔⇔∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-⎡⎤+-⎢⎥⎣⎦=-3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为216()16X G ωω=+22()16Y G ωωω=+令新的随机过程()()()()()()Z t X t Y t V t X t Y t =+⎧⎨=-⎩ ①证明()X t 和()Y t 联合平稳; ②求()Z t 的功率谱密度()Z G ω? ③求()X t 和()Y t 的互谱密度()XY G ω? ④求()X t 和()Z t 的互相关函数()XZ R τ? ⑤求()V t 和()Z t 的互相关函数()VZ R τ 解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G e E X t R E X t R eE Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+==={}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。
随机信号分析习题一,试证明F(x)是某个随机变的分布函数。
并求卜列概率:< 1), P(1 < ^ < 2) o2. 设的联合密度w 数为求 p{o<x<i ,o<y<i}、3. 设二维随机变g(x ,y)的联合密度函数为fxY^ y) = —exp --(A :2+2xy + 5y 2) 71 2求:(l)边沿密度八0), f Y (y)(2)条件概率密度人|x (y|x),A,r (x|y)4. 设离散型随机变的可能取值为1,0,1,,取每个值的概率都为1/4,又设随机变(1) 求r 的可能取值 (2) 确定Y 的分布。
(3)E[Y] o5. 设两个离散随机变量y 的联合概率密度为:fxY J )=2)^(y-l)+|^(x-3)5()’-l) + |<y (x-A)6(y-A)试求:(1) X 与y 不相关吋的所有A 值。
(2)x 与y 统计独立时所有A 值。
6. 二维随机变量(x, y)满足:X =cos (p Y = sin (p识为在[(),上均匀分布的随机变量,讨论X, r 的独立性与相关性。
7. 已知随机变fix 的概率密度为/(X),求y=/?X 2的概率密度/(y)。
fxY (^y) =,x>0, y>0 ,other8.两个随机变量12,己知其联合概率密度为/(久七),求1 + 的概率密度?9.设X足零均值,单位方差的高斯随机变量,:v = 如图,求y二以X)的概率密度人(夕)10.设随机变sw和z是w两个随机变s x和r的函数fw = x2 +r2 [z = x2设x,y是相互独立的高斯变景。
求随机变景w和z的联合概率密度函数。
11.设随# L变量w和z是另两个随# L变量x和r的函数J W = X + Y^z = 2(x+ r)己知,求联合概率密度函数人“耿幻。
12.设随机变量X为均匀分布,其概率密度厶=0, 其它(1)求X的特征函数,外(幼。
随机信号分析习题一1.设函数,试证明是某个随机变量的分布函数。
并求下⎩⎨⎧≤>-=-0, 00 ,1)(x x e x F x )(x F ξ列概率:,。
)1(<ξP )21(≤≤ξP 2.设的联合密度函数为),(Y X ,(), 0, 0(,)0 , otherx y XY e x y f x y -+⎧≥≥=⎨⎩求。
{}10,10<<<<Y X P 3.设二维随机变量的联合密度函数为),(Y X⎥⎦⎤⎢⎣⎡++-=)52(21exp 1),(22y xy x y x f XY π求:(1)边沿密度,)(x f X )(y f Y (2)条件概率密度,|(|)Y X f y x |(|)X Y f x y 4.设离散型随机变量的可能取值为,取每个值的概率都为,又设随机X {}2,1,0,1-4/1变量。
3()Y g X X X ==-(1)求的可能取值Y (2)确定Y 的分布。
(3)求。
][Y E 5.设两个离散随机变量,的联合概率密度为:X Y )()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)与不相关时的所有值。
X Y A (2)与统计独立时所有值。
X Y A 6.二维随机变量(,)满足:X Y ϕϕsin cos ==Y X 为在[0,2]上均匀分布的随机变量,讨论,的独立性与相关性。
ϕπX Y 7.已知随机变量X 的概率密度为,求的概率密度。
)(x f 2bX Y =)(y f 8.两个随机变量,,已知其联合概率密度为,求的概率密度?X X (,)f x x X X +9.设是零均值,单位方差的高斯随机变量,如图,求的概率密度X ()y g x =()y g x =()Y f y\10.设随机变量和是另两个随机变量和的函数W Z X Y 222W X Y Z X⎧=+⎨=⎩设,是相互独立的高斯变量。
随机信号分析基础课后练习题含答案第一部分随机变量和概率分布练习题1设离散随机变量X的概率分布函数为:X0 1 2 3 4P X0.05 0.15 0.35 0.30 0.15求E(X)和D(X)。
答案1根据概率分布函数的公式有:$$E(X)=\\sum_{i=1}^n x_i P_X(x_i) = 0 \\times 0.05 + 1\\times 0.15 + 2 \\times 0.35 + 3 \\times 0.30 + 4 \\times 0.15 = 2.25$$$$D(X)=\\sum_{i=1}^n (x_i-E(X))^2P_X(x_i) = 0.710625$$ 练习题2已知随机变量X的概率密度函数为:$$f_X(x) = \\begin{cases} \\frac{1}{3}e^{-\\frac{x}{3}} & x \\geq 0 \\\\ 0 & x < 0 \\end{cases}$$求E(X)和D(X)。
答案2根据概率分布函数的公式有:$$E(X)=\\int_{-\\infty}^{+\\infty}xf_X(x)dx =\\int_{0}^{+\\infty}x\\frac{1}{3}e^{-\\frac{x}{3}}dx=3$$ $$D(X)=E(X^2)-(E(X))^2=\\int_{-\\infty}^{+\\infty}x^2f_X(x)dx-(E(X))^2=\\int_{0}^{+\\infty}x^2\\frac{1}{3}e^{-\\frac{x}{3}}dx-9=\\frac{27}{4}$$第二部分随机过程练习题3设二阶矩有限的离散时间随机过程X n的均值序列为m n,自相关函数为R n(i,j)=E(X i−m i)(X j−m j),其中 $0 \\leq i,j \\leq N$。
若m n=n2,R n(i,j)=ij(i+j),求 $E(\\sum_{n=0}^N X_n)$。
第三章,平稳随机过程的n 维概率密度不随时间平移而变化的特性,反映在统计特征上就是其均值不随时间的变化而变化,mx 不是t 的函数。
同样均方值也应是常数。
(2)二维概率密度只与t1,t2的时间间隔有关,而与时间起点t1无关。
因此平稳过程的自相关函数仅是单变量tao 的函数。
则称他们是联合宽平稳的。
第三章Chapter 3 ==========================================3.2 随机过程()t X 为()()ΦωX +=t cos A t 0式中,A 具有瑞利分布,其概率密度为()02222>=-a eaa P a A ,σσ,()πΦ20,在上均匀分布,A Φ与是两个相互独立的随机变量,0ω为常数,试问X(t)是否为平稳过程。
解:由题意可得:()[]()()002121020222220002222=⇒+=*+=⎰⎰⎰⎰∞--∞φφωπσφπσφωX E πσσπd t cos da e a a dad eat cos a t a a ()()()[]()()()()()()[]()()()()()120212021202021202022212020220210120220222020100222222002010212121221122102122121212212122222222222222t t cos t t cos t t cos det t cos da e e a t t cos dea d t t cos t t cos a d ea d t cos t cos da eaadad e at cos a t cos a t t t t R a a a a a a a -=-⨯=-⨯-=-⨯⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-∞+-=-⨯-=⎩⎨⎧⎭⎬⎫+++---=++=++==-∞∞---∞∞-∞--∞⎰⎰⎰⎰⎰⎰⎰⎰⎰ωσωσωσωωφφωωπσφπφωφωσφσπφωφωX X E σσσσπσπσσπXX )(,可见()[]t X E 与t 无关,()21t t R ,XX 与t 无关,只与()12t t -有关。