动量守恒定律练习题
- 格式:doc
- 大小:691.00 KB
- 文档页数:13
【物理】物理动量守恒定律练习题20篇一、高考物理精讲专题动量守恒定律1.如图,足够大的光滑水平面上固定着一竖直挡板,挡板前L 处静止着质量m 1=1kg 的小球A ,质量m 2=2kg 的小球B 以速度v 0运动,与小球A 正碰.两小球可看作质点,小球与小球及小球与挡板的碰撞时间忽略不计,且碰撞中均没有机械能损失.求(1)第1次碰撞后两小球的速度;(2)两小球第2次碰撞与第1次碰撞之间的时间; (3)两小球发生第3次碰撞时的位置与挡板的距离. 【答案】(1)043v 013v 方向均与0v 相同 (2)065L v (3)9L【解析】 【分析】(1)第一次发生碰撞,动量守恒,机械能守恒;(2)小球A 与挡板碰后反弹,发生第2次碰撞,分析好位移关系即可求解;(3)第2次碰撞过程中,动量守恒,机械能守恒,从而找出第三次碰撞前的初始条件,分析第2次碰后的速度关系,位移关系即可求解. 【详解】(1)设第1次碰撞后小球A 的速度为1v ,小球B 的速度为2v ,根据动量守恒定律和机械能守恒定律:201122m v m v m v =+222201122111222m v m v m v =+ 整理得:210122m v v m m =+,212012m m v v m m -=+解得1043v v =,2013v v =,方向均与0v 相同. (2)设经过时间t 两小球发生第2次碰撞,小球A 、B 的路程分别为1x 、2x ,则有11x v t =,22x v t =由几何关系知:122x x L += 整理得:065Lt v =(3)两小球第2次碰撞时的位置与挡板的距离:235x L x L =-= 以向左为正方向,第2次碰前A 的速度043A v v =,B 的速度为013B v v =-,如图所示.设碰后A 的速度为A v ',B 的速度为B v '.根据动量守恒定律和机械能守恒定律,有1212A B A B m v m v m v m v ''+=+; 2222121211112222A B AB m v m v m v m v ''+=+ 整理得:12212()2A B A m m v m v v m m -+'=+,21112()2B AB m m v m v v m m -+'=+解得:089A v v '=-,079B v v '=设第2次碰后经过时间t '发生第3次碰撞,碰撞时的位置与挡板相距x ',则B x x v t '''-=,A x x v t '''+=整理得:9x L '=2.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
《动量守恒定律》测试题(含答案) 一、动量守恒定律 选择题1.如图所示,A 、B 、C 是三级台阶的端点位置,每一级台阶的水平宽度是相同的,其竖直高度分别为h 1、h 2、h 3,将三个相同的小球分别从A 、B 、C 三点以相同的速度v 0水平抛出,最终都能到达A 的下一级台阶的端点P 处,不计空气阻力。
关于从A 、B 、C 三点抛出的小球,下列说法正确的是( )A .在空中运动时间之比为t A ∶tB ∶tC =1∶3∶5B .竖直高度之比为h 1∶h 2∶h 3=1∶2∶3C .在空中运动过程中,动量变化率之比为AC A B P P P t t t::=1∶1∶1 D .到达P 点时,重力做功的功率之比P A :P B :P C =1:4:9 2.一质量为m 的物体静止在光滑水平面上,现对其施加两个水平作用力,两个力随时间变化的图象如图所示,由图象可知在t 2时刻物体的( )A .加速度大小为0t F F m -B .速度大小为()()021t F F t t m-- C .动量大小为()()0212tF F t t m -- D .动能大小为()()220218tF F t t m --3.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023v C .2木块的最小速度是056v D .木块3从开始运动到相对静止时位移是204v g4.如图所示,质量为m 的小球从距离地面高度为H 的A 点由静止释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h 的B 点时速度减为零不计空气阻力,重力加速度为g 。
则关于小球下落过程中,说法正确的是A .整个下落过程中,小球的机械能减少了mgHB .整个下落过程中,小球克服阻力做的功为mg (H +h )C .在陷入泥潭过程中,小球所受阻力的冲量大于mD .在陷入泥潭过程中,小球动量的改变量的大小等于m5.如图所示,质量为M 、带有半径为R 的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O 为圆心。
动量守恒定律练习一、选择题1、关于系统动量守恒正确的说法是:A.只要系统所受的合外力的冲量为零,系统动量就守恒B.只要系统内有摩擦力,动量就不可能守恒C.系统所受合外力不为零,其动量一定不守恒,但有可能在某一方向上守恒D.各物体动量的增量的矢量和一定为零2、ab两球在光滑的水平面上沿同一直线发生正碰,作用前动量Pa=10kgm/s,Pb=0,碰撞过程中,动量变化△P=-20kgm/s,则作用后Pb为:A.-20 kgm/s B.-10kgm/s C.20kgm /s D.10kgm/s3、两物体ma=2mb,中间有一压缩弹簧,放在光滑的水平面上,现由静止同时放开后一小段时间内:A.a的速率是b的一半B.a的动量大C.a的受力大D.系统总动量为零4、质量为m的子弹水平飞行击穿一块原静止在光滑水平面上质量为M的木块,在子弹穿透木块的过程中:A.m和M所受的冲量相等B.子弹和木块的速度的变化量相等C.子弹和木块的动量变化量大小相等D.子弹和木块作为系统的总动量守恒5、1kg的物体在距地面高5m处自由下落,落在正以5m /s沿光滑水平面匀速前进的砂车中,砂车质量为4kg,则当物体与车相对静止后,车速为:A.3m/s B.4m/s C.5m/s D.6m /s6、质量为m的小球A以速度v与质量为3m的静止小球B发生正碰后以v/2的速度被反弹回,则正碰后B球的速度大小是:A、v/6B、2vC、v/2 D、v/37、m的M碰撞前后的s-t图如图所示,由图可知:A.m:M=1: 3 B.m:M=3:1C.m:M=l:1 D、m:M=l:28、质量为m的人站在长为L的船M一端,系统原来静止。
当人从船一端走到另一端过程中,不计水的阻力A.人速度大,船后退的速度也大B.人突然停止,船也突然停止C.人突然停止时,船由于惯性仍在运动D.人从一端走到另一端时,船后退了mL/(M+m)9、如图所示,A、B两物体彼此接触静止于光滑的水平桌面上,物体A的上表面是半径为R的光滑圆形轨道,物体C由静止开始从A上圆形轨道的右侧最高点下滑,则有:A.A和B不会出现分离现象B.当C第一次滑到圆弧最低点时,A和B开始分离C.A将会在桌面左边滑出D.A不会在桌面上滑出10、如图所示,A、B两质量相等的物体静止在平板小车C上,A、B之间有一根被压缩的弹簧,A、B与平板车的上表面间的滑动摩擦力之比为3:2,地面光滑,当压缩弹簧突然释放后,则:A.A、B系统动量守恒B.小车向左运动C.A、B、C系统动量守恒D.小车向右运动二、填空题11、质量为m=70kg的人从质量为M=140kg的小船船头走到船尾。
物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
动量-动量守恒定律专题练习(含答案)动量 动量守恒定律一、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、一物体的动量不变,其动能一定不变B 、一物体的动能不变,其动量一定不变C 、两物体的动量相等,其动能一定相等D 、两物体的动能相等,其动量一定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则:A 、B 的动能较大 B 、A 的动能较大C 、动能相等 D 、不能确定3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是:A 、拉力F 对物体的冲量大小为零;B 、拉力F 对物体的冲量大小为Ft ;C 、拉力F 对物体的冲量大小是Ftcosθ;D 、合力对物体的冲量大小为零。
F4、如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。
以下说法正确的是 A 、a 比b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a 比b 先到达S ,它们在S 点的动量相等D 、b 比a 先到达S ,它们在S 点的动量不相等二、动量守恒定律1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。
A 、'0()Mv M m v mv =-+B 、'00()()MvM m v m v v =-++ C 、''0()()Mv M m v m v v =-++ D 、'0Mv Mv mv =+2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南O P S Q滑行了一段距离后停止。
动量守恒定律及答案•选择题(共32小题)1.把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、弹、车,下列说法正确的是( 枪和弹组成的系统,动量守恒枪和车组成的系统,动量守恒 因为枪弹和枪筒之间的摩擦力很大,使系统的动量变化很大,故系统动量 守恒D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力 作用,这两个外力的合力为零2.静止的实验火箭,总质量为 M ,当它以对地速度为V 0喷出质量为△ m 的高温 气体后,火箭的速度为( ) A △叫B 皿口C △呱D △叫A. H-ArnB. — C — D. M-Ain3 .据新华社报道,2018年5月9日凌晨,我国长征系列运载火箭,在太原卫星 发射中心完或第274次发射任务,成功发射高分五号卫星,该卫星是世界上第一颗实现对大气和陆地综合观测的全谱段高光谱卫星。
最初静止的运载火箭点火后喷出质量为M 的气体后,质量为m 的卫星(含未脱离的火箭)的速度大小为V ,不计卫星受到的重力和空气阻力。
则在上述过程中,卫星所受冲 4.在光滑的水平面上有一辆平板车,一个人站在车上用大锤敲打车的左端(如图)。
在连续的敲打下,关于这辆车的运动情况,下列说法中正确的是()A .B . C. B . (M+m ) v C. (M - m ) V D . mv量大小为(A . Mv7•质量为m i =2kg 和m 2的两个物体在光滑的水平面上正碰,碰撞时间不计,其 X-1 (位移-时间)图象如图所示,贝U m2的质量等于( )A .由于大锤不断的敲打,小车将持续向右运动B .由于大锤与小车之间的作用力为内力,小车将静止不动C 在大锤的连续敲打下,小车将左右移动D .在大锤的连续敲打下,小车与大锤组成的系统,动量守恒,机械能守恒 5 .设a 、b 两小球相撞,碰撞前后都在同一直线上运动。
若测得它们相撞前的速 度为V a 、V b ,相撞后的速度为V a'、V b 可知两球的质量之比絆于( A . V — V B.C. V 一V6 .两个质量相等的小球在光滑水平面上沿同一直线同向运动,A 球的动量是 8kg?m/s ,B 球的动量是6kg?m/s , A 球追上B 球时发生碰撞,则碰撞后 A 、B 两球的动量可能为(A . P A =0,PB =l4kg?m/sB . p A =4kg?m/s ,p B =10kg?m/sC. p A =6kg?m/s , p B =8kg?m/sD . p A =7kg?m/s ,p B =8kg?m/sA. 3kg B . 4kg C. 5kg &如图所示,光滑水平面上,甲、乙两个球分别以大小为速度做相向运动,碰撞后两球粘在一起以 0.5m/s 的速度向左运动,则甲、乙 两球的质量之比为()9 .质量为1kg 的木板B 静止在水平面上,可视为质点的物块 A 从木板的左侧沿 木板上表面水平冲上木板,如图甲所示。
动量守恒定律题目一、两小球在光滑水平面上沿同一直线相向运动,碰撞后两球均静止,则可以断定碰撞前( )A. 两球的速度大小相等B. 两球的质量相等C. 两球的动量大小相等、方向相反D. 两球的动量相等(答案:C)二、在光滑的水平面上,有甲、乙两辆小车,甲车上放一物体,用水平力F甲推甲车,同时用相同的水平力F乙推乙车,两车均从静止开始运动,在相同的位移内( )A. 甲车对物体的做功较多B. 乙车对物体的做功较多C. 甲、乙两车对物体做功一样多D. 无法确定(答案:A)三、一静止的原子核发生α衰变,生成一新原子核,已知衰变前后原子核的质量数分别为A和A−4,电荷数分别为Z和Z−2,则( )A. 衰变过程中释放的核能转变为新原子核的动能B. 衰变过程中释放的核能转变为α粒子和新原子核的动能之和C. 衰变前后原子核的质量亏损为Δm=4u(u为质子和中子的质量)D. 衰变前后核子数减少,所以质量数和电荷数都减小(答案:B)四、在光滑水平面上,有两个小球A、B沿同一直线相向运动,碰撞后有一球静止,则( )A. 若A球质量大于B球质量,则B球一定静止B. 若A球初速度大于B球初速度,则B球一定静止C. 若A球动量大于B球动量,则一定是A球静止D. 以上说法均不正确(答案:A)五、在光滑的水平面上,有两个质量相等的物体A和B,用水平力F1推A,同时用水平力F2推B,当它们相距一定距离时,两力同时撤去,则两物体( )A. 一定相碰B. 一定不相碰C. 若F1>F2,则一定相碰D. 若F1<F2,则一定相碰(答案:B)六、在光滑的水平面上停着一辆小车,小车上有一木块,现用一水平力拉小车,使小车和木块一起加速运动,则( )A. 小车对木块的摩擦力使木块加速B. 小车对木块的摩擦力方向与车加速度方向相同C. 小车受到的拉力与木块对小车的摩擦力是一对平衡力D. 小车受到的拉力与小车对木块的摩擦力是一对作用力与反作用力(答案:A)七、在光滑的水平面上,一质量为m1的小球A沿水平方向以速度v0与质量为m2的静止小球B发生正碰,碰撞后,A球的动能变为原来的1/9,则小球B的速度可能是( )A. v0/3B. 2v0/3C. v0/9D. 8v0/9(答案:A;B)八、在光滑的水平面上,有两个质量相等的物体,中间用弹簧相连,开始时弹簧处于原长,现给它们一个大小相等、方向相反的水平恒力,当它们的距离增大到某一值时,保持恒力不变,突然撤去弹簧,则( )A. 两物体的速度均增大B. 两物体的速度均减小C. 两物体的加速度均增大D. 两物体的加速度均不变(答案:D)九、在光滑的水平面上,一质量为m的球A沿水平方向以速度v与原来静止的质量为2m的球B发生正碰,碰撞后,A球的动能变为原来的1/9,则球B的速度可能是( )A. v/3B. v/6C. 2v/3D. 2v/9(答案:A;C)十、在光滑的水平面上,有两个质量相等的物体A和B,用水平力F推A,同时用与F相同大小的水平力推B,当它们分别通过相同的位移时( )A. 若A、B均做匀加速直线运动,则力F对A、B所做的功一样多B. 若A做匀加速直线运动,B做匀速直线运动,则力F对A做的功较多C. 若A做匀加速直线运动,B做匀速直线运动,则力F对B做的功较多D. 若A、B均做匀速直线运动,则力F对A、B都不做功(答案:A;D)。
动量守恒定律大题专练(含答案)1.在图中,地面被竖直线MN分隔成两部分。
M点左侧地面粗糙,动摩擦因数为μ=0.5,右侧光滑。
MN右侧空间有一范围足够大的匀强电场。
在O点用长为R-4=5m的轻质绝缘细绳,拴一个质量为mA=0.04kg,带电量为q=+2×10的小球A,在竖直平面内以v=10m/s的速度做顺时针匀速圆周运动,运动到最低点时与地面刚好不接触。
处于原长的弹簧左端连在墙上,右端与不带电的小球B接触但不粘连,B球的质量为mB=0.02kg,此时B球刚好位于M点。
现用水平向左的推力将B球缓慢推至P点(弹簧仍在弹性限度内),MP之间的距离为L=10cm,推力所做的功是W=0.27J,当撤去推力后,B球沿地面右滑恰好能和A球在最低点处发生正碰,并瞬间成为一个整体C(A、3B、C均可视为质点),碰后瞬间立即把匀强电场的场强大小变为E=6×10N/C,电场方向不变。
(取g=10m/s)求:1)A、B两球在碰前匀强电场的大小和方向。
2)碰撞后整体C的速度。
3)整体C运动到最高点时绳的拉力大小。
2.在图中,EF为水平地面,O点左侧是粗糙的、右侧是光滑的。
一轻质弹簧右端与墙壁固定,左端与静止在O点质量为m的小物块A连结,弹簧处于原长状态。
质量为m的物块B在大小为F的水平恒力的作用下由C处从静止开始向左运动,已知物块B与地面EO段间的滑动摩擦力大小为F,物块B运动到O点与物块A相碰并一起向右运动(设碰撞时间极短),运动到D点时撤去外力F。
已知CO=4S,OD=S。
求撤去外力后:1)弹簧的最大弹性势能。
2)物块B最终离O点的距离。
3.在图中,矩形盒B的质量为M,底部长度为L,放在水平面上,盒内有一质量为m的物体A,A与B、B与地面的动摩擦因数均为μ,开始时二者均静止,A在B的左端。
现瞬间使物体A获得一向右的水平初速度v,以后物体A与盒B的左右壁碰撞时,B始终向右运动。
当A与B的左壁最后一次碰撞后,B立刻停止运动,A继续向右滑行s(s<L)后也停止运动。
高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。
动量守恒定律综合练习1、质量为M 的木块在光滑的水平面上以速度1v 向右运动,质量为m 的子弹以速度2v 水平方向迎面向左射击过来,并嵌在其中,要使木块停下来,必须发射多少发子弹。
2、质量kg 100的小船静止在水面上,船两端载着kg m 401=和kg m 602=的游泳者,同在一水平线上,以相对于岸的相同速率s m /3向前和向后跃入水中,求船的速度大小与方向。
3、质量为M ,长度为L 的车厢,静止于光滑的水平面上,车厢内在一质量为m 的物体以初速度0v 向右运动,与车厢壁来回碰撞了n 次后静止在车厢中,这时车厢的速度有多大?4、用长为L 的细线悬挂质量为M 的木块处于静止,现有一质量为m 的子弹自左向右水平射穿此木块,穿透前后子弹的速度分别为0v 和v ,求:(1)子弹穿过后,木块的速度大小;(2)子弹穿过后瞬间,细线所受拉力的大小。
5、如图,在高为m h 10=的平台上,放一质量为kg M 9.9=的木块,它与平台边缘的距离m L 1=。
今有一质量kg m 1.0=的子弹,以水平向右的速度0v 射入木块(时间极短)并留在木块中,木块向右滑行并冲出平台,最后落到离平边缘水平距离m x 24=处,已知木块与平台间的动摩擦因数209=μ,g 取2/10s m 。
求(1)木块离开平台边缘时的速度;(2)子弹射入木块时的初速度。
6、手榴弹在离地高h 处的速度方向恰好沿水平方向向左,速度大小为0v ,此时,手榴弹炸成质量相等的两块,设消耗的火药质量不计,爆炸后前半块的速度速度方向仍沿水平向左,速度大小为v 3。
那么,两块弹片落地点之间的水平距离多大?7、有一光滑的水平轨道与光滑的竖直的半圆形(半径为m R 5.2=)轨道相连,在水平轨道上放置一质量为kg M 9.4=的木块,今有一质量为kg m 1.0=、速度为s m v /25000=的子弹自左水平射入木块且留在木块中。
求:(1)木块能否到达轨道的最高点,如能,在最高点对轨道的压力是多大。
A B C v 动量守恒定律练习题1.如图所示:在水平面上放置质量为M=800g 的木块,一质量为m=50g 的子弹以v 0=170m/s 的水平速度射入木块,最终与木块一起运动,若木块与地面间的动摩擦因数 =0.2,求木块在地面上滑行的距离。
(g 取10m/s 2)2.两磁铁各放在一辆小车上,小车能在水平面上无摩擦地沿同一直线运动。
已知甲车和磁铁的总质量为0.5kg ,乙车和磁铁的总质量为1.0kg 。
两磁铁的N 极相对,推动一下,使两车相向运动。
某时刻甲的速率为2m/s ,乙的速率为3m/s ,方向与甲相反。
两车运动过程中始终未相碰。
求:(1)两车最近时,乙的速度为多大?(2)甲车开始反向运动时,乙的速度为多大?3.如图所示,木板A 质量m A =1kg ,足够长的木板B 质量m B =4kg ,质量为m C =2kg 的木块C 置于木板B 上,水平面光滑,B 、C 之间有摩擦。
现使A 以v 0=10m/s 的初速度向右运动,与B 碰撞后以4m/s 速度弹回。
求: (1)B 运动过程中的最大速度。
(2)C 运动过程中的最大速度。
4、两物块A 、B 用轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m /s 的速度在光滑的水平地面上运动,质量4 kg 的物块C 静止在前方,如图所示。
B 与C 碰撞后二者会粘在一起运动。
求在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大? (2)系统中弹性势能的最大值是多少? *(3)A 物块的速度有可能向左吗?简略说明理由?5.如图所示,甲车质量为kg m 21=,静止在光滑水平面上,上表面光滑,右端放一个质量为kg m 1=的小物体. 乙车质量为kg m 42=,以s m v /50=的速度向左运动,与甲车碰撞后,甲车获得s m v /81=的速度,物体滑到乙车上. 若乙车足够长,上表面与物体的动摩擦因数为2.0=μ,求: (1)甲、乙两车碰后瞬间,乙车的速度;(2)物体在乙车表面上滑行多长时间相对乙车静止?(取2/10s m g =)6、如图所示,光滑半圆轨道竖直放置,半径为R ,一水平轨道与圆轨道相切,在水平光滑轨道上停着一个质量为M = 0.99kg 的木块,一颗质量为m = 0.01kg 的子弹,以v o = 400m/s 的水平速度射入木块中,然后一起运动到轨道最高点水平抛出,当圆轨道半径R 多大时,平抛的水平距离最大? 最大值是多少? (g取10m/s 2)7. 如图所示,在距水平地面高h =0.80m 的水平桌面一端的边缘放置一个质量m =0.80kg 的木块B ,桌面的另一端有一块质量M =1.0kg 的木块A 以初速度v 0=4.0m/s 开始向着木块B 滑动,经过时间t =0.80s 与B 发生碰撞,碰后两木块都落到地面上。
木块B 离开桌面后落到地面上的D 点。
设两木块均可以看作质点,它们的碰撞时间极短,且已知D 点距桌面边缘的水平距离s =0.60m ,木块A 与桌面间的动摩擦因数μ=0.25,重力加速度取g =10m/s 2。
求:(1)两木块碰撞前瞬间,木块A 的速度大小; (2)木块B 离开桌面时的速度大小;(3)木块A 落到地面上的位置与D 点之间的距离。
8.如图所示,abc 是光滑的轨道,其中ab 是水平的,bc 为与ab 相切的位于竖直平面的M m v 0DshAB半圆,半径R=0.30 m,质量m=0.20 kg的小球A静止在轨道上,另一质量M=0.60 kg,速度v0=5.5 m/s的小球B与小球A正碰.已知相碰后小球A经过半圆的最高点c落到轨道上距b点为l=42R处,重力加速度g=10 m/s,求:(1)碰撞结束后,小球A和B的速度的大小;(2)试论证小球B是否能沿着半圆轨道到达c点.9.如图所示,在小车的右端高h=0.20m的支架上固定着一个半径为R的1/4圆弧光滑导轨,一质量为研= 0.2kg的物体从圆弧的顶端无摩擦地滑下,离开圆弧后刚好落到车的左端边沿,车与支架的总质量M=2kg,车身长L=0.22m,车与水平地面间的摩擦不计,重力加速度g =10m/s2,求:(1) 小球离开圆弧轨道下降高度h.所用的时间;(2) 小球滑到圆弧底端时小球和车的速度大小;(3) 圆弧半径R。
10.如图,质量为m的b球用长h的细绳悬挂于水平轨道BC的出口C处。
质量也为m的小球a,从距BC高h的A处由静止释放,沿ABC光滑轨道滑下,在C处与b球正碰并与b粘在一起。
已知BC轨道距地面的高度为0.5h,悬挂b球的细绳能承受的最大拉力为2.8mg。
试问:(1)a与b球碰前瞬间的速度多大?(2)a、b两球碰后,细绳是否会断裂?若细绳断裂,小球在DE水平面上的落点距C的水平距离是多少?若细绳不断裂,小球最高将摆多高?11.如图所示,水平桌面的右端有一质量为m的物块B,用长为L的不可伸长的细线悬挂,B对水平桌面压力刚好为零,水平桌面离地面的高度为h=5.0m,另一质量为2m的物块A在距水平桌面的右端s= 4.0m处以v0=5.0m/s的水平初速度向右运动,并与B发生弹性碰撞,已知A与桌面间的动摩擦因数为μ=0.2,物块均可视为质点,取g=10m/S2。
(1)求A 与B 碰撞前的速度大小;(2)求碰撞后A 的落地点与桌面右端的水平距离x ;(3)要使物块A 与物块B 碰后,悬挂的细线始终有拉力,试求细线的长度L 。
12.如图所示 ,粗糙斜面与光滑水平面通过半径可忽略的光滑小圆弧平滑连接,斜面倾角 θ = 37°,A 、C 、D 滑块的质量为 m A= m C= m D = m = 1 kg ,B 滑块的质量 m B = 4 m = 4 kg (各滑块均视为质点)。
A 、B 间夹着质量可忽略的火药。
K 为处于原长的轻质弹簧,两端分别连接住B 和C 。
现点燃火药(此时间极短且不会影响各物体的质量和各表面的光滑程度),此后,发现A 与D 相碰后粘在一起,接着沿斜面前进了L = 0.8 m 时速度减为零,此后设法让它们不再滑下。
已知滑块A 、D 与斜面间的动摩擦因数均为 μ = 0.5,取 g = 10 m/s 2,sin37°= 0.6,cos37°= 0.8。
求: (1)火药炸完瞬间A 的速度v A ;(2)滑块B 、C 和弹簧K 构成的系统在相互作用过程中,弹簧的最大弹性势能E p 。
(弹簧始终未超出弹性限度)。
1.解:v m M mv )(0+=① 得s m mM mv v /100=+=②gs m M v m M )()(212+=+μ③ 得m s 25=④评分标准:本题共8分,①②③④各2分。
2.(1)两车相距最近时,两车的速度相同,设该速度为υ,取乙车的速度方向为正方向。
由动量守恒定律得 υυυ)(乙甲甲甲乙乙m m m m +=-(3分)所以两车最近时,乙车的速度为s m s m s m m m m /33.1/34/15.025.031≈=+⨯-⨯=+-=乙甲甲甲乙乙υυυυ (2分)(2)甲车开始反向时,其速度为0,设此时乙车的速度为乙υ',由动量守恒定律得乙乙υm -乙乙甲甲υυ'=m m (3分)得s m s m m m m /2/125.031=⨯-⨯=-='乙甲甲乙乙乙υυυ(2分)3解:(1)B 碰后瞬间速度最大,由动量守恒定律得:B B A A A v m v m v m +'-=)(0 (3分)∴s m s m m v v m v B A A B /5.3/4)410(1)(0=+⨯='+= (1分)(2)B 、C 以共同速度运动时,C 速度最大,由动量守恒定律得C C B B B v m m v m )(+= (3分)∴s m s m m m v m v C B B B B /37/245.34=+⨯=+=(1分)4、答案:(1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大.(2分)由A 、B 、C 三者组成的系统动量守恒,()()A B A B C ABC m m v m m m v +=++ (1分) 解得 (22)6/3/224ABC v m s m s +⨯==++(2分)(2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为BC v ,则m B v =(m B +m C ) BC v BC v =4262+⨯=2 m/s (1分) 设物ABC速度相同时弹簧的弹性势能最大为E p ,根据能量守恒E p =21(m B +m C )2BC v +21m A v 2-21(m A +m B +m C ) 2ABC v =21×(2+4)×22+21×2×62-21×(2+2+4)×32=12 J(3分)(3) A 不可能向左运动(1分)取向右为正,由系统动量守恒,()()A B A A B C BC m m v m v m m v ''+=++ 若 A 向左,A v '<0,即得BC v '>4 m/s(1分) 则A 、B 、C 动能之和2211()4822A AB C BC E m v m m v J '''=++> (1分)而系统的总机械能E =E p +21 (m A +m B +m C )2ABC v =12+36=48 J (1分) 根据能量守恒定律,E '>E 是不可能的(1分)5解析:(1)乙车与甲车碰撞过程中,小物体仍保持静止,甲、乙组成的系统动量守恒, 112202v m v m v m += 乙车速度为s m m v m v m v /148254211022=⨯-⨯=-=,方向仍向左(2)小物体m 在乙上滑至两者有共同速度的过程中动量守恒:V m m v m )(222+= 有 s m m m v m V /8.04114222=+⨯=+=,对小物体m 是作匀加速直线运动,应用牛顿第二定律得a=μg又有s g V a V t 4.0//===μ6、 对子弹和木块应用动量守恒定律:10)(ννM m m += (2分) 所以 s m /41=ν (2分)对子弹、木块由水平轨道到最高点应用机械能守恒定律,取水平面为零势能面:有R g M m M m M m 2)()(21)(212221⋅+++=+νν (4分) 所以 R 40162-=ν (2分) 由平抛运动规律有:2212gt R =……① (2分) t S 2ν= …… ② (2分)解①、②两式有 1041042RR S +-⋅= (2分)所以,当R = 0.2m 时水平距离最大 (2分) 最大值S max = 0.8m 。