七年级下册数学 一元一次不等式与不等式组 全章复习与巩固(提高)【精编】
- 格式:docx
- 大小:265.59 KB
- 文档页数:15
数学七年级下一元一次不等式章节复习一、知识回顾1、在数轴上表示不等式解集的要点:小于向 画,大于向 画;无等号画 圆圈,有等号画 圆点.2、解和解集①、能使不等式成立的未知数的值叫做____________②、满足不等式的未知数的解的 称为不等式的 ,必须是全部的解,缺少任何一个都不能称为解集.3、解不等式求不等式的 的过程,叫做解不等式.4、不等式的性质不等式两边都加上(或减去) 或 ,不等号的方向 。
不等式两边都乘以(或除以)同一个 ,不等号的 。
不等式两边都乘以(或5.列不等式解应用题基本步骤与列方程解应用题的步骤相类似,即(1) :认真审题,分清已知量.未知量及其关系,找出题中不等关系,要抓住题设中的关键字“眼”,如“大于”.“小于”.“不小于”.“不大于”等的含义.(2) :设出适当的未知数.(3) :根据题中的不等关系,列出不等式.(4) :解出所列不等式的解集.(5) :写出答案,并检验答案是否符合题意除以)同一个 ,不等号的方向 。
二、知识学习(一)、选择题1.下列不等式中,是一元一次不等式的是( ) A.x 1 +1>2 B.x 2>9 C.2x +y ≤5 D.21 (x -3)<0 2、 |a |+a 的值一定是( )A.大于零B.小于零C.不大于零D.不小于零3.若不等式2x <4的解都能使关于x 的一次不等式(a ﹣1)x <a+5成立,则a 的取值范围是( )A.1<a ≤7B.a ≤7C.a <1或a ≥7D.a=74.若关于x 的方程3x +2m =2的解是正数,则m 的取值范围是( )A.m >1B.m <1C.m ≥1D.m ≤1 5.如果不等式组213(1)x x x m->-⎧⎨<⎩的解集是x <2,那么m 的取值范围是( )A.m=2B.m >2C.m <2D.m ≥26.如果a <0,b >0,a +b <0,那么下列关系式中正确的是( )A.a >b >-b >-aB.a >-a >b >-bC.b >a >-b >-aD.-a >b >-b >a7.已知x=m+15,y=5-2m ,若m >-3,则x 与y 的关系为( )A.x=yB.x >yC.x <yD.不能确定8.某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过( )A.66厘米B.76厘米C.86厘米D.96厘米 9.若1-=a a,则a 只能是 ( )A .1-≤aB .0<aC .1-≥aD .0≤a10.已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A..x <2B.x >-2C.当a >0时,x <2D.a >0时,x <2;当a <0时,x >2二、填空题11.关于x 的不等式3x ﹣a ≤0,只有四个正整数解,则a 的取值范围是 。
专题9.10 《一元一次不等式与不等式组》全章复习与巩固(专项练习)一、单选题1.(2017·陕西九年级专题练习)不等式3x +2<2x +3的解集在数轴上表示正确的是( )A .B .C .D .2.(2017·山西九年级专题练习)不等式组5511x x x m +<+⎧⎨->⎩的解集是x >1,则m 的取值范围是( ) A .m ≥1 B .m ≤1 C .m ≥0 D .m ≤03.(2020·福建莆田市·七年级期末)如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值范围,在数轴上可表示为( )A .B .B .C .D .4.(2020·安徽宿州市·八年级期末)若01x <<,则21x x x ,,的大小关系是( ) A .21x x x << B .21x x x << C .21x x x << D .21x x x<< 5.(2019·全国七年级课时练习)已知三个数a -1,3-a,2a 在数轴上所对应的点从左到右依次排列,那么,a 的取值范围是( ).A .1<a <2B .1<a <3C .-1<a <1D .以上都不对6.(2020·安徽七年级期中)不等式组235,312x x -<⎧⎨+>-⎩的解集是( ). A .-1<x <4 B .x >4或x <-1C .x >4D .x <-1 7.(2020·安徽七年级期中)若m >n ,则下列不等式一定成立的是( ).A .<1n mB .>1n mC .-m >-nD .m -n >08.(2018·全国七年级单元测试)七年级(1)班的几名同学合影留念,每人交0.7元可以各拿到一张照片.已知一张彩色底片0.6元,而扩印一张照片需0.5元.若收来的钱够用,则这张照片上的同学至少有( )A .2名B .3名C .4名D .5名9.(2020·广西河池市·九年级一模)不等式组10235x x +≤⎧⎨+<⎩的解集在数轴上表示为( ) A .B .C .D . 10.(2017·河南九年级其他模拟)关于x 的不等式x -b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-211.(2020·安徽七年级期中)若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2 B .m >-3 C .-3<m <2 D .m <3或m >212.(2017·山西九年级专题练习)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( ) A .103块 B .104块 C .105块 D .106块13.(2019·山东济南市·八年级期中)不等式3(2)4x x -≤+的非负整数解有( )个A .4B .6C .5D .无数14.(2017·吉林吉林市·中考模拟)不等式组21{31x x +≥-<-中的两个不等式的解集在同一个数轴上表示正确的是( ) A . B .C .D .15.(2017·射阳县实验初级中学七年级月考)若关于x 的不等式组2x a x >⎧⎨<⎩的解集是212a x -<<,则a =( ). A .1 B .2 C .12D .-2 16.(2018·江苏无锡市·七年级月考)已知二元一次方程5x ﹣6y=20,当y <0时,x 的取值范围是( ) A .x >4 B .x <4 C .x >﹣4 D .x <﹣417.(2018·吉林长春市·七年级期末)已知x 2y 4k {2x y 2k 1+=+=+,且1x y 0-<-<,则k 的取值范围为 A .11k 2-<<- B .10k 2<< C .0k 1<< D .1k 12<< 18.(2020·安徽七年级期中)不等式2x +1>−3的解集在数轴上表示正确的是( )A .B .C .D .二、填空题19.(2015·陕西九年级专题练习)写出一个解集为x≥1的一元一次不等式:_____________.20.(2020·丽水市莲都区教研室八年级期末)小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小明最多能买________枝钢笔.21.(2020·安徽省金寨第二中学七年级月考)如果a >b ,则-ac 2________-bc 2(c ≠0).22.(2019·全国七年级课时练习)如果不等式2x -m ≤0的正整数解共3个,则m 的取值范围是________. 23.(2018·全国七年级单元测试)若关于x 的不等式组2{32x a x a ><--+无解,则a 的取值范围是________.24.(2018·长沙市雅礼实验中学八年级开学考试)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.25.(2018·全国七年级单元测试)把一筐梨分给几个学生,若每人4个,则剩下3个;若每人6个,则最后一个同学最多分得3个,求学生人数和梨的个数.设有z 个学生,依题意可列不等式组为__________.26.(2018·全国七年级单元测试)当x___________时,代数式1-x-14的值不大于代数式3(x 1)8+的值. 27.(2018·全国七年级单元测试)若a<b<0,把1,1-a,1-b 这三个数按由小到大的顺序用“<”连接起来:____________. 28.(2020·苏州市吴江区青云中学七年级月考)不等式2x+9≥3(x+2)的正整数解是__________.29.(2019·山东省青岛第七中学八年级期中)若关于x,y 的方程组3x 2y p 1,4x 3y p-1+=+⎧⎨+=⎩的解满足x>y,则p 的取值范围是__________.30.(2019·全国七年级单元测试)已知22,{?2(-1)1,x x x ><+那么|x -3|+|x -1|=___________.31.(2020·阿荣旗得力其尔中学七年级月考)当x _____时,式子3x ﹣5的值大于5x +3的值.32.(2019·全国七年级课时练习)把关于x 的不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是___________.33.(2017·湖北鄂州市·九年级月考)若方程组的解x ,y 满足x +y <0,则k 的取值范围为___________. 34.(2019·全国八年级课时练习)已知x=2是不等式320ax a -+≥的解,且x=1不是这个不等式的解,则实数a 的取值范围是_________.35.(2017·射阳县实验初级中学七年级月考)不等式组1240xx>⎧⎨-≤⎩的解集是_____.36.(2017·河北九年级其他模拟)如果关于x的不等式组:3x-a0{2x-b0≥≤,的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有___________个.37.(2020·江苏盐城市·七年级月考)若不等式(m-2)x>2的解集是22xm<-,则m的取值范围是________.三、解答题38.(2017·江苏南京市·中考模拟)解不等式组并把解集表示在数轴上.39.(2020·河南洛阳市·七年级期中)解不等式组:3(1)23{132x xx x+<+-≤,并把解集在数轴上表示出来:40.(2014·陕西九年级专题练习)解不等式1211232x x--≤,并把它的解集在数轴上表示出来.41.(2019·全国七年级课时练习)(1)求同时满足不等式6x-2≥3x-4和2112132x x+--<的整数x的值.(2)解不等式组30,3(1)2 1. xx x+>⎧⎨-≤-⎩42.(2019·全国七年级课时练习)为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两种型号设备共8台用于二期工程的污水处理,预算本次购买资金不超过...84万元,预计二期工程完成后每月将产生不少于...1 300吨污水.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?(2)请你求出用于二期工程的污水处理设备的所有购买方案.参考答案1.D【解析】解:3x+2<2x+3移项及合并同类项,得x<1,故选D.2.D【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【详解】解:不等式整理得:11xx m>⎧⎨>+⎩,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0.故选D.【点拨】本题考查了不等式组的解集的确定. 3.A【解析】∵由图可知,1g<m<2g,∵在数轴上表示为:.故选A..4.C【详解】解:∵0<x<1,∵可假设x=0.1,则11==10x0.1,x2=(0.1)2=1100 1100<0.1<10∴x2<x<1 x故选C5.A【解析】【分析】根据数轴的特点得出关于a 的不等式组,求出a 的取值范围即可.【详解】∵三个数a -1,3-a,2a 在数轴上所对应的点从左到右依次排列,∵1332a a a a -<-⎧⎨-<⎩解之得1<a <2.故选A.【点拨】本题考查了利用数轴比较大小,解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.A【解析】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】235312x x -<⎧⎨+>-⎩①②, 解∵得x <4,解∵得x >-1,∵不等式组的解集是-1<x <4.故选A.【点拨】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.7.D【解析】【分析】根据不等式的性质逐项分析即可.【详解】当m=0时,m>n的两边不能都除以m,故A、B不一定成立;∵m>n,∵-m<-n,故C不成立;∵m>n,∵m-n>0,故D一定成立.故选D.【点拨】本题考查了不等式的基本性质:∵把不等式的两边都加(或减去)同一个整式,不等号的方向不变;∵不等式两边都乘(或除以)同一个正数,不等号的方向不变;∵不等式两边都乘(或除以)同一个负数,不等号的方向改变.8.B【解析】【分析】收来的钱尽量够用的前提下,就是已知不等关系,所用的钱≤收的钱,设有x个同学,就可以列出不等式求出x的值.【详解】设这张相片上的同学最少有x人,依题意得:0.60.50.7x x+≤,解之得3x≥,∵人数为整数,∵这张相片上的同学最少有3人.故选:B.【点拨】考查一元一次不等式的应用,读懂题目,找出题目中的不等关系,列出不等式是解题的关键.9.C【分析】先分别解不等式,得到不等式组的解集,再在数轴上表示解集.【详解】因为,不等式组10235xx+≤⎧⎨+<⎩的解集是:x≤-1,所以,不等式组的解集在数轴上表示为故选C【点拨】本题考核知识点:解不等式组.解题关键点:解不等式.10.A【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->x b ∴>综合上述可得32b -≤<-故选A.【点拨】本题主要考查不等式的非整数解,关键在于非整数解的确定.11.A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩.∵x >y >0,∵21220m m m +>-⎧⎨->⎩ ,解之得m >2.故选A.【点拨】本题考查了二元一次方程组及一元一次不等式组的应用,用含m的代数式表示出x、y的值是解答本题的关键. 12.C【解析】试题分析:根据题意设出未知数,列出相应的不等式,从而可以解答本题.设这批手表有x块,550×60+(x﹣60)×500>55000 解得,x>104 ∵这批电话手表至少有105块考点:一元一次不等式的应用13.B【解析】3(x-2)≤x+4,去括号,得3 x-6≤x+4,移项、合并同类项,得2x≤10,系数化为1,得x≤5,则满足不等式的非负整数解为:0,1,2,3,4,5,共6个.故选B.14.D【解析】试题解析:解不等式组得:-1≤x<2其解集在数轴上表示为:故选D.15.A【解析】试题解析:根据题意得:2a-1=a解得:a=1故选A.16.B【解析】试题解析:∵5x-6y=20,∵y=56x-103,∵y <0, ∵56x -103<0, 解得:x <4,故选B .17.D【详解】∵x+2y=4k 2x+y=2k+1⎧⎨⎩①② ∵∵-∵,得x y 2k 1-=-+将x y 2k 1-=-+代入1x y 0-<-<,得:112k 1022k 1k 12-<-+<⇒-<-<-⇒<< 故选D18.C【分析】 先解不等式,根据解集确定数轴的正确表示方法.【详解】解:不等式2x+1>-3,移项,得2x >-1-3,合并,得2x >-4,化系数为1,得x >-2.故选C .【点拨】本题考查解一元一次不等式,注意不等式的性质的应用.19.x -1≥0(答案不唯一)【分析】据一元一次不等式的求解逆用,把1进行移项就可以得到一个;也可以对原不等式进行其它变形,所以答案不唯一.【详解】解:移项,得x -1≥0,故答案为:x-1≥0(答案不唯一).【点拨】本题考查不等式的求解的逆用;写出的不等式只需符合条件,越简单越好.20.13【详解】解:设小明一共买了x本笔记本,y支钢笔,根据题意,可得25100{30x yx y+≤+=,可求得y≤403因为y为正整数,所以最多可以买钢笔13支.故答案为:13.21.<【解析】【分析】先根据不等式的性质判断-a与-b的大小关系,再判断-ac2与-bc2的大小关系.【详解】∵a>b,∵-a<-b,∵c≠0,∵c2>0,∵-ac2<-bc2.故答案为:<.【点拨】本题考查了不等式的基本性质:∵把不等式的两边都加(或减去)同一个整式,不等号的方向不变;∵不等式两边都乘(或除以)同一个正数,不等号的方向不变;∵不等式两边都乘(或除以)同一个负数,不等号的方向改变.22.6≤m<8【解析】【分析】先求出不等式的解集,根据已知得出关于m的不等式组,求出不等式组的解集即可.【详解】解:移项,得:2x<m,系数化为1,得:x <m 2, ∵不等式2x -m <0只有三个正整数解, ∵3≤m 2<4, 解得:6≤m <8,故答案为6≤m <8.【点拨】本题考查了解一元一次不等式,一元一次不等式组的整数解的应用,能得出关于m 的不等式组是解此题的关键. 23.a≤-1【解析】【分析】由于大大小小找不到,得到322a a +≤--,解不等式即可求出a 的取值范围.【详解】不等式组232x a x a --⎧⎨+⎩><, 因为不等式组无解,所以322a a +≤--,解得: 1.a ≤-故答案为: 1.a ≤-【点拨】此题主要考查了解一元一次不等式组,关键是正确理解“大大小小找不着”.24.16【解析】【分析】设购买篮球x 个,则购买足球()50x -个,根据总价=单价⨯购买数量结合购买资金不超过3000元,即可得出关于x 的一元一次不等式,解之取其中的最大整数即可.【详解】设购买篮球x 个,则购买足球()50x -个,根据题意得:()80x 5050x 3000+-≤, 解得:50x 3≤.x 为整数,x ∴最大值为16.故答案为16.【点拨】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.25.4z 36(z-1),4z 36(z-1)3+≥⎧⎨+≤+⎩【解析】试题解析:由已知条件可得,梨的总数为43z +个,最后一个学生得到梨的个数为:()4361,z z +--最后一个同学最多分得3个,则()()436104361 3.z z z z ⎧+--≥⎪⎨+--≤⎪⎩ 即436(1)436(1) 3.z z z z +≥-⎧⎨+≤-+⎩故答案为:436(1)436(1) 3.z z z z +≥-⎧⎨+≤-+⎩26.≥75【解析】 试题解析:根据题意,列出不等式为:13(1)1,48x x -+-≤去分母,得()()82131,x x --≤+去括号,得82233,x x -+≤+移项,得23328,x x --≤--合并同类项,得57,x -≤-把系数化为1,得7.5x ≥ 故答案为:7.5≥点拨:解一元一次不等式的一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.27.1<1-b<1-a【解析】试题解析:∵0a b <<,∵0a b ->->,∵11 1.a b ->->所以由小到大的顺序用“<”连接起来为:111.b a <-<-故答案为:111.b a <-<-28.1,2,3【解析】试题分析:先解不等式,求出其解集,再根据解集判断其正整数解.解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x ﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.故答案为1,2,3.考点:一元一次不等式的整数解.29.p>-6【解析】试题解析:321 431,x y p x y p +=+⎧⎨+=-⎩①②∵4⨯-∵3⨯得,7,y p -=+则7y p =--,把7y p =--代入∵,得5,x p =+,x y >57,p p ∴+>--解得: 6.p >-故答案为 6.p >-30.2【解析】试题解析:22,2(1)1,x x x >⎧⎨-<+⎩①②解不等式∵得,1,x >解不等式∵得, 3.x <原不等式组的解集为:1 3.x <<30,10.x x ∴--3131 2.x x x x -+-=-+-=故答案为2.31.<﹣4.【解析】由3x -5的值大于5x +3,即3x -5>5x +3解得4x <-32.1x >【解析】解:由图可知:x >1.故答案为:x >1.33.k <-4【解析】试题解析:3+=+1{+3=3x y k x y ①②,∵+∵得:4(x+y )=k+4,即x+y=+44k ,代入已知不等式得:+44k <1,解得:k >-4.34.1<a≤2【解析】试题解析∵x=2是不等式ax -3a+2≥0的解,∵2a -3a+2≥0,解得:a≤2,∵x=1不是这个不等式的解,∵a -3a+2<0,解得:a >1,∵1<a≤2,35.1<x≤2【解析】试题解析:1{240x x >-≤①②解不等式∵,得:x≤2∵不等式组的解集为: 1<x≤236.6【详解】3x-a 0{2x-b 0≥≤①②, 由∵得:a?x 3≥;由∵得:b x ?2≤. ∵不等式组有解,∵不等式组的解集为:a?b x ?32≤≤. ∵不等式组整数解仅有1,2,如图所示:,∵0<a?3≤1,2≤b 2<3,解得:0<a≤3,4≤b <6. ∵a=1,2,3,b=4,5.∵整数a ,b 组成的有序数对(a ,b )共有3×2=6个.37.m <2【详解】解:根据题意得:m ﹣2<0,∵m <2.故答案为m <2.点拨:此题考查不等式的性质3:不等式两边都乘以(或除以)同一个负数时,不等号的方向发生改变. 38.<x <8.【解析】试题分析:首先根据不等式的性质分别求出两个不等式的解,从而得出不等式的解集,然后在数轴上进行表示出来. 试题解析:解不等式∵,得x <8. 解不等式∵,得x >.所以,不等式组的解集是<x <8.39.-2≤x <0【解析】试题分析:首先求出不等式组中每一个不等式的解集,然后确定两个不等式解集的公共部分,即可确定不等式组的解集.试题解析:()3123132x x x x⎧+<+⎪⎨-≤⎪⎩①②,由∵得x<0,由∵得x≥-2,所以-2≤x <0;40.x≥-3,数轴见解析.【分析】去分母得:3x -6≤4x -3,移项合并得x≥-3,正确在数轴上表示即可.【详解】解:3x -6≤4x -3∵x≥-3【点拨】本题考查解一元一次不等式.41.(1)0;(2)-3<x ≤2.【解析】【分析】(1)先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集,然后从解集中找出所有整数即可.(2)先求出不等式组的解集,再在数轴上表示出即可,不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.【详解】解:(1)解不等式6x-2≥3x-4得23 x≥-.解不等式2112<1 32x x+--得2(2x+1)-3(1-2x)<6,所以7 <10 x.因为x同时满足这两个不等式,所以x的取值范围是27 310x-≤.故整数x为0.(2)解不等式x+3>0,得x>-3.解不等式3(x-1)≤2x-1,得x≤2.在同一条数轴上表示两个不等式的解集:结合数轴可知原不等式组的解集是-3<x≤2.【点拨】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.42.(1)一台甲型设备的价格为12万元,一台乙型设备的价格是9万元;(2)方案一:甲型1台,乙型7台;方案二:甲型2台,乙型6台;方案三:甲型3台,乙型5台;方案四:甲型4台,乙型4台.【解析】【分析】(1)设一台甲型设备的价格为x万元,则设一台乙型设备的价格为75%x万元,根据购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,列出方程,解方程即可;(2)根据“该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,其购买资金不超过84万元,每月处理污水至少1300吨”,列出一元一次不等式组,再解出未知量的取值范围,结合题意可写出购买方案.【详解】解:(1)设一台甲型设备的价格为x万元,由题意,得3x+2×75%x=54,解得x=12.∵12×75%=9,∵一台甲型设备的价格为12万元,一台乙型设备的价格是9万元.(2)设二期工程中,购买甲型设备a台,由题意有()()129884, 20016081300,a aa a⎧+-≤⎪⎨+-≥⎪⎩解得12≤a≤4.由题意知a为正整数,因此a=1,2,3,4.故所有购买方案有四种,分别为方案一:甲型1台,乙型7台;方案二:甲型2台,乙型6台;方案三:甲型3台,乙型5台;方案四:甲型4台,乙型4台.【点拨】此题主要考查了一元一次方程的应用以及一元一次不等式组的应用,根据实际问题中的条件列方程或不等式时,要注意抓住题目中的一些关键性词语,找出等量关系或不等关系,列出关系式是解题关键.。
一元一次不等式单元复习与巩固一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解不等式的有关概念,掌握不等式的三条基本性质;●理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;●会利用不等式的三个基本性质,熟练解一元一次不等式.通过与一元一次方程的解的比较,进一步理解两者的异同,尤其是不等式两边同除以一个负数的情况.同时通过对比方程与不等式、等式性质与不等式性质等一系列学习活动,理解类比的方法是学习数学的一种重要途径;●会利用数轴解一元一次不等式组;●会根据题中的不等关系建立不等式(组),解决实际应用问题;理解建立一元一次不等式解决实际问题是问题解决的有效数学模型,体会数学的应用价值,提高分析问题和解决问题的能力.重点难点:●重点:一元一次不等式(组)的解法;●难点:一元一次不等式(组)的解法和一元一次不等式(组)解决在现实情景下的实际问题.学习策略:●通过复习,总结知识结构,进一步加深对本章知识的理解;通过对典型例题的体会,逐步提高应用数学方法解决实际问题的能力.二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
知识网络知识点一:不等式用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做 .知识点二:不等式性质(一)不等式的两边都加上(或减去)同一个数或同一个 ,不等号的方向不变。
用数学符号语言表示为:如果b a>,那么 。
(二)不等式的两边都乘以(或除以)同一个 ,不等号的方向不变。
用数学符号语言表示为:如果b a>,并且 ,那么bc ac >。
(三)不等式的两边都乘以(或除以)同一个 ,不等号的方向改变。
用数学符号语言表示为:如果b a>,并且 ,那么bc ac <。
知识点三:不等式的解集使不等式成立的每一个未知数的值,叫做不等式的 ,不等式的解的全体叫做不等式的解的集合简称 ,求不等式解集的过程叫做解不等式.不等式一元一次不等式的解在数轴上表示一元一次不等式的解利用数轴求一元一次不等式组的解概念解法一元一次不等式组一元一次不等式性 质基本性质1基本性质2基本性质3概 念 在数轴上表示不等式一元一次不等式(组)的应用知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。
第九章不等式与不等式(组)9.4 一元一次不等式组(能力提升)【要点梳理】知识点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念例1.解不等式组3(2)4 121.3x xxx--≤-⎧⎪+⎨>-⎪⎩【思路点拨】按照解不等式组的基本步骤进行求解就可以了.【答案与解析】解:解不等式①,得x≥1解不等式②,得x<4所以,不等式组的解集是1≤x<4.【总结升华】求出不等式①、②的解集后,应取其公共部分作为不等式组的解集.举一反三:【变式】解不等式组3(2)423x xa xx--<⎧⎪+⎨≥⎪⎩无解.则a的取值范围是 ( )A.a<1 B.a≤l C.a>1 D.a≥1 【答案】B例2. 不等式组3(2)5(4) 2 (1)562(2)1, (2)32211 (3)23x xxxx x⎧⎪++-<⎪+⎪+≥+⎨⎪++⎪-≤⎪⎩是否存在整数解?如果存在请求出它的解;如果不存在要说明理由.【思路点拨】解这类问题的第一步是分别求出各个不等式的解集;第二步借助数轴以确定不等式组的公共解集;最后看公共解集中是否存在整数解.【答案与解析】解:解不等式(1),得:x<2;解不等式(2),得:x≥-3;解不等式(3),得:x≥-2;在数轴上分别表示不等式(1)、(2)、(3)的解集:∴原不等式组的解集为:-2≤x<2.∴原不等式组的整数解为:-2、-1、0、1.【总结升华】求不等式组的解集就是求不等式组中所有不等式解集的公共部分.对于三个以上的不等式有时不容易得到公共解集,于是常常借助数轴的直观性,这样较容易确定其解集.在数轴上表示点的位置,要注意空心圈与实心圆点的不同用法.举一反三:【变式】解不等式组,并写出它的所有非负整数解.【答案】解:,由①得:x≥﹣2;由②得:x <,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.例3.试确定实数a的取值范围.使不等式组123544(1)33x xax x a+⎧+>⎪⎪⎨+⎪+>++⎪⎩恰好有两个整数解.【思路点拨】先确定其解集,再判断出整数解,最后利用数轴确定a的范围.【答案与解析】解:由不等式123x x++>,去分母得3x+2(x+1)>0,去括号,合并同类项,系数化为1后得x>25 -.由不等式544(1)33ax x a++>++去分母得3x+5a+4>4x+4+3a,可解得x<2a.所以原不等式组的解集为225x a-<<,因为该不等式组恰有两个整数解:0和l,故有:1<2a≤2,所以:12a<≤1.【总结升华】此题考查的是一元一次不等式组的解法,得出x的整数解,再根据x的取值范围求出a的值即可.举一反三:【变式】.已知a是自然数,关于x的不等式组≥⎧⎨⎩3x-4a,x-2>0的解集是x>2,求a的值.【答案】解:解第一个不等式,得解集43ax+≥,解第二个不等式,得解集2x>,∵不等式组的解集为x>2,∴423a+≤,即2a≤,又a为自然数,∴0a=或1或2.类型二、解特殊的一元一次不等式组例4.求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求不等式≥0的解集.【答案与解析】解:(1)根据“异号两数相乘,积为负”可得①或②,解①得不等式组无解;解②得,﹣1<x<;(2)根据“同号两数相乘,积为正”可得①,②,解①得,x≥3,解②得,x<﹣2,故不等式组的解集为:x≥3或x<﹣2.【总结升华】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.类型三、一元一次不等式组的应用例5.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”.理解这句话,有两层不等关系.(1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数.(2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车x辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79 xx>⎧⎨<⎩.由题意x应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.【总结升华】本例不等关系相对隐蔽,需要在审题过程中加以挖掘.举一反三:【变式1】“向阳”中学某班计划用勤工俭学收入的66元,同时购买单价分别为3元、2元、1元的甲乙丙三种纪念品,奖励参加校“艺术节”活动的同学.已知购买的乙种纪念品比购买的甲种纪念品多2件,而购买的甲种纪念品不少于10件,且购买甲种纪念品费用不超过总费用的一半,若购买的甲、乙、丙三种纪念品恰好用了66元钱,问可有几种购买方案,每种方案中购买甲乙丙三种纪念品各多少件?【答案】解:设购买的甲、乙、丙三种纪念品件数分别为x 、y 、z ,由题意得:⎩⎨⎧+==++26623x y z y x 且⎪⎩⎪⎨⎧≤≥266310x x 由方程组得:⎩⎨⎧-=+=xz x y 5622解不等式组得:10≤x ≤11∵x 为整数,∴x =10或x =11当x =10时,y =12,z =12当x =11时,y =13,z =7∴可有两种方案购买.【变式2】5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作. 拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x 辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.【答案】 解:(1)设租用甲种汽车x 辆,则租用乙种汽车(8)x -,则:42(8)3038(8)20x x x x +-≥⎧⎨+-≥⎩,解得:4 785x≤≤,∵x应为整数,∴7x=或8,∴有两种租车方案,分别为:方案1:租甲种汽车7辆,乙种汽车1辆;方案2:租甲种汽车8辆,乙种汽车0辆.(2)租车费用分别为:方案1: 8000×7+6000×1=62000(元);方案2:8000×:8=64000(元).∴方案1花费最低,所以选择方案1.【巩固练习】一、选择题1.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥32.若不等式组530xx m-≥⎧⎨-≥⎩有实数解.则实数m的取值范围是 ( )A.53m≤ B.53m< C.53m> D.53m≥3.若关于x的不等式组3(2)432x xx a x--<⎧⎨-<⎩无解,则a的取值范围是 ( )A.a<1 B.a≤l C.1 D.a≥14.关于x的不等式721x mx-<⎧⎨-≤⎩的整数解共有4个,则m的取值范围是 ( )A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤75.某班有学生48人,每人都会下象棋或者围棋,且会下象棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的人有()A.20人 B.19人 C.11人或13人 D.20人或19人6.某城市的一种出租车起步价是7元(即在3km以内的都付7元车费),超过3km后,每增加1km加价1.2元(不足1km按1km计算),现某人付了14.2元车费,求这人乘的最大路程是()A.10km B.9 km C.8km D.7 km二、填空题7.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围是________.8.如果不等式组无解,则a 的取值范围是 .9.如果不等式组2223x a x b ⎧+≥⎪⎨⎪-<⎩的解集是0≤x <1,那么a+b 的值为_______.10.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.11.对于整数a 、b 、c 、d ,规定符号a b ac bd d c =-.已知,则b+d 的值是________.12. 在△ABC 中,三边为a 、b 、c ,(1)如果3a x =,4b x =,28c =,那么x 的取值范围是 ;(2)已知△ABC 的周长是12,若b 是最大边,则b 的取值范围是 ;(3)=--++-----++c a b b a c a c b c b a .三、解答题13.解下列不等式组.(1) 231313(1)6x x x x-⎧+<-⎪⎨⎪-+≥-⎩(2)2121x >-(3)210 310 320xxx-≥⎧⎪+>⎨⎪-<⎩(4)2153x-+≤14.已知:关于x,y的方程组27243x y ax y a+=+⎧⎨-=-⎩的解是正数,且x的值小于y的值.(1)求a的范围;(2)化简|8a+11|-|10a+1|.15.某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.(1)每个气排球和每个篮球的价格各是多少元?(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?答案与解析一、选择题1. 【答案】D;【解析】解:不等式组变形得:,由不等式组的解集为x<3,得到m的范围为m≥3,故选D.2. 【答案】A;【解析】原不等式组可化为53xx m⎧≤⎪⎨⎪≥⎩而不等式组有解,根据不等式组解集的确定方法“大小小大中间找”可知m≤53.3. 【答案】B;【解析】原不等式组可化为1,.xx a>⎧⎨<⎩根据不等式组解集的确定方法“大大小小没解了”可知a≤1.4. 【答案】D;【解析】解得原不等式组的解集为:3≤x<m,表示在数轴上如下图,由图可得:6<m≤7.5. 【答案】D;6. 【答案】B;【解析】设这人乘的路程为xkm,则13<7+1.2(x-3)≤14.2,解得8<x≤9.二、填空题7. 【答案】12<k<1;【解析】解出方程组,得到x,y 分别与k的关系,然后再代入不等式求解即可.8. 【答案】a≤1;【解析】解:解不等式x﹣1>0,得x>1,解不等式x﹣a<0,x<a.∵不等式组无解,∴a≤1.9.【答案】1;【解析】由不等式22x a +≥解得x ≥4—2a .由不等式2x-b <3,解得32b x +<. ∵ 0≤x <1,∴ 4-2a =0,且312b +=,∴ a =2,b =-1.∴ a+b =1. 10.【答案】7, 37;【解析】设有x 个儿童,则有0<(4x+9)-6(x-1)<3.11.【答案】3或-3 ;【解析】根据新规定的运算可知bd =2,所以b 、d 的值有四种情况:①b =2,d =1;②b =1,d =2;③b =-2,d =-1;④b =-1,d =-2.所以b+d 的值是3或-3.12.【答案】(1) 4<x <28 (2)4<b <6 (3)2a ;【解析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边.三、解答题13.【解析】解:(1)解不等式组231313(1)6x x x x -⎧+<-⎪⎨⎪-+≥-⎩①②解不等式①,得x >5,解不等式②,得x ≤-4.因此,原不等式组无解.(2)把不等式121x x >-进行整理,得1021x x ->-,即1021x x ->-, 则有①10210x x ->⎧⎨->⎩或②10210x x -<⎧⎨-<⎩解不等式组①得112x <<;解不等式组②知其无解, 故原不等式的解集为112x <<. (3)解不等式组210310320x x x -≥⎧⎪+>⎨⎪-<⎩①②③ 解①得:12x ≥, 解②得:13x >-, 解③得:23x <,将三个解集表示在数轴上可得公共部分为:12≤x <23 所以不等式组的解集为:12≤x <23 (4) 原不等式等价于不等式组:21532153x x -+⎧≤⎪⎪⎨-+⎪≥-⎪⎩①② 解①得:7x ≥-,解②得:8x ≤,所以不等式组的解集为:78x -≤≤14.【解析】解:(1)解方程组27243x y a x y a +=+⎧⎨-=-⎩,得81131023a x a y +⎧=⎪⎪⎨-⎪=⎪⎩根据题意,得811031020381110233a a a a +⎧>⎪⎪-⎪>⎨⎪+-⎪<⎪⎩①②③ 解不等式①得118a >-.解不等式②得a <5,解不等式③得110a <-,①②③的解集在数轴上表示如图.∴ 上面的不等式组的解集是111810a -<<-. (2)∵ 111810a -<<-. ∴ 8a +11>0,10a +1<0. ∴ |8a +11|-|10a +1|=8a +11-[-(10a +1)]=8a +11+10a +1=18a +12.15.【解析】解:(1)设每个气排球的价格是x 元,每个篮球的价格是y 元.根据题意得:解得:所以每个气排球的价格是50元,每个篮球的价格是80元.(2)设购买气排球x个,则购买篮球(50﹣x)个.根据题意得:50x+80(50﹣x)≤3200解得x≥26,又∵排球的个数小于30个,∴排球的个数可以为27,28,29,∵排球比较便宜,则购买排球越多,总费用越低,∴当购买排球29个,篮球21个时,费用最低.29×50+21×80=1450+1680=3130元.。
七下第11章《一元一次不等式》知识点归纳与巩固训练【知识点一】不等式的有关概念1、不等式定义:用符号“ ”、“ ”、“ ”、“ ”、“ ”连接而成的数学式子,叫做不等式。
这5个用来连接的符号统称不等号。
2、列不等式:步骤如下(1)根据所给条件中的关系确定不等式两边的代数式;(2)正确理解题目中的关键词语,如:多、少、快、慢、增加了、减少了、不足、不到、不大于、不小于、不超过等确切的含义;(3)选择与题意符合的不等号将表示不等关系的两个式子连接起来。
3、用数轴表示不等式(1)x a <表示 于a 的全体实数,在数轴上表示a 边的所有点,不包括 在内。
(2)x a ≥表示 a 的全体实数,在数轴上表示a 边的所有点,包括 在内。
(3)()b x a b a <<<表示 于b 而 于a 的全体实数。
【知识点二】不等式的基本性质1、不等式的基本性质(1)基本性质1:若a b <,b c <,则a c <。
(不等式的传递性)(2)基本性质2:不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立。
①若a b >,则a c b c +>+,a c b c ->-;②若a b <,则a c b c +<+,a cbc -<-。
(3)基本性质3:①不等式的两边都乘(或都除以)同一个 数,所得的不等式仍成立;若a b >,且0c >,则ac bc >,a b c c>。
②不等式的两边都乘(或都除以)同一个 数,必须把不等号的方向 ,所得的不等式成立。
若a b >,且0c <,则ac bc <,a bc c<。
2、比较等式与不等式的基本性质【知识点三】一元一次不等式1、一元一次不等式的概念: 。
2、不等式的解集: 叫做不等式的解集,简称不等式的 。
3、一元一次不等式的解法:步骤如下(1) :在不等式两边同乘分母的最小公倍数;(根据基本性质3) (2) :把所有因式展开;(根据单项式乘多项式法则)(3) :把含未知数的项移到不等式的左边,不含有未知数的项移到不等式的右边;(根据基本性质2)(4) :将所有的同类项合并,得ax b >或ax b <(0a ≠)的形式;(5):不等式两边同除以未知数的系数,或乘未知数系数的倒数。
《一元一次不等式与不等式组》全章复习与巩固【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的再认识. 【知识网络】【要点梳理】 要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式. 要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集. 解集的表示方法一般有两种:一种是用最简的不等式表示,例如,等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式. 2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变. 用式子表示:如果a >b ,那么a ±c >b ±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.x a >x a ≤用式子表示:如果a >b ,c >0,那么ac >bc(或). 不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变. 用式子表示:如果a >b ,c <0,那么ac <bc(或). 要点二、一元一次不等式1. 定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式.要点诠释:ax+b >0或ax+b <0(a ≠0)叫做一元一次不等式的标准形式. 2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量; (2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式; (5)解:解出所列的不等式的解集; (6)答:检验是否符合题意,写出答案. 要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键. 要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组. 要点诠释: (1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集. (2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.a bc c>a bc c<【典型例题】 类型一、不等式1.用适当的语言翻译下列小题: (1)x 与9的差是正数或0;(2)b 与-5的和既不是正数也不是负数; (3)y 的5倍既大于x 又小于3x+2; (4)a 的2倍与-4的差小于5或大于7; (5); (6); (7) (8)102y x -≥12302x -<-<2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?举一反三:【变式】己知:x<0.5,比较2-4x 和18x-9的大小.类型二、一元一次不等式3. 已知关于x 的不等式的解集是,求a 的取值范围.()()1151222x ax -->+12x >举一反三:【变式1】如果关于x的不等式正整数解为1、2、3, 则正整数k应取怎样的值?【变式2】(2015•南通)关于x 的不等式x ﹣b >0恰有两个负整数解,则b 的取值范围是( )A .﹣3<b <﹣2B .﹣3<b ≤﹣2C .﹣3≤b ≤﹣2D .﹣3≤b <﹣2类型三、一元一次不等式组4. 求不等式组的整数解.举一反三:【变式】若关于不等式组只有四个整数解,求a 的取值范围.06>+--x k ()2x 731x 42x 31x 332513x x ⎧⎪⎪⎪≥⎨⎪-⎪<-⎪⎩-<-+-1532223x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩5. 某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?.类型四、一次函数与一元一次方程、不等式(组)6.如图,直线经过A(-2,-1)和B(-3,0)两点,则不等式组的解集为.y kx b=+12x kx b<+<举一反三:【变式】如图所示,直线经过点A(-1,-2)和点B(-2,0),直线过点A ,则不等式2<<0的解集为( ) .A .<-2B .-2<<-1C .-2<<0D .-1<<0类型五、综合应用7.已知不等式组的解集为,试求m ,n 的值.8.(2016•泸州)某商店购买60件A 商品和30件B 商品共用了1080元,购买50件A 商品和20件B 商品共用了880元. (1)A 、B 两种商品的单价分别是多少元?(2)已知该商店购买B 商品的件数比购买A 商品的件数的2倍少4件,如果需要购买A 、B 两种商品的总件数不少于32件,且该商店购买的A 、B 两种商品的总费用不超过296元,那么该商店有哪几种购买方案?y kx b =+2y x =x kx b+x x x x 1034(1)1x m n x +⎧-≥⎪⎨⎪--<⎩322x <≤举一反三:【变式】某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两种花木每株成本分别为多少元?(2)据市场调研,1株甲种花木售价为760元, 1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?【巩固练习】 一、选择题1.(2015•潍坊)不等式组的所有整数解的和是( )A .2B .3C .5D .62.某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( ).A .80元B .100元C .120元D .160元3.已知一次函数的图象过第一、二、四象限,且与轴交于点(2,0),则关于的不等式的解集为( ).A .<-1B .> -1C . >1D .<14.若不等式组 有解,则的取值范围是( ).A. B. C. D.5.如果不等式ax+4<0的解集在数轴上表示如图,那么a 的值是( ) . A .a >0 B .a <0 C .a=-2 D .a=26. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与两个球体质量相等的正方体的个数为( ) . A .5 B .4 C .3 D .27.如果一次函数当自变量的取值范围是时,函数值的取值范围是,那么此函数的解析式是( ) . A . B .C .或D .或8.(2016•老河口市模拟)已知关于x 的不等式组有且只有1个整数解,则a 的取值范围是( )y ax b =+x x (1)0a x b -->x x x x 12x x k<≤⎧⎨>⎩k 2k <2k ≥1k <12k ≤<A .a >1B .1≤a <2C .1<a ≤2D .a ≤2二、填空题 9.(2015•江都市模拟)如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是 .10.已知方程组的解满足,则a 的取值范围.11. 若不等式组无解,则的取值范围是 .12.如图,直线经过A (2,1),B (-1,-2)两点,则不等式的解集为__________.13.已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围.14.如果关于的不等式组的整数解仅为1,2,3,则的取值范围是,的取值范围是.15. 为确保信息安全,信息需加密传输,发送方将明加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a ,b 对应的密文为a-2b ,2a+b .例如,明文1,2对应的密文是-3,4,当接收方收到密文是1,7时,解密得到的明文是. 16.若不等式组:只有一个整数解,则a 的取值范围.三、解答题17.(2015•甘南州)解不等式组:,并把解集在数轴上表示出来.18.(2016•呼和浩特)已知关于x 的不等式组有四个整数解,求实数a的取值范围.19.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.⎩⎨⎧=+=-7325ay x y ax ⎩⎨⎧<>0y x ⎩⎨⎧->+<121m x m x m y kx b =+122x kx b >+>-x 9080x a x b -≥⎧⎨-<⎩a b 114111.5(1)()0.5(21)22x x a x a x x +⎧+>⎪⎪⎨⎪-+>-+-⎪⎩①②(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?20. 某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药2后血液中的含药量最高,达每升6,接着逐步衰减,10后血液中的含药量为每升3,每升血液中的含药量随时间的变化情况如图所示.当成人按规定剂量服药后:(1)分别求出≤2和≥2时,与之间的函数关系式;(2)如果每升血液中的含药量为4或4以上时,治疗疾病是有效的,那么这个有效时间是多长?h mg h mg y mg xh x x y x mg mg【答案与解析】一.选择题1.【答案】D .【解析】∵解不等式①得;x >﹣,解不等式②得;x ≤3,∴不等式组的解集为﹣<x ≤3,∴不等式组的整数解为0,1,2,3,0+1+2+3=6.2. 【答案】C ;【解析】解:设降价x 元时商店老板才能出售.则可得: 360-x ≥×(1+20%), 解得:x ≤120.3. 【答案】A ;【解析】一次函数的图象过第一、二、四象限,所以<0,将(2, 0)代入,得,所以,所以.4. 【答案】A ;【解析】画数轴进行分析.5. 【答案】C ;【解析】由已知a <0且x >-,则-,即. 6. 【答案】A ;【解析】设一个球体、圆柱体与正方体的质量分别为x 、y 、z , 根据已知条件, 有①×2-②×5,得2x =5y ,即与2个球体质量相等的正方体的个数为5.7. 【答案】C ;【解析】分>0和<0两种情况讨论.8. 【答案】B ;【解析】解:解不等式x ﹣a >0,得:x >a ,解不等式7﹣2x >1,得:x <3,∵不等式组有且只有1个整数解,∴不等式组的整数解为2,∴1≤a <2,故选:B .3601.8y ax b =+a y ax b =+20a b +=()()1210a x b ax a a a x --=-+=+>10,1x x +<<-a 424=a 2a =-2522x y z y =⎧⎨=⎩①②k k二.填空题9.【答案】a <﹣1.10.【答案】; 【解析】方程组得:, 所以, ∴解得:-. 11. 【答案】;【解析】要使原不等式无解,则需满足,得≥2.12. 【答案】-1<<2;【解析】由于直线经过A (2,1),B (-1,-2)两点,那么把A 、B 两点的坐标代入,用待定系数法求出、的值,然后解不等式组,即可求出解集.13.【答案】 k ≥-3;【解析】3k-5x=-9,x=, 解得k ≥-3. 14. 【答案】,;15.【答案】3,1;【解析】由于本密码的解密钥匙是: 明文a ,b 对应的密文为a-2b ,2a+b .故当密文是1,7时,得, 解得. 也就是说,密文1,7分别对应明文3,1.16.【答案】1<a ≤2.【解析】先把a 看成一个固定数,解关于x 的不等式组,再由不等式组的解集研究a 的取值范围.三.解答题17.【解析】解:,710a 157<-<⎩⎨⎧=+=-7325ay x y ax ⎪⎪⎩⎪⎪⎨⎧+-=++=223210732715a a y a a x ⎪⎪⎩⎪⎪⎨⎧<+->++03210703271522a a a a ⎩⎨⎧<->+01070715a a 710157<<a 2≥m 211m m -≥+m x y kx b =+y kx b =+k b 122x kx b >+>-935k +930,5k +≥09a <≤2432b <≤2127a b a b -=⎧⎨+=⎩31a b =⎧⎨=⎩由不等式①移项得:4x+x>1﹣6,整理得:5x>﹣5,解得:x>﹣1,…(1分)由不等式②去括号得:3x﹣3≤x+5,移项得:3x﹣x≤5+3,合并得:2x≤8,解得:x≤4,则不等式组的解集为﹣1<x≤4.在数轴上表示不等式组的解集如图所示,18.【解析】解:解不等式组,解不等式①得:x>﹣,解不等式②得:x≤a+4,∵不等式组有四个整数解,∴1≤a+4<2,解得:﹣3≤a<﹣2.20. 【解析】x x解:(1)由图知,≤2时是正比例函数,≥2时是一次函数.设≤2时,,把(2,6)代入,解得=3, ∴ 当0≤≤2时,.设≥2时,,把(2,6),(10,3)代入中,得,解得,即.当=0时,有,.∴ 当2≤≤18时,.(2)由于≥4时在治疗疾病是有效的,∴ ,解得.即服药后得到为治病的有效时间,这段时间为.x y kx =y kx =k x 3y x =x y k x b '=+y k x b '=+26103k b k b '+=⎧⎨'+=⎩38274k b ⎧'=-⎪⎪⎨⎪=⎪⎩32784y x =-+y 327084x =-+18x =x 32784y x =-+y 34327484xx ≥⎧⎪⎨-+≥⎪⎩42233x ≤≤43h 223h 224186()333h -==。