新人教版七年级数学下册垂线教案
- 格式:docx
- 大小:8.47 KB
- 文档页数:3
初中数学垂线优秀教案教学目标:1. 理解垂线的定义,掌握垂线的性质和应用。
2. 能够通过观察、操作、归纳概括等方法,培养空间观念和几何思维能力。
3. 激发学生学习兴趣,培养合作意识和问题解决能力。
教学重点:1. 垂线的定义和性质。
2. 垂线的应用。
教学难点:1. 理解垂线的性质。
2. 过一点画已知直线的垂线。
教学准备:1. 教学多媒体设备。
2. 垂线模型或图片。
教学过程:一、导入(5分钟)1. 利用垂线模型或图片,引导学生观察和描述垂线的特征。
2. 提问:什么是垂线?垂线有什么特点?二、自主学习(10分钟)1. 学生自学教材第3至5页,完成学生用书部分。
2. 学生通过自学,理解垂线的定义和性质。
三、合作探究(10分钟)1. 学生分组进行合作探究,通过观察、操作、归纳概括等方法,探讨垂线的性质。
2. 教师巡回指导,解答学生的问题。
四、课堂讲解(15分钟)1. 教师根据学生的探究结果,进行讲解垂线的性质。
2. 讲解垂线的性质,如:过一点有且只有一条直线与已知直线垂直,垂线与已知直线的交点叫做垂足等。
五、练习巩固(10分钟)1. 学生独立完成教材中的练习题。
2. 教师选取部分学生的作业进行讲解和评价。
六、课堂小结(5分钟)1. 学生总结本节课的学习内容,分享自己的学习收获。
2. 教师对学生的总结进行评价和补充。
教学反思:本节课通过引导学生观察垂线模型,激发学生的学习兴趣。
通过自主学习和合作探究,让学生主动参与学习过程,培养学生的空间观念和几何思维能力。
在课堂讲解环节,注重对垂线性质的讲解,让学生理解和掌握垂线的基本概念和性质。
通过练习巩固,检验学生的学习效果,提高学生的应用能力。
整个教学过程中,注重学生的参与和互动,培养学生的合作意识和问题解决能力。
教案的,也就是当∠α=90°时.同学们可以想一想,为什么我们说此时是一个特殊位置? 一方面,当∠α=90°时,其他三个角也都等于90°,也就是这时四个角是相等的;另一方面,这种情况会出现几次呢?我们可以看出,木条b 在0到180度的旋转过程中,这种情况只出现一次.而其他情况,比如四个角中有一个角是35°的情况,都会出现两次,如图所示.所以,我们把这种特殊情况称为a 与b 互相垂直,也就是当∠α =90°时,a 与b 互相垂直.记作a ⊥b .即垂直是相交的一种特殊情形.追问:(1)对于两条直线互相垂直,你认为应研究哪些内容?按怎样的路径展开研究?(2) 在两条直线相交的基础上,你认为应如何定义垂直?2.垂直的定义:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足. 如图1,直线a ,b 互相垂直,点O 叫做垂足.直线a 叫做直线b 的垂线,直线b 也叫做直线a 的垂线.如图2,直线AB 、CD 互相垂直, 垂足为O .就是AB ⊥CD 或CD ⊥AB ,垂足为O .读作:AB 垂直于CD ,垂足为O .如图2,直线AB 与CD 相交于点O .如果∠AOC =90°,那么AB ⊥CD . 这个推理过程可以写成下面的形式:图2图1O D CBAoba因为∠AOC =90°,所以AB ⊥CD (垂直的定义). 反过来,若AB ⊥CD ,垂足为O ,那么∠AOC =90°. 推理过程就是: 因为AB ⊥CD ,所以∠AOC =90° (垂直的定义). 二、垂线的性质探究 探究1:(1)用三角尺或量角器画已知直线的垂线,这样的垂线能画几条?(2)经过直线l 上一点A 画l 的垂线,这样的垂线能画出几条?(3)经过直线l 外一点B 画l 的垂线,这样的垂线能画出几条?结论:经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线.即在同一平面内,过一点有且只有一条直线与已知直线垂直.思考1:过一点画线段、射线的垂线,应如何画呢?如图,请你过点P 画出线段AB 或射线AB 的垂线过一点作线段的垂线,垂足可以在线段上,也可以在线段的延长线上.所以大家在画图时要注意:画一条线段或射线的垂线,就是画它们所在直线的垂线.(2)(1)PPABBA(4)(3)P PABBA思考2:如图,在灌溉时,要把河中的水引到农田P 处,如何挖渠能使渠道最短?此问题就是“直线外一点与已知直线上各点所连的线段中,哪条线段最短?”探究2:如图,连接直线l外一点P与直线l上各点O,A1,A2,A3,…,其中,PO⊥l,这里PO为点P到直线l的垂线段.比较线段PO,P A1,P A2,P A3,…的长短,这些线段中,哪一条最短?结论:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如图,PO⊥l于点O,垂线段PO的长度叫做点P到直线l的距离.这里距离是指线段的长度,是一个数量概念.问题解决:现在你知道水渠该怎么挖了吗?过点P作河道所在直线的垂线段PQ,则沿着线段PQ挖出的水渠道最短.举例应用:体育课上测量跳远成绩.梳理本节课所研究的内容.。
《垂线》教案学习目标:1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2.掌握点到直线的距离的概念,并会度量点到直线的距离。
3.掌握垂线的性质,并会利用所学知识进行简单的推理。
学习重点:垂线的定义及性质。
学习难点:垂线的画法学具准备:相交线模型,三角尺,量角器学习过程:一、学前准备1、预习疑难:。
2、填空:①如果∠α与∠ β互为余角,∠ α=37°,那么∠ β=。
②已知∠ 1 与∠ 2 互为余角,∠ 1 与∠ 3 互为余角,那么∠ 2 与∠ 3 的关系是。
二、探索与思考(一)垂线的定义C1、观察思考:转动相交线模型,观察两条直线所成的夹角的变化。
当夹角变化到°时,就是我们今天要研究的两条直线垂直。
A O B2、定义:两条直线相交所成的四个角中,有一个角是时,这两条直线就互相垂直。
其中一条直线叫做另一条直线的,它们的交点叫D做。
3、符号表示:①如果直线 AB、CD互相垂直,记作AB⊥ CD,垂足为 O。
② 由两条直线垂直,可知四个角为直角。
记为∵AB⊥CD(已知)∴∠ AOD= 90°(垂直定义)由两条直线交角为直角,可知两条直线互相垂直。
记为∵∠AOD=90°(已知)∴ AB⊥ CD(垂直定义)4、总结:①垂直是相交。
是相交的一种特殊情况。
②垂直是一种相互关系,即a⊥ b,同时 b⊥ a③ 当提到线段与线段,线段与射线,射线与射线,射线与直线的垂直情况时,是指它们所在的直线互相垂直。
5、生活中的垂直关系:日常生活中,两条直线互相垂直很常见,你能举出几个例子吗?(二)垂线的性质一1、垂线的画法有两种:利用或者。
2、探究:完成教材 4 页探究问题。
3、垂线性质:。
4、对应练习:教材 5 页练习 1、 2(在书上完成)(一)垂线的性质二1、思考:在灌溉时,要把河中的水引到农田2、探究:上面思考问题可以转化为数学问题:P 处,如何挖渠能使渠道最短?“已知直线 l 和直线外一点P,连接点P 到直线 l 上各点 O,A1,A2,A3,其中 PO⊥ l(我们称 PO 为点 P 到直线 l 的垂线段)。
人教版数学七年级下册第2课时《垂线》教学设计一. 教材分析人教版数学七年级下册第2课时《垂线》是学生在学习了直线、射线、线段的基础上,进一步研究垂直的概念和性质。
本节课的内容包括垂线的定义、性质和运用。
教材通过生活中的实例引入垂线的概念,接着引导学生探究垂线的性质,最后通过练习题巩固所学知识。
二. 学情分析七年级的学生已经具备了一定的几何知识,对直线、射线、线段有一定的了解。
但是,对于垂线的概念和性质,学生可能还需要通过实例和操作来进一步理解。
因此,在教学过程中,教师需要关注学生的认知水平,通过适当的引导和激励,激发学生的学习兴趣和探究欲望。
三. 教学目标1.知识与技能:学生能够理解垂线的定义,掌握垂线的性质,并能够运用垂线的知识解决实际问题。
2.过程与方法:学生通过观察、操作、思考、交流等活动,培养空间观念和几何思维能力。
3.情感态度与价值观:学生体验数学与生活的联系,增强对数学的兴趣和自信心。
四. 教学重难点1.重难点:学生能够理解垂线的定义,掌握垂线的性质。
2.突破策略:通过生活中的实例引入垂线概念,引导学生观察、操作、思考,从而理解垂线的性质。
五. 教学方法1.情境教学法:通过生活中的实例引入垂线概念,激发学生的学习兴趣。
2.操作教学法:引导学生观察、操作,培养学生的空间观念和几何思维能力。
3.问题教学法:教师提问,引导学生思考,从而深化对垂线性质的理解。
六. 教学准备1.教学用具:黑板、粉笔、多媒体设备。
2.教学素材:实例图片、练习题。
七. 教学过程导入(5分钟)1.利用多媒体展示生活中的实例图片,引导学生观察并提问:“这些图片中有哪些是垂直的?”2.学生回答,教师总结垂直的概念,并引入垂线的定义。
呈现(10分钟)1.教师展示垂线的性质,引导学生观察并提问:“你能发现垂线有哪些性质吗?”2.学生回答,教师总结垂线的性质,并板书。
操练(10分钟)1.教师给出练习题,学生独立完成,并相互交流解题思路。
5.1.2 垂线教学目标1.了解垂直概念;2.能说出垂线的性质“经过一点;能画出已知直线的一条垂线,并且只能画出一条垂线”;3.会用三角尺或量角器过一点画一条直线的垂线.重点:两直线互相垂直的有关性质.难点:过直线上(外)一点作已知直线的垂线.【教学备注】教学过程一、创设情境,引入课题生活中的垂线二、目标导学,探索新知目标导学1:垂直的定义活动1 在相交线的模型中,固定木条a,转动木条b,当b的位置变化时,a、b所成的角α也会发生变化.当α=90°时,a与b垂直.当α≠90°时,a与b不垂直,叫斜交.1.垂直定义:当两条直线相交所成的四个角中,有一个角是直角(90°)时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。
(说明)从垂直的定义可知,判断两条直线互相垂直的关键:只要找到两条直线相交时四个交角中有一个角是直角。
2.垂直的表示:用“⊥”和直线字母表示垂直例如、如图,a、b互相垂直, 垂足为O,则记为:a⊥b或b⊥a, 若要强调垂足,则记为:a⊥b, 垂足为O.或a⊥b于O.实际应用:日常生活中,两条直线互相垂直的情形很常见,说出图中的一些互相垂直的线条.你能再举出其他例子吗?【教学提示】引导试一试:1、下面四种判定两条直线垂直的方法,正确的有()个(1)两条直线相交所成的四个角中有一个角是直角,则这两条直线互相垂直(2)两条直线相交,只要有一组邻补角相等,则这两条直线互相垂直(3)两条直线相交,所成的四个角相等,这两条直线互相垂直(4)两条直线相交,有一组对顶角互补,则这两条直线互相垂直(A) 4 (B) 3 (C) 2 (D) 1 2.如图,已知AOB为一直线,∠AOD:∠BOD=3:1,OD平分∠COB,(1)求∠AOC的度数;(2)判断AB与OC的位置关系.目标导学2:垂线的书写形式当直线AB与CD相交于O点,∠AOD=90°时,AB⊥CD,垂足为O.书写形式1:因为∠AOD=90°(已知)所以AB⊥CD(垂直的定义)反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90°书写形式2:.如图.直线AB、CD相交于点O,OE⊥AB于O,OB平分∠D OF,∠DOE=50°,求∠AOC、∠EOF、∠COF的度数.垂线的定义学习目标3:垂线的画法和垂线性质1活动2 (一)画已知直线的垂线(1)如图1,已知直线m,作m的垂线。
人教版七年级数学下册教学设计5.1.2 第1课时《垂线》一. 教材分析《垂线》这一节的内容,主要让学生了解垂线的定义,掌握垂线的性质,并能运用垂线的知识解决实际问题。
教材通过生活中的实例,引导学生认识垂线,并通过观察、操作、猜想、验证等过程,让学生理解垂线的性质。
本节课的内容,既是对前面所学知识的巩固,也是后面学习的基础。
二. 学情分析七年级的学生,已经具备了一定的空间想象能力和逻辑思维能力。
他们对直线、射线等概念有一定的了解,但对于垂线的定义和性质,可能还比较陌生。
因此,在教学过程中,需要通过生活中的实例,引导学生认识垂线,并通过观察、操作、猜想、验证等过程,让学生理解垂线的性质。
三. 教学目标1.知识与技能:理解垂线的定义,掌握垂线的性质,能运用垂线的知识解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:垂线的定义,垂线的性质。
2.难点:垂线性质的证明和运用。
五. 教学方法采用“情境导入——猜想验证——巩固拓展——总结提高”的教学方法,通过生活中的实例,引导学生认识垂线,并通过观察、操作、猜想、验证等过程,让学生理解垂线的性质。
六. 教学准备1.教具:直尺、三角板、多媒体设备。
2.学具:每人一把直尺,一张白纸。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的垂线现象,如房檐的垂线、电梯的垂线等,引导学生观察并说出这些垂线的特点。
通过观察,让学生初步认识垂线。
2.呈现(5分钟)教师提出问题:什么是垂线?并让学生试着用自己的语言来描述垂线。
教师根据学生的回答,总结垂线的定义。
3.操练(10分钟)教师给出一些垂线的例子,让学生判断是否是垂线。
同时,教师也给出一些不是垂线的例子,让学生进行辨别。
通过这个环节,让学生进一步理解垂线的定义。
4.巩固(10分钟)教师引导学生观察教材中的垂线性质图示,并提出问题:垂线有哪些性质?学生通过观察和思考,总结出垂线的性质。
5.1.2 垂线-人教版七年级数学下册教案课程目标1.通过本课程的学习,学生能够理解垂线的概念和性质,掌握垂线的画法和判定方法。
2.学生能够在解决实际问题时,利用垂线问题解决相关的几何性质。
教学重点1.垂线的概念和性质。
2.垂线的画法和判定方法。
教学难点应用垂线问题解决相关的几何性质。
教学准备1.教师准备教材和讲义。
2.学生准备笔记本和铅笔。
教学过程与方法一、导入(5分钟)1.教师介绍垂线的概念,引导学生回忆上一课的内容。
2.引出本节课的主要内容,即垂线的画法和判定方法。
二、讲授(35分钟)1.教师向学生介绍垂线画法,注重在板书上讲解垂线的绘制方法及其性质。
2.教师向学生演示垂线的判定方法,并引导学生一起做练习。
3.教师与学生共同探讨几何图形中常见的垂线问题,并引导学生反思垂线的应用场景。
三、练习(30分钟)1.分为小组开展小组讨论,讨论垂线的应用场景,并完成老师提供的练习题目。
2.教师对每位学生的讨论和答题进行点评,帮助学生更好地理解本课程内容。
四、总结与归纳(10分钟)1.教师及时总结本节课的重难点,并引导学生发言讨论。
2.教师通过板书展现垂线问题解决几何性质的应用,引导学生对本节内容进行归纳总结。
课后作业1.完成相关习题。
2.查阅相关资料,深入了解垂线的应用场景。
教学反思本节课通过引导学生探索垂线绘制方法和判定规则,有效提高了学生的创造力和动手实践能力。
同时,对于垂线问题解决相关几何性质的应用,教师通过多种手段进行引导,有效拓展了学生的思维深度和广度。
为了更好地满足不同学生的学习训练需求,下一步可以考虑通过编制不同难度级别的习题来给予学生精细化的训练和指导。
5.1 相交线5.1.2 垂线(第一课时)教学反思教学目标1.理解垂线的概念.2.理解垂线的性质——在同一平面内,过一点有且只有一条直线垂直于已知直线.3.会用三角尺或量角器过一点画一条直线的垂线.教学重难点重点:两条直线互相垂直的概念、性质和画法.难点:过一点作已知直线的垂线.课前准备相交线模型、多媒体课件教学过程导入新课导入一:教师:在前面我们学习了两条直线相交形成了四个角,这四个角会产生4对邻补角和2对对顶角.你们还记得它们的定义吗?学生回答,老师纠正.教师:如果两条直线相交,形成的四个角中有一个角是直角时,这两条直线有怎样的特殊关系?日常生活中有没有这方面的实例呢?今天我们就来研究这个问题.(板书课题:5.1.2垂线(第一课时))导入二:教师:同学们观察教室里的课桌面相邻的两边,黑板面相邻的两边,方格纸的横线和竖线……这些给大家什么印象?学生回答,教师指出:“垂直”这两个字对大家并不陌生,在小学,我们已经学习过“垂直”,对于“垂直”的知识我们已经了解了一些.今天,我们就在原有知识的基础上,继续探究“垂直”.(板书课题:5.1.2垂线(第一课时))设计意图通过生活中我们经常见到的现象引出垂直,通过新问题来激发学生的学习兴趣.探究新知探究点一:认识垂线和垂直教师:拿出相交线模型,如图1,演示模型,提问学生:固定木条a,转动木条b,当b的位置发生变化时,什么量随之发生变化?学生:当b 的位置变化时,a,b 所形成的四个夹角的度数随之发生变化. 教师:在b 转动的过程中,当a ,b 所形成的夹角∠α=90°时(如图2所示),木条a 与b 所形成的其他三个角的度数是多少?为什么?图2学生:另外三个角也是90°.教师:这种特殊的位置关系,即∠α=90°时,我们就说a 与b 互相垂直.我们身边存在大量的形如两条直线相互垂直的实例,请同学们举一些例子.学生发言,教师肯定.教师追问:根据前面的活动,你们能说出什么样的两条直线互相垂直吗? 师生活动鼓励学生大胆发表自己的见解,学生可能会说两条直线相交所构成的四个角都是直角时,两条直线互相垂直,这时可以引导学生认识到:两直线相交所构成的四个角中,只要有一个角是直角,就可以得出其他三个角也是直角.教师总结并板书垂直的概念:两条直线相交所构成的角中有一个角是直角时,我们就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.教师强调:“互相垂直”与“垂线”的区别与联系:“互相垂直”是指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名.如果两条直线“互相垂直”,那么其中一条直线必定是另一条直线的“垂线”;如果一条直线是另一条直线的“垂线”,那么它们必定“互相垂直”.设计意图垂直是两条直线相交的特殊情形,两条直线垂直所形成的四个角之间的关系,需要由“邻补角和为180°”“对顶角相等”得出.相交线模型的演示与有关问题的引导,使学生对垂直的认识由感性上升到理性,从而加深学生对垂直的理解.教师:许多几何图形都可以用符号来表示,例如,角用“∠”表示,三角形用“△”表示等等,垂直也有它自己的符号.教师:垂直用符号“⊥”表示,如图3所示,直线AB 垂直于直线CD ,垂足为O ,就可记为“AB ⊥CD ,垂足为O ”.(教师板书)图3教师:根据垂直的定义,结合图3,当AB⊥CD时,∠AOD是多少度?学生:∠AOD=90°.教师:我们如何用几何推理语言来描述这个结论.学生大胆发言,教师引导并板书:因为AB⊥CD,所以∠AOC=90°(垂直的定义).教师:把这个推理倒过来,当∠AOC=90°,直线AB,CD具备什么特殊的位置关系?学生:垂直.教师:如何用几何推理语言描述这个结论.学生发言,教师板书:因为∠AOC =90°,所以AB⊥CD(垂直的定义).设计意图教学中在明确给出垂直的定义后,借助图形用符号语言来表示,让学生从文字语言、图形语言、符号语言等不同角度来认识垂直,实现了三种语言之间的转化,在此过程中,培养了学生用几何语言表达问题的能力,增强了学生的符号感.探究点二:垂线的画法及性质教师:根据垂直的定义,我们知道要想画垂线,必须有直角,我们的学习用具中有存在直角的吗?学生:三角尺、量角器中存在直角.教师:现在我们就开始研究用三角尺和直尺或者量角器画垂线的方法,出示课本探究.如图4所示.(1)用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?(2)经过直线l上一点A画l的垂线,这样的垂线能画出几条?(3)经过直线l外一点B画l的垂线,这样的垂线能画出几条?(1) (2)图4学生独立尝试,小组合作交流,完成下面填空和思考:1.垂线的画法:第一步:靠,即三角尺的一条直角边紧靠;第二步:过,即三角尺的另一条直角边过;第三步:画,即画出垂线.2.(1)与直线l垂直的直线能画条.(2)经过直线上一点能画条直线与已知直线垂直.(3)经过直线外一点能画条直线与已知直线垂直.教师在学生合作交流的基础上组织两名学生用三角尺演示第(2)(3)问,并展示上述填空.教师:如果把(2)(3)两条结论合并在一起,你们认为应该怎样表达.学生发言,教师引导得出垂线的性质并板书.垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直.设计意图在本环节的教学中有两个重要的任务,除了让学生掌握垂线的性质外,还应让学生在探究性质的过程中,掌握过一点作已知直线的垂线的方法,它是几何作图中的一种常用的基本作图,需要学生熟练掌握.虽然学生在小学已经接触过垂线的作法,但要在各种情境中熟练作图,对学生来说也是一个难点,尤其是过已知点作线段的垂线.因此在这一环节的教学中应给予学生充分的机会来感受、体会、总结、训练垂线的作法,教师也可以在此基础上演示总结用三角尺过一点画已知直线的垂线的方法:一靠,即三角尺的一条直角边紧靠已知直线也就是与已知直线重合;二过,即三角尺的另一条直角边过已知点;三画,即画出垂线.使学生能够顺利突破难点.新知应用例1 判断下列语句是否正确?(1)两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( )(2)若两条直线相交构成的四个角相等,则这两条直线互相垂直.( )(3)一条直线的垂线只能画一条.( )(4)过一点可以任意画已知直线的垂线.( )答案:(1)正确(2)正确(3)错误(4)错误师生活动教师读题,学生抢答.设计意图考查学生由角的关系来判断两直线的位置关系,强化对垂直概念的理解..或线段AB的垂线.图5师生活动找三位同学在黑板上板演,其他同学自己动手画图,画完之后请同学们点评.(1) (2) (3)图6教师引导学生归纳:画一条射线或线段的垂线,就是画它们所在直线的垂线.设计意图训练学生在各种情境中熟练作图,通过此练习,给学生充分的机会来感受、体会、总结、训练在各种条件下垂线的作法.课堂练习(见导学案“当堂达标”)参考答案1.C2.B3.D4.B5.C6.D7. 垂直 AB ⊥CD DOB BOC COA 8.30° 9.解:OD ⊥OE.理由:∵ OD 平分∠BOC ,∴ ∠COD =12∠BOC.∵ OE 平分∠AOC ,∴ ∠COE =12∠AOC. ∴ ∠EOD =∠COD+∠COE=12(∠BOC+∠AOC)=12×180°=90°,即OD ⊥OE.10.解:(1)∠AOD =120°.(2)∠AOD =110°.(3)猜想∠AOD 与∠BOC 互补.理由如下:如题图①,∵ ∠AOD =∠AOC+∠COD =∠AOC+90°,∠BOC =∠AOB-∠AOC =90°-∠AOC ,所以∠AOD+∠BOC =180°,即∠AOD 与∠BOC 互补.(见导学案“课后提升”)参考答案1.解:∵ OE 平分∠BOD ,∴ ∠DOE =∠BOE. ∵ ∠AOD ∶∠DOE =4∶1,∴ ∠AOD ∶∠DOE ∶∠BOE =4∶1∶1.又∵ ∠AOB =180°,∴ ∠DOE =∠BOE =180°×16=30°,∴ ∠COB =∠COD-∠DOE-∠BOE =180°-30°-30°=120°. 又∵ OF 平分∠COB ,∴ ∠COF =∠BOF =12∠COB =60°,∴ ∠AOF =∠AOB-∠BOF =180°-60°=120°. (此题解法多种,只提供一种)2.解:有可能有三个或两个或一个.如图7所示.课堂小结1.本节课主要学习了两条直线互相垂直、垂线以及垂足的概念和垂线的一条性质.2.会用三角尺或量角器过一点画已知直线、射线、线段的垂线.3.要关注三种语言,即文字语言、图形语言、符号语言之间的转化.布置作业教材第8页习题5.1第3,4,5题板书设计。
一、预习导学(甲)(乙)这是两幅草坪的图案。
在绿色的草坪上,画着两条交叉的道路。
你觉得甲图、乙图那幅更漂亮、更匀称。
这是什么原因?演示自制教具,这两条相交线有没有特殊位置?什么情况下它们的位置特殊?图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广,你有没有见过?例如:书本相邻的两条边、窗户框相邻的两边、红十字等,因此今天我们就来研究这种特殊情况二、新课探究(一)垂线的定义直线a不动,当直线b转到什么位置时,两条直线互相垂直?转动木条b时,它和不动的木条a互相垂直的位置有几个?当a、b相交有一个角是直角时,其他三个角呢?垂线的定义:当两条直线相交所成的四个角,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫垂足。
建筑工人在砌墙时,常用铅垂线来检查所砌的墙面是否和地面(水平面)垂直。
(二)符号表示“⊥”读作“垂直于”如AB⊥CD垂足为O,含义:直线AB与直线CD垂直,垂足是O你能说出由什么条件能知道AB与CD互相垂直吗?∵∠BOC=90º(已知)∴AB⊥CD (垂直的定义)其它三个角中的一个角等于90º,能不能得到AB⊥CD 呢?反过来,如果AB⊥CD,那么可得到什么结论?(填空)∵AB⊥CD于O (已知)∴________________(垂直的定义)(三)垂线的画法(1)已知直线l,有多少条直线与已知直线l垂直?(2)点与直线的位置关系有几种?如图2中,过点A画直线BD的垂线B ·A DAD 图1 B在学生画出垂线的基础上,教师总结出用三角板画垂线的基本方法强调用两条直角边“一贴”:贴住已知直线,“一靠”:靠住已知点再画线并引导学生思考:这样画出的为何是已知直线的垂线?(四)发现垂线的性质在学生熟练地画出各条垂线之后,1、过A点作BD的垂线有没有?2、过A点作BD的垂线有几条?在此基础上,又引导学生概括出:垂线的第一个性质公理:过一点有且只有一条直线与注:①“有且只有”中,“有”指“存在”,“只有”指(五)垂线的第二个性质1、量跳远的成绩时有人想多量点,都采取了什么手段?为什麽?2、用刻度尺量一量下列垂线段OP与线段PA、PB、PC的大小PA B O C(1)什么是垂线段?直线外一点与直线上各点连结的所有的线段中,垂线段最短六、点到直线的距离要把水渠的水引到水池C,为了节省人力物力财力,请你十分钟小测1、下列说法是否正确:两条直线相交,有一条角是直角,则两条直线互相垂直。
新人教版七年级数学下册《 5.1.2.垂线(第 1 课时)》
一、教学目标
知识与技能
1.理解垂线的概念,知道过一点有且只有一条直线与已知直线垂直。
2.会用三角尺或量角器过一点画一条直线的垂线。
过程与方法
通过画垂线及探索垂线性质等活动,让学生初步体验变换思想,建
立符号感,培养空间能力和语言归纳能力。
情感态度与价值观
1. 通过画垂线及探索垂线性质等活动,使学生获得成功的体验,调动主动学习的积极性,感受数学学习的乐趣。
2. 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.
二、重点难点
重点:垂线概念、性质
难点:过一点画一条直线的垂线
三、学情分析
垂线是生活中常见图形,学生在小学已经学过两条直线垂直的定义,
在此基础上学习新知便于理解。
根据学生已有知识经验和学科特点,
教学中结合相交线模型进行说明,再给出垂直的符号语言和图形语言
的表示,从不同的角度认识垂直,加深对垂直概念的理解,初步建立符号感。
四、教学过程(本文来自优秀教育资源网斐.斐.课.件.园)设计教学环节问题设计师生活动备注
情境创设在折纸时,经常会得到两条互相垂直的折痕,你能试一试吗?引出课题:垂直是相交的特殊情况,垂直有哪些性质呢? 创设问题情境,引起学生学习的兴趣.
自主探究
活动一
1、演示相交线的模型
固定木条a,转动木条,当b的位置变化时,a、b所成的角a是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?
2、阅读课本P5明确垂线及表示法.
自学效果检测:
(1)互相垂直”与“垂线”有区吗?
(2)请用数学符号及图形表示“直线AB垂直于直线CD,垂足为0”
3、简单应用
(1)学生观察课本P 4图5.1-6中的一些互相垂直的线条,并再举出生活中其他实例.
(2) 判断以下两条直线是否垂直:
①两条直线相交所成的四个角中有一个是直角;
②两条直线相交所成的四个角相等;
③两条直线相交,有一组邻补角相等;
④两条直线相交,对顶角互补.
活动二
1、画图
(1)用三角尺或量角器画已知直线L的垂线.这样的垂线能画几
条?
(2)经过直线L上一点A画L的垂线,这样的垂线能画几条?
(3)经过直线L外一点B画L的垂线,这样的垂线能画出几条?
2、思考:通过以上画图你能得出什么结论?教师出示相交线的模型,演示模型。
学生观察思考
教师在组织学生交流中,应当使学生明白:当b的位置变化时,角a从锐角变为钝角,其中/a是直角是特殊情况.其特殊之处还在于:当Za是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等.
教师引导学生分清“互相垂直”与“垂线”的区别与联系“:互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。
如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直
线是另一条直线的“垂线”,则它们必定“互相垂直”。
教师出示问题.
学生独立思考后小组讨论交流,并让两名学生板演教师提出问题同时鼓励学生相互补充、完善。
学生独立思考后,同桌讨论. 教师鼓励学生从不同。