人教版九年级数学上册旋转中心对称图形
- 格式:pptx
- 大小:673.80 KB
- 文档页数:31
《中心对称图形》知识全解课标要求1.了解中心对称图形及其基本性质,掌握平行四边形是中心对称图形.2.经历观察、发现、探索中心对称图形的有关概念和基本性质的过程,掌握分析、推理的方法.知识结构内容解析1.中心对称图形(1)定义:把一个图形绕着某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.这个点就是它的对称中心.(2)中心对称图形的特点:图形绕着它自身的中心旋转180°后,与自身重合,是一种特殊的旋转对称图形.2.中心对称与中心对称图形的区别与联系(1)不同点:①中心对称是指两个图形的对称关系,中心对称图形是一个本身成中心对称的图形.②成中心对称的两个图形是全等的,但中心对称图形不能说是全等的.(2)相同点:①都是由旋转180°得出的重合关系;②旋转180°能够重合的点都叫做对称点,重合的线段都叫做对应线段;重合的角都叫对应角;③对应点的连线都经过对称中心,且被对称中心平分.对应线段平行(或在同一条直线上)且相等,对应角相等;④对应线段所在的直线如果相交,那么交点都在对称中心上.(3)联系:①如果把成中心对称的两个图形看作一个图形,那么这个图形的整体是中心对称图形;②如果中心对称图形沿过对称中心的直线分成两个图形,那么这两个图形成中心对称.3.中心对称图形与轴对称图形有什么区别和联系轴对称图形中心对称图形有一条对称轴---直线有一个对称中心---点图形沿对称轴对折(翻折180°)后重合图形绕对称中心旋转180°后重合对称点的连线被对称轴垂直平分对称点连线经过对称中心,且被对称中心平分本节的重点是:中心对称图形的定义及其基本性质.教学重点的解决方法:从日常生活现象入手,循序渐进,引导学生从中心对称中归纳出中心对称图形的概念,借助从中心对称中归纳出中心对称图形的性质,学生利用已有的中心对称知识,解答一些由浅入深的练习题,加深对中心对称图形概念和性质的理解.本节的难点是:中心对称图形的识别.教学难点的解决方法:从生活中的中心对称入手,让学生体会生活中的中心对称图形的应用,并通过这种应用对其中的两个量,对应线段和对应角来理解中心对称图形的性质,最后通过课堂练习得到巩固.教法导引在本节课中,运用活动教学形态,采取“引导—合作—自主探究”的教学方法,使每个学生都能参与到学习中,感受学习的乐趣.在借助多媒体演示中心对称图形的同时,还采用了平行四边形的模具,引导学生找出这些图形的共同特征.学法建议学习本章内容时应注意以下三点:1.学习基本概念和性质时,注意观察现实生活中的各种变换现象,从而加深对基本概念和性质的理解;2.学习图形变换的性质时,要主动参与,积极探索,动手操作,这样才能加深对性质的理解;3.学习时要多观察图形,多与同学合作交流,在交流和探讨中获得新知识.。
23.2中心对称23.2.2中心对称图形一、教学目标【知识与技能】了解中心对称图形的定义及其特征,体会中心对称和中心对称图形之间的联系和区别.【过程与方法】经历观察、思考、探究、发现的过程,感受中心对称图形的特征,培养学生的观察能力和动手操作能力.【情感态度与价值观】通过对中心对称图形的探究和认知,体验图形的变化规律,感受图形的变换的美感,享受学习数学的乐趣和积累一定的审美经验.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】中心对称图形的有关概念及其性质.【教学难点】中心对称图形和中心对称的区别和联系五、课前准备课件、直尺、圆规、铅笔、图片等.六、教学过程(一)导入新课教师问1:有四种形状的图形,将其中一个形状旋转180度后,跟原来形状一样吗?(出示课件2)学生思考并仔细分析图形特征,然后相互交流.(二)探索新知探究一中心对称图形的概念出示课件4,观察下面图形:教师问:这些图形有什么共同的特征?学生答:都是旋转对称图形.教师问:这些图形的不同点在哪?分别绕旋转中心旋转了多少度?学生答:第一个图形的旋转角度为120°或240°,第二个图形的旋转角度为72°或144°或216°或288°.后两个图形的旋转角度都为180°,第二,三个是轴对称图形.后两个图形都是旋转180°后能与自身重合.出示课件5:将下面的图形绕O点旋转,你有什么发现学生观察并口答.学生1:都绕一点旋转了180度.学生2:都与原图形完全重合.教师总结:中心对称图形的概念(出示课件6)把一个图形绕着某一个点旋转180°后,如果旋转后的图形能和原来的图形重合,那么这个图形叫做中心对称图形;这个点叫做它的对称中心;互相重合的点叫做对称点.图中_______是中心对称图形,对称中心是_____,点A的对称点是______,点D的对称点是______.出示课件7:教师问:平行四边形是中心对称图形吗?如果是,请找出它的对称中心,并设法验证你的结论.学生答:平行四边形是中心对称图形,对称中心是两条对角线的交点.教师问:根据上面的过程,你能验证平行四边形的哪些性质?学生答:能验证平行四边形的对边相等、对角相等、对角线互相平分等性质.出示课件8:下列图形中哪些是中心对称图形?⑴⑵⑶⑷学生观察后口答:⑴⑵⑶是,⑷不是.教师问:在生活中,有许多中心对称图形,你能举出一些例子吗?(出示课件9)出示课件10:例1(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取1个涂上阴影,使4个阴影小正方形组成一个既是轴对称图形,又是中心对称图形.学生观察后尝试解决,教师举例如下:出示课件11,12:巩固练习:1.下列图形中,既是轴对称图形又是中心对称图形的是()A B C D2.下列图形中,是中心对称图形,但不是轴对称图形的是()A.正方形B.矩形C.菱形D.平行四边形3.下列图形中,是轴对称图形但不是中心对称图形的是()4.在线段、等腰梯形、平行四边形、矩形、正六边形、圆、正方形、等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3个B.4个C.5个D.6个学生思考后口答:1.D 2.D 3.A 4.C出示课件13:例2如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为_______.师生共同解析:由于矩形是中心对称图形,所以依题意可知△BOF与△DOE 关于点O成中心对称,由此图中阴影部分的三个三角形就可以转化到直角△ADC中,易得阴影部分的面积为3.出示课件14:巩固练习:如图,点O是平行四边形的对称中心,点A、C关于点O对称,有AO=CO,那么OE=OF吗?学生自主解答:解:∵平行四边形是中心对称图形,O是对称中心.EF经过点O,分别交AB、CD于E、F.∴点E、F是关于点O的对称点.∴OE=OF.探究二探究中心对称图形的性质教师问:如图,你能得到什么结论?(出示课件15)学生答:(1)中心对称图形的对称点连线都经过对称中心;(2)中心对称图形的对称点连线被对称中心平分.教师归纳:中心对称图形上的每一对对称点所连成的线段都被对称中心平分.出示课件16:教师问:如何寻找中心对称图形的对称中心?学生答:连接任意两对对应点,连线的交点就是对称中心.画一画:1.下图是中心对称图形的一部分及对称中心,请你补全它的另一部分.生观察后独立操作,教师加以指导,如图所示.出示课件17:2.如图,有一个平行四边形请你用无刻度的直尺画一条直线把他们分成面积相等的两部分,你怎么画?生观察后独立操作,教师加以指导,如图所示.教师归纳:过对称中心的直线可以把中心对称图形分成面积相等的两部分.出示课件18-20:例请你用无刻度的直尺画一条直线把他们分成面积相等的两部分,你怎样画?师生共同操作如下:教师归纳:对于这种由两个中心对称图形组成的复合图形,平分面积时,关键找到它们的对称中心,再过对称中心作直线.出示课件21:巩固练习:从一副扑克牌中抽出如下四张牌,其中是中心对称图形的有()A.1张B.2张C.3张D.4张学生观察后口答:A出示课件22,23,24:小组合作,讨论观察发现两种对称图形的区别后完成表格1、2、3.1.对比旋转对称图形与中心对称图形的异同点.2.对比中心对称与中心对称图形的异同点.3.对比轴对称图形与中心对称图形的异同点.(三)课堂练习(出示课件25-30)1.下列几何图形:其中是轴对称图形但不是中心对称图形的共有()A.4个B.3个C.2个D.1个2.下列图案都是由字母“m”经过变形、组合而成的,其中不是中心对称图形的是()A B C D3.下列图形中既是轴对称图形又是中心对称图形的是()A.角B.等边三角形C.线段D.平行四边形4.观察图形,并回答下面的问题:①哪些只是轴对称图形?②哪些只是中心对称图形?③哪些既是轴对称图形,又是中心对称图形?5.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆,它们看上去是那么美丽与和谐,这正是因为圆具有轴对称和中心对称性.请问以下三个图形中是轴对称图形的有,是中心对称图形的有.6.图中网格中有一个四边形和两个三角形,(1)请你先画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度与自身重合?参考答案:1.C2.B3.C4.解:①⑶⑷⑹②⑴③⑵⑸5.①②③;①③6.解:⑴如图所示:⑵如图所示,对称轴有4条;整体图形至少旋转90°与自身重合.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(23.2.3)的相关内容.七、课后作业1.教材67页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:本课通过学习中心对称图形,进一步认识几何图形的本质特征,通过学习中心对称图形与中心对称的区别联系,中心对称图形与轴对称图形的区别,进一步发展学生抽象概括的能力.。
人教版九年级数学上册教学设计旋转《中心对称图形》一. 教材分析人教版九年级数学上册的“旋转《中心对称图形》”这一节,主要让学生了解中心对称图形的概念,掌握中心对称图形的性质,以及如何判断一个图形是否为中心对称图形。
教材通过丰富的实例,引导学生探索中心对称图形的性质,培养学生的空间想象能力。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的变换有一定的了解。
但中心对称图形这一概念较为抽象,学生可能难以理解。
因此,在教学过程中,教师需要利用生动的实例,引导学生直观地感受中心对称图形,从而更好地理解中心对称图形的性质。
三. 教学目标1.让学生了解中心对称图形的概念,掌握中心对称图形的性质。
2.培养学生观察、分析、解决问题的能力。
3.培养学生的空间想象能力,提高学生的数学素养。
四. 教学重难点1.中心对称图形的概念及其性质。
2.如何判断一个图形是否为中心对称图形。
五. 教学方法1.采用情境教学法,引导学生从实际问题中发现中心对称图形的性质。
2.利用数形结合法,让学生直观地感受中心对称图形的特点。
3.采用问题驱动法,激发学生的思考,培养学生的解决问题的能力。
4.小组讨论,发挥学生的合作精神,提高学生的交流能力。
六. 教学准备1.准备相关的多媒体教学课件,以便于生动地展示中心对称图形的性质。
2.准备一些中心对称图形的实例,用于引导学生观察和分析。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中常见的中心对称现象,如反射、旋转等,引导学生关注中心对称图形。
然后提问:“你们认为什么样的图形可以称为中心对称图形?”2.呈现(10分钟)教师通过多媒体课件,展示中心对称图形的定义及性质。
同时,引导学生观察一些实例,让学生直观地感受中心对称图形的特点。
3.操练(10分钟)教师提出一些问题,让学生动手实践,判断一些图形是否为中心对称图形。
如:“请判断下列图形是否为中心对称图形,并说明理由。
人教版九年级数学上册教案旋转《中心对称图形》一. 教材分析旋转是初中数学中的重要内容,是几何变换的基本形式之一。
《中心对称图形》是人教版九年级数学上册第二章几何变换的一部分,主要让学生了解中心对称图形的概念,理解中心对称与旋转的关系,学会用旋转来解决实际问题。
本节课的内容在学生的认知发展过程中起着承上启下的作用,为后续的旋转变换和其他几何变换的学习打下基础。
二. 学情分析九年级的学生已经掌握了平面几何的基本知识,对图形的变换有一定的了解。
但是,学生对中心对称图形的理解可能还停留在表象阶段,对中心对称与旋转的关系认识不足。
因此,在教学过程中,需要引导学生从实际问题中发现旋转的规律,培养学生的观察能力、操作能力和解决问题的能力。
三. 教学目标1.理解中心对称图形的概念,掌握中心对称与旋转的关系。
2.学会用旋转来解决实际问题,提高学生的应用能力。
3.培养学生的观察能力、操作能力和解决问题的能力。
四. 教学重难点1.中心对称图形的概念及判断。
2.中心对称与旋转的关系。
3.用旋转解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实际问题引导学生发现旋转的规律,用案例展示中心对称图形的应用,让学生在小组合作中探讨中心对称与旋转的关系,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的实际问题和案例。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备练习题和作业。
七. 教学过程1. 导入(5分钟)利用多媒体展示一个生活中的实际问题:“如何将一个图形绕某一点旋转?”让学生观察并思考,引出本节课的主题——旋转。
2. 呈现(10分钟)讲解中心对称图形的概念,呈现一些典型的中心对称图形,如圆、正方形等,让学生判断并解释为什么它们是中心对称图形。
同时,引导学生发现中心对称与旋转的关系,如圆的旋转可以看作是中心对称的运用。
3. 操练(10分钟)让学生进行一些实际的操作,如绘制中心对称图形,判断给定的图形是否为中心对称图形等。