认识平行练习题及答案(1)
- 格式:doc
- 大小:37.00 KB
- 文档页数:2
新初中数学相交线与平行线知识点总复习附答案解析(1)一、选择题1.如图,四边形ABCD 中,//,,AB CD AD CD E F =、分别是AB BC 、的中点,若140,∠=︒则D ∠=( )A .40︒B .100︒C .80︒D .110︒【答案】B【解析】【分析】 利用E 、F 分别是线段BC 、BA 的中点得到EF 是△BAC 的中位线,得出∠CAB 的大小,再利用CD ∥AB 得到∠DCA 的大小,最后在等腰△DCA 中推导得到∠D.【详解】∵点E 、F 分别是线段CB 、AB 的中点,∴EF 是△BAC 的中位线∴EF ∥AC∵∠1=40°,∴∠CAB=40°∵CD ∥BA∴∠DCA=∠CAB=40°∵CD=DA∴∠DAC=∠DCA=40°∴在△DCA 中,∠D=100°故选:B【点睛】本题考查中位线的性质和平行线的性质,解题关键是推导得出EF 是△ABC 的中位线.2.如图,下列条件中能判定//DE AC 的是( )A .EDC EFC ∠=∠B .AEF ACD ∠=∠C .34∠=∠D .12∠=∠【答案】C【解析】【分析】对于A,∠EDC=∠EFC不是两直线被第三条直线所截得到的,据此进行判断;对于B、D,∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,据此进行判断;对于C,∠3=∠4这两个角是AC与DE被EC所截得到的内错角,据此进行判断.【详解】∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.故选C.【点睛】本题考查平行线的判定,掌握相关判定定理是解题的关键.3.如图,11∥l2,∠1=100°,∠2=135°,则∠3的度数为()A.50°B.55°C.65°D.70°【答案】B【解析】【分析】如图,延长l2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l2,交∠1的边于一点,∵11∥l2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B.【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.4.如图,下列能判定AB CD ∥的条件有( )个.(1)180B BCD ∠+∠=︒; (2)12∠=∠;(3)34∠=∠; (4)5B ∠=∠.A .1B .2C .3D .4 【答案】C【解析】【分析】根据平行线的判定定理依次判断即可.【详解】∵180B BCD ∠+∠=︒,∴AB ∥CD ,故(1)正确;∵12∠=∠,∴AD ∥BC ,故(2)不符合题意;∵34∠=∠,∴AB ∥CD ,故(3)正确;∵5B ∠=∠,∴AB ∥CD ,故(4)正确;故选:C.【点睛】此题考查平行线的判定定理,熟记定理及两个角之间的位置关系是解题的关键.5.如图,直线AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点,EG 平分∠AEF ,如果∠1=32°,那么∠2的度数是( )A .64°B .68°C .58°D .60°【答案】A【解析】【分析】 首先根据平行线性质得出∠1=∠AEG ,再进一步利用角平分线性质可得∠AEF 的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°,∵AB∥CD,∴∠2=64°.故选:A.【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.6.如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB交BD于点O,且∠EOD+∠OBF=180°,∠F=∠G,则图中与∠ECB相等的角有( )A.6个B.5个C.4个D.3个【答案】B【解析】【分析】由对顶角关系可得∠EOD=∠COB,则由∠COB+∠OBF=180°可知EC∥BF,再结合CE是角平分线即可判断.【详解】解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC∥BF,结合CE是角平分线可得∠ECB=∠ACE=∠CBF,再由EC∥BF可得∠ACE=∠F=∠G,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC,共有5个与∠ECB相等的角,故选择B.【点睛】本题综合考查了平行线的判定及性质.7.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24°B.34°C.56°D.124°【答案】C【解析】【分析】【详解】试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选C.考点:平行线的性质.8.如图,点P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是( )A.PA B.PB C.PC D.PD【答案】B【解析】如图,PB是点P到a的垂线段,∴线段中最短的是PB.故选B.9.下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.【答案】D【解析】【分析】根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D选项是对顶角,故选:D.【点睛】考核知识点:对顶角.理解定义是关键.10.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.11.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB 到D ,过C 作CE//AD ,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB 到D ,过C 作CE//AD ,∵此时需要将方向调整到与出发时一致,∴此时沿CE 方向行走,∵从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处, ∴∠A=60°,∠1=20°,AM ∥BN ,CE ∥AB ,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.12.如图,直线 a ∥b ∥c ,直角三角板的直角顶点落在直线 b 上,若∠1=30°,则∠2 等于( )A .40°B .60°C .50°D .70° 【答案】B【解析】【分析】根据两直线平行内错角相等得1324==∠∠,∠∠,再根据直角三角板的性质得341290+=+=︒∠∠∠∠,即可求出∠2的度数.【详解】∵a ∥b ∥c∴1324==∠∠,∠∠∵直角三角板的直角顶点落在直线 b 上∴341290+=+=︒∠∠∠∠∵∠1=30°∴290160=︒-=︒∠∠故答案为:B .【点睛】本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.13.如图,AB CD ∥,BF 平分ABE ∠,且BF DE P ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE 交AB 的延长线于G ,//AB CD Q ,D G ∴∠=∠,//BF DE Q ,G ABF ∴∠=∠,D ABF ∴∠=∠,BF Q 平分ABE ∠,22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.14.如图所示,某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P→C路线,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂直线段最短C.两点之间线段最短D.三角形两边之和大于第三边【答案】B【解析】【分析】根据垂线段的定义判断即可.【详解】解:Q直线外一点与直线上各点连接的所有线段中,垂线段最短,选:B.【点睛】直线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离.直线外一点与直线上各点连接的所有线段中,垂线段最短.简称“垂线段最短”.15.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余D.不能确定【答案】C【解析】【分析】根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.【详解】∵OB⊥CD,∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C.【点睛】本题考查了垂线和余角,关键是掌握垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.16.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.如图所示,下列条件中,能判定直线a∥b的是()A.∠1=∠4 B.∠4=∠5 C.∠3+∠5=180°D.∠2=∠4【答案】B【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠1=∠4,错误,因为∠1、∠4不是直线a 、b 被其它直线所截形成的同旁内角或内错角;B 、∵∠4=∠5,∴a ∥b (同位角相等,两直线平行).C 、∠3+∠5=180°,错误,因为∠3与∠5不是直线a 、b 被其它直线所截形成的同旁内角;D 、∠2=∠4,错误,因为∠2、∠4不是直线a 、b 被其它直线所截形成的同位角. 故选:B .【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角18.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒【答案】A【解析】【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.【详解】解:5∠标记为如下图所示,∵1,5∠∠是对顶角,∴15∠=∠(对顶角相等),又∵1110,270︒︒∠=∠=,∴1251107800︒︒+∠=∠=+︒,∴a ∥b (同旁内角互补,两直线平行),∴34∠=∠(两直线平行,内错角相等),∴4360∠=∠=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..19.如图,在ABC V 中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=︒,则2∠的度数是( )A .30°B .35°C .40°D .45°【答案】C【解析】【分析】 先根据等腰三角形的性质和三角形内角和可得ACB ∠度数,由三角形外角的性质可得AED ∠的度数,再根据平行线的性质得同位角相等,即可求得2∠.【详解】∵AB AC =,且30A ∠=︒, ∴18030752ACB ∠︒-︒==︒, 在ADE ∆中,∵1145A AED ∠∠∠=+=︒,∴14514530115AED A ∠∠=︒-=︒-︒=︒,∵//a b ,∴2AED ACB ∠∠∠=+,即21157540∠=︒-︒=︒,故选:C .【点睛】 本题考查综合等腰三角形的性质、三角形内角和定理、三角形外角的性质以及平行直线的性质等知识内容.等腰三角形的性质定理:等腰三角形两底角相等;三角形内角和定理:三角形三个内角的和等于180︒;三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和;两直线平行,同位角相等.20.如图,直线a∥b,直角三角开的直角顶点在直线b上,一条直角边与直线a所形成的∠1=55°,则另外一条直角边与直线b所形成的∠2的度数为()A.25°B.30°C.35°D.40°【答案】C【解析】如图所示:∵直线a∥b,∴∠3=∠1=55°,∵∠4=90°,∠2+∠3+∠4=180°,∴∠2=180°-55°-90°=35°.故选C.。
平行的判定与性质知识点一:直线与平面平行的判定及性质直线与平面平行的判断判定文字描述直线和平面在空间平面永无交点,则直线和平面平行(定义)平面外的一条直线一次平面内的一条直线平行,则该直线与此平面平行图形条件a与α无交点结论a∥αb∥α线线平行,则线面平行(线与面的平行问题一定要排除现在直线内的情况)直线与平面平行的性质性质文字描述一条直线与一个平面平行,则这条直线与该平面无交点一条直线和一个平面平行,则过这条直线的任一平面与此平面相交,这条直线和交线平行.图形条件a∥αa∥αa⊂βα∩β=b结论a∩α=∅a∥b线面平行,则线线平行例1正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.证明:若一条直线与两个相交平面都平行,则这条直线平行于两个平面的交线.知识点二:平面与平面平行的判定及性质平面与平面平行的判定判定文字描述如果两个平面无公共点,责成这两个平面平行一个平面内有两条相交直线与另一个平面平行,那么这两个平面平行.如果两个平面同时垂直于一条直线,那么这两个平面垂直。
图形条件α∩β=∅a,b⊂βa∩b=Pa∥αb∥αl⊥αl⊥β结论α∥βα∥βα∥β平面与平面平行的性质性质文字描述如果两个平行平面同时和第三如果两个平面平行,那么其中一图形条件α∥β β∩γ=b α∩γ=aα∥β a ⊂β结论 a ∥b a ∥α例2 如图,在三棱柱ABC —A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面; (2)平面EFA1∥平面BCHG .如图,在正方体ABCD —A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面PAO?课堂练习:1.直线a ∥平面α,则a 平行于平面α内的( )D.无穷多条平行直线2.若直线a∥直线b,且a∥平面α,则b与α的位置关系是( )A.一定平行 B.不平行C.平行或相交 D.平行或在平面内3.下列说法正确的是( )A.若直线l平行于平面α内的无数条直线,则l∥αB.若直线l在平面α外,则l∥αC.若直线a∥b,b⊂平面α,则a∥αD.若直线a∥b,b⊂平面α,那么a平行于平面α内的无数条直线4.b是平面α外的一条直线,可以推出b∥α的条件是( )A.b与α内的一条直线不相交B.b与α内的两条直线不相交C.b与α内的无数条直线不相交D.b与α内的任何一条直线都不相交能力提升5.如果三个平面将空间分成6个互不重叠的部分,则这三个平面的位置关系是( )A.两两相交于三条交线B.两个平面互相平行,另一平面与它们相交C.两两相交于同一条直线D.B中情况或C中情况都可能发生6.[2011·威海质检] 已知直线l、m,平面α,且m⊂α,则“l∥m”是“l∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.[2011·泰安模拟] 设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是( )A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β8.已知平面α∥平面β,P是α、β外一点,过点P的直线m与α、β分别交于点A、C,过点P的直线n与α、β分别交于点B、D,且PA=6,AC=9,PD=8,则BD的长为( )9.[2010·福建卷] 如图K39-1,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( ) A.EH∥FGB.四边形EFGH是矩形C.Ω是棱柱D.Ω是棱台10(10分)如图K39-3,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点.求证:MN∥平面PAD;图K39-3 11(13分)[2011·九江七校联考] 如图K39-4所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.求证:PA∥平面EFG;图K39-4课后练习:1、下列命题中正确的是()(A)平行于同一个平面的两条直线平行(B)垂直于同一条直线的两条直线平行(C)若直线a与平面α内的无数条直线平行,则a∥α(D)若一条直线平行两个平面的交线,则这条直线至少平行两个平面中的一个2.平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面α=c,若a∥b,则c与a,b的位置关系是(A)c与a,b都异面(B)c与a,b都相交(C)c至少与a,b中的一条相交(D)c与a,b都平行3.在正方体ABCD-A1B1C1D1中,与平面AB1C平行的直线是()(A)DD1(B)A1D1(C)C1D1(D)A1D4.下列四个命题:(1)存在与两条异面直线都平行的平面;(2)过空间一点,一定能作一个平面与两条异面直线都平行;(3)过平面外一点可作无数条直线与平面平行;(4)过直线外一点可作无数个平面与直线平行;其中正确的命题是()(A)(1),(3)(B)(2),(4)(C)(1),(3),(4)(D)(2),(3),(4)5.若直线a与平面α内的无数条直线平行,则a与α的关系为。
第5单元第1课时《平行与垂直》同步练习一、填空题。
1、在同一平面内的两条直线叫做平行线,也可以说这两条直线。
2、两条直线相交成度时,这两条直线互相垂直。
3、下面每组的两条直线是什么关系?4、看一看,填一填。
(1)和互相平行;和互相垂直。
(2)和互相平行。
和互相垂直。
和互相垂直。
5、判断下面各直线的位置关系。
平行的:()垂直的:()相交的:()二、判断题。
1、不相交的两条直线叫做平行线。
()2、两条线段平行,它们一定相等。
()3、平行线之间的垂线只有一条。
()4、两条平行线之间的距离处处相等。
()5、正方形中,相邻的两条边都互相垂直。
()6、两条直线互相平行,这两条直线相等。
()7、两条直线不相交就一定平行。
()8、两条直线相交就一定是垂直。
()三、选择题。
1、有两条直线都和一条直线平行,这两条直线()。
A. 互相垂直B.互相平行C.相交2、过直线外的一点画已知直线的平行线,这样的平行线可以画()条。
A. 1条条 C.无数条3、在同一平面内不重合的两条直线()。
A. 相交B.平行C.不相交就平行4、在两条平行线之间作了四条垂线段,这四条垂线的长度()。
A.都相等B.不相等C.有的相等有的不相等5、互相垂直的两条直线可以相交成4个()。
A.锐角B.直角C.钝角6、有两条直线都和一条直线平行,这两条直线()。
A.互相平行B.互相垂直C.相交D.不确定7、下面一定相交的两条直线是()。
A. B.C.8、如果,上下两条线段是平行的,图中a、b分别垂直与上下两条线段,图中线段a=8cm,线段b=()。
C.不能确定9、两条直线相交,有一个角是直角,这两条直线()。
A.既不平行,也不垂直B.互相平行C.互相垂直10、判断两条直线是否垂直可以使用()。
A.三角板B.量角器C.直尺D.以上都可以11、两条直线互相垂直,这两条直线的交点叫做()。
A.交点B.垂足C.端点D.终点12、从直线外一点画已知直线的平行线,可以画()条。
DC A B B 1A1C 1直线、平面平行的判定及其性质 测试题A一、选择题1.下列条件中,能判断两个平面平行的是( ) A .一个平面内的一条直线平行于另一个平面; B .一个平面内的两条直线平行于另一个平面 C .一个平面内有无数条直线平行于另一个平面 D .一个平面内任何一条直线都平行于另一个平面2.E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是 A .0 B .1 C .2 D .3 3. 直线,a b c ,及平面αβ,,使//a b 成立的条件是( )A .//,a b αα⊂B .//,//a b ααC .//,//a c b cD .//,a b ααβ= 4.若直线m 不平行于平面α,且m ⊄α,则下列结论成立的是( ) A .α内的所有直线与m 异面 B .α内不存在与m 平行的直线 C .α内存在唯一的直线与m 平行 D .α内的直线与m 都相交 5.下列命题中,假命题的个数是( )① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b 异面,则经过b 存在唯一一个平面与α平行A .4B .3C .2D .1 6.已知空间四边形ABCD 中,,M N 分别是,AB CD 的中点,则下列判断正确的是( ) A .()12MN AC BD ≥+ B .()12MN AC BD ≤+C .()12MN AC BD =+ D .()12MN AC BD <+二、填空题7.在四面体ABCD 中,M ,N 分别是面△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.8.如下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是①②③④9.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1中点,则BD 1和平面ACE 位置关系是 . 三、解答题10.如图,正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1.11.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E ,M ,N ,G 分别是AA 1,CD ,CB ,CC 1的中点, 求证:(1)MN //B 1D 1 ;(2)AC 1//平面EB 1D 1 ;(3)平面EB 1D 1//平面BDG .B一、选择题1.α,β是两个不重合的平面,a ,b 是两条不同直线,在下列条件下,可判定α∥β的是( )A .α,β都平行于直线a ,bB .α内有三个不共线点到β的距离相等C .a ,b 是α内两条直线,且a ∥β,b ∥βD .a ,b 是两条异面直线且a ∥α,b ∥α,a ∥β,b ∥β2.两条直线a ,b 满足a ∥b ,b α,则a 与平面α的关系是( )A .a ∥αB .a 与α相交C .a 与α不相交D .a α 3.设,a b 表示直线,,αβ表示平面,P 是空间一点,下面命题中正确的是( ) A .a α⊄,则//a α B .//a α,b α⊂,则//a bC .//,,a b αβαβ⊂⊂,则//a bD .,,//,//P a P a βααβ∈∈,则a β⊂ 4.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A.异面B.相交C.平行D.不能确定 5.下列四个命题中,正确的是( )①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行 A .①③ B .①② C .②③ D .③④6.a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是A .过A 有且只有一个平面平行于a ,bB .过A 至少有一个平面平行于a ,bC .过A 有无数个平面平行于a ,bD .过A 且平行a ,b 的平面可能不存在 二、填空题7.a ,b ,c为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面内,给出六个命题:.⇒⎭⎬⎫;⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫αγγαβαγβγαααβαβαγγ∥∥∥⑥∥∥∥⑤∥∥∥④∥∥∥③∥∥∥②∥∥∥①a a a c a c c c b a b a b a c b c a ;;;; 其中正确的命题是________________.(将正确的序号都填上)8.设平面α∥β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于S ,若AS =18,BS =9,CD =34,则CS =_____________.9.如图,正四棱柱ABCD-A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,DD 1,DC 中点,N 是BC 中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BD D 1. 三、解答题10.如图,在正四棱锥P ABCD -中,PA AB a ==,点E在棱PC 上. 问点E 在何处时,//PA EBD 平面,并加以证明.11.如下图,设P 为长方形ABCD 所在平面外一点,M ,N 分别为AB ,PD 上的点,且MB AM =NPDN,求证:直线MN ∥平面PBC .EPDCBA参考答案A一、选择题 1.D【提示】当l =⋂βα时,α内有无数多条直线与交线l 平行,同时这些直线也与平面β平行.故A ,B ,C 均是错误的2.C【提示】棱AC ,BD 与平面EFG 平行,共2条. 3.C【提示】//,,a b αα⊂则//a b 或,a b 异面;所以A 错误;//,//,a b αα则//a b 或,a b 异面或,a b 相交,所以B 错误;//,,a b ααβ=则//a b 或,a b 异面,所以D 错误;//,//a c b c ,则//a b ,这是公理4,所以C 正确.4.B【提示】若直线m 不平行于平面α,且m ⊄α,则直线m 于平面α相交,α内不存在与m 平行的直线. 5.B【提示】②③④错误.②过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行.③过直线外一点有无数个平面和这条直线平行④平行于同一条直线的两条直线和同一平面平行或其中一条在平面上. 6. D【提示】本题可利用空间中的平行关系,构造三角形的两边之和大于第三边. 二、填空题7.平面ABC ,平面ABD【提示】连接AM 并延长,交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E 、F 重合为一点,且该点为CD 的中点E ,由MA EM =NB EN =21得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD . 8. ①③【提示】对于①,面MNP//面AB,故AB//面MNP.对于③,MP//AB,故AB//面MNP,对于②④,过AB 找一个平面与平面MNP 相交,AB 与交线显然不平行,故②④不能推证AB//面MNP. 9.平行【提示】连接BD 交AC 于O ,连OE ,∴OE ∥B D 1,OEC 平面ACE ,∴B D 1∥平面ACE. 三、解答题10.证明:设1AB 与B A 1相交于点P ,连接PD ,则P 为1AB 中点,D 为AC 中点,∴PD//C B 1.又 PD ⊂平面B A 1D ,∴C B 1//平面B A 1 D11.证明:(1) M 、N 分别是CD 、CB 的中点,∴MN//BD又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形.所以BD//B 1D 1.又MN//BD ,从而MN//B 1D 1(2)(法1)连A 1C 1,A 1C 1交B 1D 1与O 点四边形A 1B 1C 1D 1为平行四边形,则O 点是A 1C 1的中点 E 是AA 1的中点,∴EO 是∆AA 1C 1的中位线,EO//AC 1.AC 1⊄面EB 1D 1 ,EO ⊂面EB 1D 1,所以AC 1//面EB 1D 1 (法2)作BB 1中点为H 点,连接AH 、C 1H ,E 、H 点为AA 1、BB 1中点, 所以EH //C 1D 1,则四边形EHC 1D 1是平行四边形,所以ED 1//HC 1 又因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AHAH ⋂HC 1=H ,∴面AHC 1//面EB 1D 1.而AC 1⊂面AHC 1,所以AC 1//面EB 1D 1(3)因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AH 因为AD //HG ,则四边形ADGH 是平行四边形,所以DG//AH ,所以EB 1//DG 又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.BD ⋂DG=G ,∴面EB 1D 1//面BDGB一、选择题1.D【提示】A 错,若a ∥b ,则不能断定α∥β;B 错,若A ,B ,C 三点不在β的同一侧,则不能断定α∥β;C 错,若a ∥b ,则不能断定α∥β;D 正确. 2.C【提示】若直线a ,b 满足a ∥b ,b α,则a ∥α 或a α 3.D【提示】根据面面平行的性质定理可推证之. 4.C【提示】设α∩β=l ,a ∥α,a ∥β,过直线a 作与α、β都相交的平面γ,记α∩γ=b ,β∩γ=c ,则a ∥b 且a ∥c ,∴b ∥c .又b ⊂α,α∩β=l ,∴b ∥l .∴a ∥l . 5.A 【提示】 6. D【提示】过点A 可作直线a ′∥a ,b ′∥b ,则a ′∩b ′=A ,∴a ′,b ′可确定一个平面,记为α.如果a ⊄α,b ⊄α,则a ∥α,b ∥α.由于平面α可能过直线a 、b 之一,因此,过A 且平行于a 、b 的平面可能不存在. 二、填空题 7.①④⑤⑥ 8.68或368 【提示】如图(1),由α∥β可知BD ∥AC ,∴SA SB =SC SD ,即189=SCSC 34-,∴SC =68. SS AABBCCα α ββ(1)(2)DD如图(2),由α∥β知AC ∥BD ,∴SB SA =SD SC =SC CD SC -,即918=SCSC -34. ∴SC =368.9.M ∈HF【提示】易证平面NHF ∥平面BD D 1 B 1,M 为两平面的公共点,应在交线HF 上. 三、解答题 10.解:当E 为PC 中点时,//PA EBD 平面.证明:连接AC ,且AC BD O =,由于四边形ABCD 为正方形,∴O 为AC 的中点,又E 为中点,∴OE 为△ACP 的中位线,∴//PA EO ,又PA EBD ⊄平面,∴//PA EBD 平面. 11.证法一:过N 作NR ∥DC 交PC 于点R ,连接RB ,依题意得NR NR DC -=NP DN =MB AM =MB MB AB -=MBMBDC -⇒NR =MB .∵NR ∥DC ∥AB ,∴四边形MNRB 是平行四边形.∴MN ∥RB .又∵RB 平面PBC ,∴直线MN ∥平面PBC .证法二:过N 作NQ ∥AD 交P A 于点Q ,连接QM ,∵MB AM =NP DN =QPAQ,∴QM ∥PB .又NQ ∥AD ∥BC ,∴平面MQN ∥平面PBC .∴直线MN ∥平面PBC .OF ABCDP E。
小学数学平行线判断练习题一、填空题:根据题意填入正确的数或字母。
1. 平行于x轴的直线的斜率为______。
2. 平行于y轴的直线的斜率为______。
3. 若两条直线的斜率相等且不相交,则两条直线为______。
4. 两条平行线上的任意两个对应角分别为______。
5. 平行线上的两个内角互为______。
二、选择题:选择最恰当的答案填入题中括号内。
1. 若两条直线的斜率分别为2和3,二者之间的关系是:(a) 2 > 3 (b) 3 > 2 (c) 2 = 3 (d) 无法确定2. 若两条平行线上的内角分别为120°和60°,则它们的对应角是:(a) 120°和60° (b) 60°和120° (c) 120°和120° (d) 无法确定3. 若两条直线的斜率之积为-1,则它们之间的关系是:(a) 平行 (b) 相交 (c) 垂直 (d) 无法确定4. 在平行线上,两个内角和一个外角的和等于:(a) 90° (b) 180° (c) 270° (d) 360°5. 平行线上的两个对应角互为:(a) 相等 (b) 补角 (c) 互补 (d) 无法确定三、解答题:根据题意完成解答。
1. 两条直线L1和L2,斜率分别为k1和k2,若k1=k2,且L1与L2不重合,则L1与L2之间的关系是什么?2. 根据平行线的特点,你能给出两个线段平行的充分条件吗?3. 若直线L1与直线L2平行且L1与L3相交于同一点,那么L2与L3之间又是什么关系?4. 根据角的性质,你能给出两个角平等的充分条件吗?5. 对于平行线上的两个外角,它们的和是多少度?并说明理由。
注意:以上所有题目,都需给出详细的解答步骤和理由。
四、应用题:根据实际情况,解答下列问题。
1. 请你找出你身边的两组平行线并标记出来,并解释为什么它们是平行线。
小学六年级数学题《平行线问题大全及答案》姓名:_____________ 年级:____________ 学号:______________1、下面语句中,正确的是①不相交的两条直线叫做平行线;②在同一平面内,两条直线的位置关系只有相交和平行两种;③如果线段ab和线段cd不相交,那么直线ab和直线cd平行;④如果a∥b,b∥c,那么a∥c.[ ]a.②和④b.①和②c.②和③d.①和④答案与解析:a2、我们知道生活中许多美丽的事物都是由许多的图形组成的,如我们可以用两条平行线,一个等腰三角形,一个圆(或半圆)来表示一个可爱娃娃。
怎么样,开动你的脑筋,用你的灵巧小手,用两条平行线、一个等腰三角形,一个圆(或半圆)来描绘我们美好事物,并给它起一个好听的名字。
答案与解析:答案不唯一,只要美观即可。
3、三条平行线上分别有3个点,4个点和5个点,且不在同一条平行线上的三个点不共线,以这些点为顶点的三角形共有______个.答案与解析:根据题干分析可得:(1)在第一条直线上取一点,另外两点分别在第二条直线上,或在第三条直线上,可以得到的三角形的个数为:3x6+3x10=48(个),(2)在第二条直线上取一点,另外两点分别在第一条直线上,或在第三条直线上,可以得到的三角形的个数为:4x3+4x10=52(个),(3)在第三条直线上取一点,另外两点分别在第二条直线上,或在第一条直线上,可以得到的三角形的个数为:5x3+5x6=45(个),(4)每条直线上各取一点有,可得三角形的个数为:3x4x5=60(个),所以48+52+45+60=205(个).答:以这些点为顶点的三角形共有205个.故答案为:205.4、在图中,过a作已知直线的垂线,再过b作已知直线的平行线,量出a、b间的距离,并与ab为直径画一个圆.答案与解析:答案如图,5、下面平行线中的三个图形,它们的面积从大到小排列是[ ]a.②③①b.②①③c.③②①答案与解析:c6、比较平行线间的两个阴影部分面积,如下图[ ]a.甲乙b.甲乙c.甲=乙答案与解析:c7、在两条平行线间,分别画出面积相等的长方形、平行四边形、三角形和梯形。
四年级认识平行线练习题及答案
一、我会填。
1、在同一个平面内不相交的两条直线的位置关系是( )。
2、长方形的每组对边互相( ),每组邻边互相( )。
3、教室中黑板的长边和短边互相( )。
4、数学书中的两条长边互相( )。
5、五线谱的五条横线互相( )。
二、判断。
1、 不相交的两条直线叫做平行线。
( )
2、长方形相对的两条边是一组平行线。
( )
3、
中两条线没有相交,就可以看作一组平行线。
(
)
4、互相平行的两条直线,无论怎样延长都不会相交。
( ) 三、是平行线的在( )里画“√”。
( ) ( ) ( ) ( ) ( ) ( )
四、
互相平行的有:( ) 互相垂直的有:( )
b c d e f g a
答案:
一、1、平行2、平行垂直3、垂直4、平行5、平行
二、 1.× 2. √ 3. √
三、
四、 d 和e c和f c和a f和a。
认识平行
轻松入门
1.判断下列哪几组的两条直线互相平行。
2.画出每条直线的平行线。
快乐学习
1.公正裁判。
(1)在同一个平而内,两条直线不平行,那么一定相交。
()
(2)永远不相交的两条商线,那么一定互相平行。
()
(3)小方在纸上画了一条平行线。
()
2.选一选。
(1)在同一个平面内,可以画()条直线平行于已知直线。
A.1 B.2 C.3 D.无数
(2)从直线外一点画已知直线的平行线,可以画()条。
A.1 B.2 C.无数
(3)一个长方形桌而,锯去一个角,剩下的角最多有()个。
A.3个 B.4个 C.5个 D.无数个
3.画一画。
过直线外一点A嘶出直线的平行线。
拓展提高
1.下图中有组平行线。
【答案】3组
2.在下图中,过A点画出BC的平行线,再过B点画出AC的平行线。
【答案】略。
平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗?请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB和CD平行吗?为什么?45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?(2)AB∥CD吗?为什么?56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行?平行线的判定60题参考答案:1.∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BC∥DE2.∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).3.∵AB⊥BC(已知),∴∠ABC=90°(垂直定义);∵BC⊥CD(已知),∴∠BCD=90°(垂直定义),∴∠ABC=∠DCB;∵∠1=∠2(已知),∴∠ABC﹣∠2=∠DCB﹣∠1,即∠FBC=∠ECB,∴BF∥CE(内错角相等,两直线平行)4.∵AB⊥BC,∴∠3+∠4=90°.∵∠2=∠3,∠1+∠2=90°,∴∠1=∠4,∴BE∥DF.5.AB平行于ON.证明:∵OP平分∠MON,∴∠BOA=∠NOA,∵∠BOA=∠BAO,∴∠BAO=∠NOA,∴AB∥ON6.∵∠1=∠2,∴DC∥AB,∴∠A+∠ADC=180°.又∵∠A=∠C,∴∠ADC+∠C=180°,∴AE∥BC.7.∵BC是∠ABE的平分线,∴∠ABC=∠CBE(角平分线定义),∵∠ABE=∠D+∠E=∠ABC+∠CBE,∠D=∠E,∴∠ABC=∠D,∴DE∥BC8.过点E作EF∥AB.∵EF∥AB,∴∠A=∠AEF;又∵∠AEC=∠A+∠C,∴∠AEC=∠AEF+∠C;而∠AEC=∠AEF+∠CEF,∴∠CEF=∠C,∴EF∥CD,∴AB∥CD.9.∵AC∥ED,∴∠1=∠4;∵∠1=∠2,∴∠2=∠4;又∵EB平分∠AED,∴∠3=∠4;∴∠2=∠3,∴AE∥BD10.∵∠1+∠BEF=180°,∠1=105°,∴∠BEF=75°,∵∠2=75°,∴∠BEF=∠2,∴AB∥CD.11.∵∠D=∠A,∴ED∥AB;∵∠B=∠BCF,∴AB∥CF;∴ED∥CF.12.∵AB⊥BC,CD⊥BC(已知),∴∠ABC=∠BCD=90°(垂直定义);又∵∠1=∠2(已知),∴∠ABC﹣∠1=∠BCD﹣∠2(等量减等量,差相等),∴∠EBC=∠FCB,∴EB∥FC(内错角相等,两直线平行)13.∵BE是∠B的平分线,∴∠1=∠CBE,∵∠1=∠2,∴∠2=∠CBE,∴DE∥BC.14.AC与DF平行,理由如下:∵BD∥EC,∴∠DBC+∠C=180°,又∠C=∠D,∴∠DBC+∠D=180°,∴AC∥DF.15.∵AC⊥AE,BD⊥BF,∴∠1+∠3=∠2+∠4=90°,∵∠1=35°,∠2=35°,∴∠3=∠4,∴AE∥BF.16.∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等);∵∠1=∠2,∴∠ABC﹣∠1=∠BCD﹣∠2,即∠EBC=∠BCF,∴BE∥CF(内错角相等,两直线平行).17.∵∠BAD=DCB,∠1=∠3(已知),∴∠BAD﹣∠1=∠DCB﹣∠3(等式性质),即∠2=∠4,∴AD∥BC(内错角相等,两直线平行)18.DF∥AB.理由:∵DE∥CA,∴∠1=∠CAD,∵AD是三角形ABC的角平分线,∴∠BAD=∠CAD,∵∠1=∠2,∴∠2=∠BAD,∴DF∥AB19.AB∥DF(2分)理由:∵∠C=∠DAE,(已知)∴AD∥BC,(内错角相等,两直线平行)(2分)∴∠D=∠DFC,(两直线平行,内错角相等)∴∠B=∠D,(已知)∴∠B=∠DFC,(2分)∴AB∥DF(同位角相等,两直线平行)20.CF∥BD.理由如下:∵BD⊥BE,∴∠1+∠2=90°;∵∠1+∠C=90°,∴∠2=∠C.∴CF∥BD.21.AB∥CD.(1分)理由如下:∵∠1+∠MNC=180°,∠MNC=∠1,∴∠1=135°.(2分)又∵∠AMN=∠2=45°,(3分)∴∠1+∠AMN=180°.(4分)∴AB∥CD22.∵BF平分∠ABD,DG平分∠CDE,∴∠1=∠ABD,∠2=∠CDE,又∵∠ABD=∠CDE,∴∠1=∠2,∴BF∥DG(同位角相等,两直线平行).23.ED∥BF;证明如下:∵四边形ABCD中,∠A=∠C=90°,∴∠ADC+∠ABC=180°,∵BF、DE分别平分∠ABC、∠ADC,∴∠ADC+∠ABC=2∠ADE+2∠ABF=180°,∴∠ADE+∠ABF=90°,又∵∠A=90°,∠ADE+∠AED=90°,∴∠AED=∠ABF,∴ED∥BF(同位角相等,两直线平行).24.在△ECD中∵∠C+∠CED+∠CDE=180°(三角形内角和定理),又∵∠CAB=∠CED+∠CDE(已知),∴∠C+∠CAB=180°(等量代换),∴AB∥CD(同旁内角互补,两直线平行)25.∵CD⊥AB,GF⊥AB,∴CD∥FG,∴∠2=∠DCG;又∵∠1=∠2,∴∠DCG=∠1,∴DE∥BC26.∵∠CAD=∠ACB,∴AD∥BC,∵EF⊥CD,∴∠EFC=90°∵∠D=90°,∴∠EFC=∠D,∴AD∥EF,∴BC∥EF,∴∠AEB=∠B.27.∵∠E=∠F,∴AE∥FP,∴∠PAE=∠APF;又∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,即∠2+∠PAE=∠1+∠APF;∴∠2=∠128.∵DC⊥EC,∴∠1+∠2=90°,又∠D=∠1,∠E=∠2,∴∠D+∠1+∠E+∠2=180°.根据三角形的内角和定理,得∠A+∠B=180°,∴AD∥BE29.∵∠A+∠ABC+∠C+∠CDA=360°而∠A=∠C,BE平分∠ABC,DF平分∠CDA∴2∠A+2∠ABE+2∠ADF=360°即∠A+∠ABE+∠ADF=180°又∠A+∠ABE+∠AEB=180°∴∠AEB=∠ADF∴BE∥DF30.∠C=∠D.理由如下:∵∠A=∠F,∴DF∥AC,∴∠D=∠DBA.∵∠1=∠DGF,又∵∠1=∠2,∴∠2=∠DGF,∴DB∥EC,∴∠DBA=∠C,∴∠C=∠D31.∵四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠CDA=180°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∵∠A=90°,∴∠1+∠AEB=90°,∵∠1=∠2,∴∠AEB=∠3,∴BE∥FD.32.∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴a∥b.33.CF∥OD.理由:∵DE⊥AO,BO⊥AO,∴DE∥BO,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴CF∥OD34.∵∠DOB是△COD的外角,∴∠C+∠CDO=∠DOB,又∵∠DOB=∠1+∠2,而∠1=∠2,∠C=∠CDO,∴∠2=∠C,∴CD∥OP35.(1)∵DE平分∠BDF,AF平分∠BAC,∴∠BDF=2∠1,∠BAC=2∠2,又∵∠1=∠2,∴∠BDF=∠BAC,∴DF∥AC;(2)∵AF平分∠BAC,∴∠BAF=∠2.又∵∠1=∠2,∴∠1=∠BAF,∴DE∥AF.36.DE∥AB,∵AD平分∠BAC,∴∠BAC=2∠1,∵EF平分∠DEC,∴∠DEC=2∠2,∵∠1=∠2,∴∠BAC=∠DEC,∴DE∥AB.37.∵∠BDE+∠CDE=∠A+∠ACD,又DE是∠BDC的平分线,∠ACD=∠A,∴∠A=∠BDE,∴DE∥AC.38.∠2与∠B相等时,AC∥BD.理由如下:∵∠A=∠1,∠1=∠2,∴∠A=∠2,∵∠2=∠B,∴∠A=∠B,∴AC∥BD.39.MN与EF平行.理由如下:∵∠1=∠A,∴MN∥AB,∵∠2=∠B,∴EF∥AB,∴MN∥EF.40.∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4,∴AB∥CD.41.∵∠E=∠F,∴BE∥CF,∴∠EBC=∠BCF,∵∠1=∠2,∴∠CBA=∠DCB,∴AB∥CD.42.∵EF⊥CD于F,∴∠EFG=90°,∵∠GEF=25°,∴∠EGF=65°,∵∠1=65°,∴∠1=∠EGF,∴AB∥CD.43.图中共有2对平行线.①AB∥CD.理由如下:∵∠1=∠2=90°,∴AB∥CD(在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行);②∵∠2=90°,∴∠4+∠5=90°,又∵∠3=30°,∠4=60°,∴∠3=∠5,∴EF∥HG(同位角相等,两直线平行).综上所述,图中共有2对平行线,它们是:AB∥CD、EF∥HG44.AB∥CD,理由:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴AB∥CD.45.∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFC=90°(垂直的定义),∴∠B=90°﹣∠1(直角三角形两锐角互余),∠GFC=90°﹣∠2(互余的定义),∵∠1=∠2(已知),∴∠B=∠GFC(等角的余角相等),∴AB∥GF(同位角相等,两直线平行)46.∵∠B=∠1,∴AB∥DE(同位角相等,两直线平行),∴∠2=∠ADE(两直线平行,内错角相等)∵∠2=∠E,∴∠E=∠ADE,∴AD∥CE(内错角相等,两直线平行).47.∵EM平分∠BEF,FN平分∠DFH,∴∠BEF=2∠MEF,∠DFH=2∠NFH,∵∠BEF=∠DFH,∴∠MEF=∠NFH,∴EM∥FN48.BE∥CF,理由是:∵BE,CF分别平分∠ABC和∠BCD,∴∠1=∠ABC,∠2=∠BCD,∵∠ABC=∠BCD,∴∠1=∠2,∴BE∥CF.49.DB与EC的位置关系是平行,理由:∵∠1=∠3,∠2=∠4(对顶角相等),又∵∠1=∠2,∴∠3=∠4,∴BD∥EC.50.(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.(2)DG∥BC,理由是:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC.51.GH∥MN.理由如下:∵HG平分∠AHM,MN平分∠DNH(已知),∴∠GHM∠AHM,∠NMH=∠DMH(角平分线定义),而∠AHM=∠DMH(已知)∴∠GHM=∠NMH(等量代换),∴GH∥MN.(内错角相等,两直线平行) 52.∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD53.∵EG⊥FG,∴∠G=90°,∴∠1+∠3=90°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴AB∥CD.54.:∵∠1+∠2=180°,∠1=130°,∴∠2=50°,∵∠A=50°,∴∠A=∠2,∴AB∥CD.55.(1)∵DE⊥AC,BF⊥AC,∴∠AED=∠CFB=90°,∴∠DAE+∠1=90°,∠BCF+∠2=90°,∵∠1=∠2,∴∠DAE=∠BCF,∴AD∥BC;(2)AB∥CD.理由如下:∵∠DAE=∠BCF,∠DAB=∠DCB,∴∠DAB﹣∠DAE=∠DCB﹣∠BCF,即∠CAB=∠ACD,∴AB∥CD.56.(1)AD与BC一定平行.理由如下:∵AB⊥AC,∴∠BAC=90°,∵∠1=30°,∠B=60°,∴∠1+∠BAC+∠B=180°,即∠BAD+∠B=180°,∴AD∥BC.(2)AB与CD不一定平行.57.∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.58.EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=2(已知),∴EF∥AD(内错角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC于点D(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,所以EF与BC的位置关系是垂直.59.∵CE平分∠ACD,∴∠1=∠2,∵∠1=∠B,∴∠2=∠B,∴AB∥CE.60.∵∠1=∠2,∴AB∥CD,∵∠3=∠4,∴AD∥BC,故可以判定AB∥CD,AD∥BC.。
平行四边形的性质一、课中强化(10分钟训练)1.如图3,在平行四边形ABCD中,下列各式不一定正确的是( )A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°图3 图4 图52.如图4,ABCD的周长为16 cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE 的周长为( )cm cm cm cm¥3.如图5,ABCD中,EF过对角线的交点O,如果AB=4 cm,AD=3 cm,OF=1 cm,则四边形BCFE的周长为__________________.4.如图6,已知在平行四边形ABCD中,AB=4 cm,AD=7 cm,∠ABC的平分线交AD 于点E,交CD的延长线于点F,则DF=_____________ cm.图6 图75.如图7,在平行四边形ABCD中,点E、F在对角线BD上,且BE=DF,求证:AE=CF.、6.如图8,在ABCD中,AE⊥BC于E,AF⊥CD于F,BE=2 cm,DF=3 cm,∠EAF=60°,试求CF的长.图8:二、课后巩固(30分钟训练)中,∠A比∠B大20°,则∠C的度数为( )° ° ° °2.以A、B、C三点为平行四边形的三个顶点,作形状不同的平行四边形,一共可以作( )个或3个个个个3.如图9所示,在ABCD中,对角线AC、BD交于点O,下列式子中一定成立的是( )⊥BD =OC =BD =OD;图9 图10 图11 4.如图10,平行四边形ABCD中,对角线AC、BD相交于点O,将△AOD平移至△BEC 的位置,则图中与OA相等的其他线段有( )条条条条5.如图11,在平行四边形ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有( )个个个个"6.如图12,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:∠BAE=∠DCF.图12。
浙教版2022年七年级数学下册第1章平行线平行线练习(含答案)第1章平行线1.1平行线知识点1平行线的概念在同一个平面内,不相交的两条直线叫做平行线.“平行”用符号“∥”表示,直线a和b是平行线,记做a∥b,读做“a平行b”.平行线的定义包含三层意思:(1)“在同一平面内”是前提条件;(2)“不相交”就是说两条直线没有交点;(3)平行线指的是“两条直线”,而不是“两条射线”或“两条线段”.1.下列说法正确的是()A.在同一平面内,不相交的两条线段是平行线段B.不相交的两条直线是平行线C.在同一平面内,不重合的两条直线的位置关系只有相交和平行两种D.在同一平面内,不相交的两条射线是平行线知识点2平行线的画法用三角尺和直尺画平行线.如图1-1-1所示,把三角尺的一边紧靠直线CD,用直尺紧靠三角板尺的另一边,沿直尺推动三角尺,然后过三角尺的一边画直线AB,这时就可画出CD的平行线AB.图1-1-12.如图1-1-2所示,过三角形ABC的三个顶点分别作它对边的平行线,标出交点,并将平行线用“∥”符号表示出来.图1-1-2知识点3平行线的性质过直线外一点只能画一条已知直线的平行线,过直线上一点不能画已知直线的平行线.3.先在纸上画三角形ABC,再任取一点P,过点P画一条直线与BC 平行,则这样的直线()A.有且只有一条B.有两条C.不存在D.有一条或不存在一利用平行线的性质进行简单的推理教材例题变式题在同一平面内,已知直线AB∥EF,直线CD与AB相交于点P,试问直线CD与EF相交吗?为什么?[归纳总结]由本题可以得出一个常用的结论:在同一平面内,如果一条直线与一组平行线中的一条相交,那么它必定与其余的直线都相交.二平面内直线交点个数的探究教材补充题已知平面内有三条互不重合的直线,请画图探究它们的位置关系并说出它们的交点个数.[反思]判断下列说法是否正确,并说明理由.(1)不相交的两条直线叫做平行线;(2)过一点有且只有一条直线与已知直线平行.一、选择题1.在同一平面内两条不重合直线的位置关系有()A.两种:平行或相交23B.两种:平行或垂直C.三种:平行、垂直或相交D.两种:垂直或相交2.如图1-1-3,在同一平面内,过点C作线段AB的平行线,下列说法正确的是()图1-1-3A.不能作B.只能作一条C.能作两条D.能作无数条3.下列关于平行的表示方法正确的是()A.a∥AB.AB∥cdC.A∥BD.a∥b4.下列四边形中,AB与CD不平行的是()图1-1-5.在同一平面内,有三条互不重合的直线,其中只有两条是平行的,那么交点有()A.0个B.1个C.2个D.3个6.下列结论正确的是()A.不相交的直线互相平行B.不相交的线段互相平行C.不相交的射线互相平行D.有公共点的直线一定不平行7.已知直线a,b在同一平面内且不相交,直线c也在这一平面内,且c与a相交,则()A.b与c相交B.b与c平行C.b与c平行或相交D.b与c的位置关系不确定二、填空题8.如图1-1-5所示,AE∥BC,AF∥BC,则A,E,F三点________,理由是____________________.图1-1-59.把图1-1-6中互相平行的线段一一写出来:______________________________________.4图1-1-610.列举现实生活中体现平行的一个例子:________.11.在同一平面内,有两条直线l1与l2.(1)若l1与l2没有公共点,则l1与l2________;(2)若l1与l2有且只有一个公共点,则l1与l2________;(3)若l1与l2有两个公共点,则l1与l2________.三、解答题12.如图1-1-7,在长方体中,A1B1∥AB,AD∥BC,你能找出图中的平行线吗?图1-1-713.如图1-1-8所示,点P在∠AOB的一边OA上,点Q在∠AOB的另一边OB上,按下列要求画图:(1)过点P,Q的直线;(2)过点P画平行于OB的直线;(3)过点Q画平行于OA的直线.图1-1-814.如图1-1-9,点P是∠ABC内一点.(1)过点P画一条直线平行于直线AB,且与BC交于点D;(2)过点P画一条直线垂直于直线BC,垂足为E;(3)过点P作直线AB的垂线段PF.图1-1-91.[实践操作题]如图1-1-10所示,D,E是线段AC的三等分点.(1)过点D作DF∥BC交AB于点F,过点E作EG∥BC交AB于点G;(2)量出AF,FG,GB的长度(精确到0.1cm),你有什么发现?(3)量出FD,GE,BC的长度(精确到0.1cm),你有什么发现?(4)根据(3)中发现的规律,若FD=1.5cm,则EG=________cm,BC=________cm.图1-1-102.[操作探究]我们知道在同一平面内,两条平行直线的交点有0个,两条相交直线的交点有1个,平面内三条平行直线的交点有0个,经过同一点的三条直线的交点有1个……(1)平面上有三条互不重合的直线,请画图探究它们的交点个数;(2)若平面内的五条直线恰有4个交点,请画出符合条件的所有图形;(3)在平面内画出10条直线,使它们的交点个数恰好是32.详解详析5【预习效果检测】1.[解析]C根据平行线的概念“在同一平面内,不相交的两条直线叫做平行线”即可得出答案.[点评]正确理解平行线的概念是解决本题的关键.学习此概念时,我们要特别注意“在同一平面内”“不相交”“直线”等关键词.2.解:如图所示.过点A作BC边的平行线,过点B作AC边的平行线,过点C作AB边的平行线,两两相交于点D,E,F,所以DE∥BC,EF∥AC,DF∥AB.3.[解析]D当点P在直线BC外时,根据“经过直线外一点,有且只有一条直线与这条直线平行”这个基本事实,可知有且仅有一条;但当点P在直线BC上时,就不存在这样的直线,故本题应选择D.【重难互动探究】例1[解析]由于直线AB,EF的位置关系已确定,AB与CD的位置关系也确定了,根据平行线的性质即可确定CD与EF的位置关系.解:直线CD与EF相交.因为AB∥EF,CD与AB相交于点P,而过点P只能作一条直线AB与EF平行,所以直线CD与EF相交.例2[解析]在同一平面内,两条不重合直线的位置关系只有两种:相交和平行.若在同一平面内有三条或三条以上直线,其位置关系就变得比较复杂,交点个数也不确定,因此需分类讨论进行探究.解:①如图①,三条直线互相平行,此时交点个数为0;②如图②,三条直线相交于一点,此时交点个数为1;③如图③,三条直线两两相交且不交于同一点,此时交点个数为3;④如图④,其中两条直线互相平行且都与第三条直线相交,此时交点个数为2.【课堂总结反思】[反思](1)不正确,理由:在同一平面内,不相交的两条直线叫做平行线.(2)不正确,理由:过直线外一点,有且只有一条直线与这条直线平行;过直线上一点,不能画已知直线的平行线.【作业高效训练】[课堂达标]1.A2.B3.D4.D5.C6.D7.A68.[答案]共线经过直线外一点,有且只有一条直线与这条直线平行9.[答案]GH∥MN,EF∥AB,CD∥PQ10.[答案]如双杠.两条笔直的铁轨等(答案不唯一,写出一个即可) 11.[答案](1)平行(2)相交(3)重合12.解:图中的平行线有AB∥DC∥D1C1∥A1B1,AD∥BC∥B1C1∥A1D1,AA1∥BB1∥CC1∥D D1.13.[解析]借助三角尺和直尺画平行线.用三角尺和直尺画图,其基本步骤如下:一落:三角尺的一边落在已知直线上;二靠:紧靠三角尺其余两边中的任意一边放上直尺;三移:三角尺沿直尺移动,使三角板尺的边经过已知点;四画:沿三角尺过已知点的一边画直线.解:如图所示.14.解:如图所示.[数学活动]1.解:(1)如图所示.(2)测量略,AF=FG=GB.(3)测量略,FD∶GE∶BC=1∶2∶3或FD+BC=2GE.(4)34.52.解:(1)如图所示.(2)如图所示.(3)如图所示.78。
2019年4月16日初中数学作业学校: ______________ 姓名: _____________ 班级:_______________ 考号:______________一、单选题1. 如图,经过直线a外一点O的4条直线中,与直线a相交的直线至少有()A. 4条B. 3条C. 2条D. 1条【答案】B【解析】【分析】根据经过直线外一点有且只有一条直线和已知直线平行得出即可.【详解】解:根据经过直线外一点有且只有一条直线和已知直线平行,得出如果有和直线a平行的,只能是一条,即与直线a相交的直线至少有3条,故选:B.【点睛】本题考查了平行线和相交线的应用,注意:经过直线外一点有且只有一条直线和已知直线平行.2. 下列说法中,正确的个数有()①在同一平面内不相交的两条线段必平行;②在同一平面内不相交的两条直线必平行;③在同一平面内不平行的两条线段必相交;④在同一平面内不平行的两条直线必相交.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据平面内直线和线段的位置关系判断.详解】解:(1)线段不相交,延长后不一定不相交,错误;(2)同一平面内,直线只有平行或相交两种位置关系,正确;(3)线段是有长度的,不平行也可以不相交,错误;(4)同(2),正确;所以(2)(4)正确.故选:B.【点睛】本题主要考查在同一平面内两直线的位置关系,需要注意(1)和(3)说的是线段.3.下列表示平行线的方法正确的是()A. ab// cdB. A // BC. a// BD. a// b【答案】D【解析】【分析】根据平行线的表达方法来判断即可得出结论.【详解】解:直线可以用两个大写字母表示,也可以用一个小写字母表示,故正确的表示方法是D.故答案为:D【点睛】本题主要考查了学生对平行线的表达方法的掌握情况,掌握平行线的表达方法是解题的关键.4 .在同一平面内,下列说法正确的是()A .没有公共点的两条线段平行B .没有公共点的两条射线平行C.不垂直的两条直线一定互相平行D .不相交的两条直线一定互相平行【答案】D【解析】【分析】根据平行线的定义,即可求得此题的答案,注意举反例的方法.详解】A. 在同一平面内,没有公共点的两条线段不一定平行,故本选项错误;B. 在同一平面内,没有公共点的两条射线不一定平行,故本选项错误;C. 在同一平面内,不垂直的两条直线不一定互相平行,故本选项错误;D. 在同一个平面内,不相交的两条直线一定互相平行,故本选项正确;【点睛】此题考查了平行线的判定.解题的关键是熟记平行线的定义.5.下列说法不正确的是( )A .过任意一点可作已知直线的一条平行线B. 同一平面内两条不相交的直线是平行线C. 在同一平面内,过一点只能画一条直线与已知直线垂直D. 在同一平面内,经过直线外一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据平行线的定义及平行公理进行判断.【详解】A 中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误B. C. D 是公理,正确.故选A.【点睛】本题考查了平行线的定义和公理,熟练掌握定义和公理是解题的关键.6.在同一平面内,无公共顶点的两个直角,如果它们有一条边共线,那么另一边互相( )A •平行B.垂直C.共线 D.平行或共线【答案】A【解析】【分析】结合图形,由平行线的判断定理进行分析.【详解】如图所示:n n无公共顶点的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行•故选A.【点睛】本题考查了平行线的判定,熟练掌握判定定理是解题的关键7 .下列结论正确的是()A .过一点有且只有一条直线与已知直线垂直B. 过一点有且只有一条直线与已知直线平行C. 在同一平面内,不相交的两条射线是平行线D. 如果两条直线都与第三条直线平行,那么这两条直线互相平行【答案】D【解析】【分析】本题可结合平行线的定义,垂线的性质和平行公理进行判定即可.【详解】(1)过一点有且只有一条直线与已知直线垂直,应强调在同一平面内,故本项错误;(2)过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.(3)在同一平面内,不相交的两条直线是平行线,射线不一定,故本项错误;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行是正确的.故选D.【点睛】本题主要考查了平行线的定义,垂线的性质和平行公理.熟练掌握公理和概念是解决本题的关键.8 .在同一平面内,直线AB与CD相交,AB与EF平行,则CD与EF()A •平行B.相交C. 重合D.三种情况都有可能【答案】B【解析】【分析】先根据题意画出图形,即可得出答案.【详解】如图,•••在同一平面内,直线AB与CD相交于点O, AB // EF,••• CD与EF的位置关系是相交,故选B.【点睛】本题考查了平行线的性质的应用,能根据题意画出图形是解此题的关键,注意:数形结合思想的应用.9 .下列语句不正确的是()A .在同一平面内,过直线外一点有且只有一条直线与已知直线平行B. 两直线被第三条直线所截,如果同位角相等,那么两直线平行C. 两点确定一条直线D. 内错角相等【答案】D【解析】【分析】根据平行线的公理、推论及平行线的判定,可得答案.【详解】A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故A正确;B、两直线被第三直线所截,如果同位角相等,那么两直线平行,故B正确;C、两点确定一条直线,故C正确;D、两直线平行,内错角相等,故D错误;故选D.【点睛】本题考查了平行公理及推论,熟记公理、推论是解题关键.10 .下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与已知直线平行;④两点之间的距离是两点间的线段;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】依据线段的性质、平行公理、两点间的距离以及垂线的定义,即可得到正确结论.【详解】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,错误;③过直线外一点有且仅有一条直线与已知直线平行,正确;④两点之间的距离是两点间的线段的长度,错误;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等或互补,错误. 故选:B.【点睛】本题考查线段的性质、平行公理、两点间的距离以及垂线的定义,解题时注意:平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度.11 .下列说法中正确的是()A .两条相交的直线叫做平行线B. 在直线外一点,只能画出一条直线与已知直线平行C. 如果a // b, b // c,贝U a不与b平行D. 两条不平行的射线,在同一平面内一定相交【答案】B【解析】【分析】根据平行线的性质进行解题即可,见详解.详解】解:两条不相交的直线叫做平行线,故A 错误,在直线外一点,只能画出一条直线与已知直线平行如果a// b , b // c ,则a // b,平行线的传递性,故C 错误, 射线一端固定,另一端无限延伸,故D 错误, 综上选B. 【点睛】,属于简单题,熟悉平行线的性质是解题关键【解析】【分析】 根据平行线的传递性即可解题 【详解】解:••• AB // CD ,CD // EF ,••• AB // EF ,(平行线的传递性)故选A. 【点睛】本题考查了平行线的传递性 ,属于简单题,熟悉平行线的性质是解题关键13 •一条直线与另两条平行直线的关系是 ( )A .一定与两条平行线平行B .可能与两条平行线的一条平行,一条相交C . 一定与两条平行线相交D .与两条平行线都平行或都相交【答案】D 【解析】 【分析】根据在同一平面内,两条直线的位置关系有两种:平行和相交,可知如果一条直线与另 两条平行线中的一条相交,则它与另一条平行线也相交;如果一条直线与另两条平行线中的一条平行,则它与另一条平行线也平行即可求出本题答案【详解】,正确,// EF ,那么AB 和EF 的位置关系是本题考查了平行线的性质C.垂直D.不能确定【答案】A•••在同一平面内,两条直线的位置关系有两种:平行和相交,•••如果一条直线与另两条平行线中的一条相交,则它与另一条平行线也相交,否则与平行公理相矛盾;如果一条直线与另两条平行线中的一条平行,根据平行于同一直线的两条直线平行,则它与另一条平行线也平行.故答案为:D.【点睛】本题考查了平行线的相关知识,熟练掌握平行线的有关性质是本题解题的关键. 14.下列说法中,正确的个数为( )①过一点有无数条直线与已知直线平行;②如果a// b, a // c,那么b // c;③如果两线段不相交,那么它们就平行;④如果两直线不相交,那么它们就平行.A.1 个B.2 个C.3 个D.4 个【答案】A【解析】【分析】根据平行线的定义、公理及推论判断即可求出本题答案.【详解】(1) 过直线外一点有且只有一条直线与已知直线平行,故错误;(2) 根据平行公理的推论,正确;(3) 线段的长度是有限的,不相交也不一定平行,故错误;(4) 应该是“在同一平面内”,故错误.正确的只有一个,故选A.故答案为:A.【点睛】本题考查了平行公理及推论,平行线,熟练掌握该知识点是本题解题的关键.15 •已知在同一平面内有一直线AB和一点P,过点P画AB的平行线,可画()A • 1条B. 0条 C. 1条或0条D.无数条【答案】C【解析】【分析】根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行可得答案.【详解】如果点P在直线上,过点P画直线与AB的平行线可画0条,如果点P在直线外,过点P画直线与AB的平行线可画1条•故答案为:C.【点睛】本题考查了平行公理及推论,熟练掌握该知识点是本题解题的关键16 .下列说法中,正确的是()A •平面内,没有公共点的两条线段平行B. 平面内,没有公共点的两条射线平行C. 没有公共点的两条直线互相平行D. 互相平行的两条直线没有公共点【答案】D【解析】【分析】回忆线段之间、射线之间与直线之间的位置关系;对于A,可在纸上画出两条没有公共点的线段,观察两条线段的位置关系;对于B,可在纸上画出两条没有公共点的射线,观察两条线段的位置关系;对于C,思考若两条直线不在一个平面内,是否能够得到两条直线不平行也不相交,对于D,根据平行线的定义可作出判断•【详解】对于A,如图所示,A错误;对于C,如果两条直线不在同一个平面内,不相交也可能不平行,则C错误;对于D,根据平行线的定义可知D正确•故答案为:D.【点睛】本题考查了两条直线的位置关系,直线、射线、线段的定义,熟练掌握直线的位置关系及相关定义是本题解题的关键•17 .下面说法正确的是( )A .过两点有且只有一条直线B.平角是一条直线C.两条直线不相交就一定平行D.过一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据直线公理:经过两点有且只有一条直线;角的概念;平行线的定义和平行公理及推论进行判断.【详解】A、由直线公理可知,过两点有且只有一条直线,故本选项正确;B、平角是有公共端点是两条射线组成的图形,故本选项错误;C、同一平面内两条直线不相交就一定平行,故本选项错误;D、经过直线外一点有且只有一条直线与已知直线平行,故本选项错误.故选:A .【点睛】本题属于综合题,考查了直线的性质:两点确定一条直线;角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边;同一平面内,两条直线的位置关系:平行或相交;平行公理:经过直线外一点,有且只有一条直线与这条直线平行.18 .下列说法错误的是( )A .对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行【答案】D【解析】【分析】A .根据对顶角的性质判定即可;B. 根据线段的性质判定即可;C. 根据补角的性质判定即可;D .根据平行公理判定即可 .【详解】A .对顶角相等,故选项正确;B. 两点之间连线中,线段最短,故选项正确;C•等角的补角相等,故选项正确;D .过直线外一点P,能画一条直线与已知直线平行,故选项错误•故选D.【点睛】本题分别考查了对顶角、邻补角的性质、线段的性质、余角、补角的关系及平行公理,都是基础知识,熟练掌握这些知识即可解决问题 .二、填空题19 . L i, 12, 13为同一平面内的三条直线,如果11与12不平行,12与13不平行,则11与13的位置关系是_______________ .【答案】相交或平行【解析】【分析】根据关键语句“若?有?不平行,??与?不平行,”画出图形,图形有两种情况,根据图形可得答案.【详解】根据题意可得图形:根据图形可知:若?不平行,??与?3不平行,则?3可能相交或平行,故答案为:相交或平行•【点睛】本题主要考查了直线的位置关系,在同一平面内,两条直线的位置关系:平行或相交20 •小明列举生活中几个例子,你认为是平行线的是________________ (填序号).①马路上斑马线;②火车铁轨;③直跑道线;④长方形门框上下边.【答案】①②③④【解析】【分析】根据平行线的判定进行判断即可•【详解】解:是平行线的是①②③④.故答案为:①②③④【点睛】本题考查了平行线的含义,应结合生活实际进行解答21.如图,用符号表示下列两棱的位置关系.AB ___ A ' B AA ' __________ AB ; AD _____ B ' C【答案】// 丄 //【解析】【分析】根据题意,可由立体图形中的平行线的判定条件,以及垂直的判定条件进行分析,然后填空即可.【详解】解:由图可知,AB// A B', AA丄AB AD// B' C'【点睛】本题主要考查的是直线的位置关系•22 .如图,在正方体中,与线段AB平行的线段有________ 条.【答案】3【解析】【分析】与线段AB平行的线段的种类为:①直接与AB平行,②与平行于AB的线段平行. 【详解】解:与AB平行的线段是:DC EF;与CD平行的线段是:HG所以与AB线段平行的线段有:EF、HG DC.故答案是:EF、HG DC【点睛】本题考查了平行线•平行线的定义:在同一平面内,不相交的两条直线叫平行线.23 .如图所示,用直尺和三角尺作直线AB , CD,从图中可知,直线AB与直线CD的位置关系为 ________ .【答案】平行【解析】【分析】根据同位角相等,两直线平行判断.【详解】如图,C 亠丘D根据题意,/ 1与/ 2是三角尺的同一个角,所以/仁/2,所以,AB // CD (同位角相等,两直线平行)故答案为:平行.【点睛】本题考查了平行线的判定熟练掌握同位角相等,两直线平行,并准确识图是解题的关键.24 .在如图的长方体中,与棱AB平行的棱有 ________________________________________;与棱AA'平行的棱有DD , BB , CC解析】【分析】根据平行的定义,结合图形直接找出和棱AB平行的棱,与棱AA平行的棱即可.【详解】由图可知,和棱AB平行的棱有CD , AB', CD;与棱AA 平行的棱有DD ,BB ,CC .故答案为:CD , A B , C D ;DD , BB , CC .【点睛】本题考查了认识立体图形的知识点,熟练掌握平行的定义是本题解题的关键.25.在同一平面内,直线AB 与直线CD 满足下列条件,则其对应的位置关系是(1)____________________________________________________________________ 若直线AB 与直线CD 没有公共点,则直线AB 与直线CD 的位置关系为 __________________________ ;(2)直线AB 与直线CD 有且只有一个公共点,则直线AB 与直线CD 的位置关系为_______________ 【答案】平行;相交.【解析】【分析】根据“在同一平面内,两条直线的位置关系是:平行或相交.平行没有公共点,相交只有一个公共点”即可推出本题答案.【详解】在同一平面内,直线AB 与CD 满足下列条件,则其对应的位置关系是:(1)若AB 与CD没有公共点,则AB与CD的位置关系是平行;(2 )若AB与CD有且只有一个公共点,则AB 与CD 的位置关系为相交.故答案为:(1)平行;(2)相交.【点睛】本题考查了直线的位置关系,熟练掌握判定方法是本题解题的关键.三、解答题26 .把图中的互相平行的线段用符号“//”写出来,互相垂直的线段用符号“丄”写出来:【解析】根据平行线和垂直的定义即可解答.【详解】 解:如图所示,在长方体中 :互相平行的线段:AB// CD EF// GH MN PQ 互相垂直的线段:AB 丄 EF, AB 丄 GH CDL EF, CDL GH【点睛】本题考查了平行线和垂直的定义 ,理解定义是解题的关键•27 .如图,过点 0 '分别画 AB , CD 的平行线.【答案】详见解析•【解析】【分析】把三角板的一条直角边与已知直线重合, 用直尺靠紧三角板的另一条直角边, 沿直尺移 动三角板,使三角板的原来和已知直线重合的直角边和 O 点重合,过O 点沿三角板的直角边画直线即可.【详解】解:如图,本题考查了学生利用直尺和三角板作平行线的能力28 •如图,按要求完成作图⑴过点P 作AB 的平行线EF ;(2) 过点P 作CD 的平行线 MN ;(3) 过点P 作AB 的垂线段,垂足为 G.【答案】作图见解析【点睛】【分析】利用题中几何语言画出对应的几何图形.【详解】如图,本题考查了平行线的作法和作垂线的步骤.29 •我们知道相交的两条直线的交点个数是 1 ;两条平行线的交点个数是0;平面内三条平行线的交点个数是0,经过同一点的三条直线的交点个数是 1 ;依此类推(1) 请你画图说明平面内五条直线最多有几个交点.(2) 平面内五条直线可以有4个交点吗?如果可以,请你画出符合条件的所有图形;如果不可以,请说明理由.(3) 在平面内画出10条直线,使交点个数恰好是31.【答案】(1)平面内五条直线的交点最多有10个,⑵五条直线可以有4个交点,⑶答案不唯一•【解析】【分析】(1)直接让五条直线中的任意两条互相相交即可;(2)不妨先让其中的四条直线相交得到3个交点,然后再使最后一条直线,与其中任意一条相交且与之前的交点不重合即可,接下来自己试着想想还有哪些画法;(3)结合已知,禾U用平行线的性质画出图形即可【详解】解:(1)平面内五条直线的交点最多有 10个,如图①.(2)五条直线可以有4个交点,如图②(a // b// c // d),图③(AD // BC , AB // DC),图④(a // b).團② 関③(3) 答案不唯一,如图, a / b / c / d / e , f // g // h , l // m.【点睛】此题考查平面内不重合直线的位置关系, 解答时要分各种情况解答, 的所有情形,不要遗漏,否则讨论的结果就不全面.30 •如图,在方格纸上:(1)已有的四条线段中,哪些是互相平行的?⑵过点M 画AB 的平行线.⑶过点N 画GH 的平行线.37T~/ 、A7 D 、M / 7~■【答案】(1)AB // CD ; (2)画图见解析;⑶画图见解析【解析】【分析】(1) 根据图形可观察出互相平行的线段.(2) 过点M 画AB 的平行线.(3)过点N 画GH 的平行线.要考虑到可能出现【详解】(1)由图形可得:AB // CD .⑵(3)所画图形如下:【点睛】 本题考查了平行线的判定方法及过一点作平行线的知识, 的判定方法及作图的基本步骤.属于基础题, 主要掌握平行线。
---2019年4月16日初中数学作业学校:___________:___________班级:___________考号:___________一、单选题1.如图,经过直线a外一点O的4条直线中,与直线a相交的直线至少有()A.4条B.3条C.2条D.1条【答案】B【解析】【分析】根据经过直线外一点有且只有一条直线和已知直线平行得出即可.【详解】解:根据经过直线外一点有且只有一条直线和已知直线平行,得出如果有和直线a平行的,只能是一条,即与直线a相交的直线至少有3条,故选:B.【点睛】本题考查了平行线和相交线的应用,注意:经过直线外一点有且只有一条直线和已知直线平行.2.下列说法中,正确的个数有()①在同一平面内不相交的两条线段必平行;②在同一平面内不相交的两条直线必平行;③在同一平面内不平行的两条线段必相交;④在同一平面内不平行的两条直线必相交.A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据平面内直线和线段的位置关系判断.- - 优质【详解】解:(1)线段不相交,延长后不一定不相交,错误;(2)同一平面内,直线只有平行或相交两种位置关系,正确;(3)线段是有长度的,不平行也可以不相交,错误;(4)同(2),正确;所以(2)(4)正确.故选:B.【点睛】本题主要考查在同一平面内两直线的位置关系,需要注意(1)和(3)说的是线段.3.下列表示平行线的方法正确的是()A.ab∥cd B.A∥B C.a∥B D.a∥b【答案】D【解析】【分析】根据平行线的表达方法来判断即可得出结论.【详解】解:直线可以用两个大写字母表示,也可以用一个小写字母表示,故正确的表示方法是D.故答案为:D【点睛】本题主要考查了学生对平行线的表达方法的掌握情况,掌握平行线的表达方法是解题的关键.4.在同一平面内,下列说法正确的是( )A.没有公共点的两条线段平行B.没有公共点的两条射线平行C.不垂直的两条直线一定互相平行D.不相交的两条直线一定互相平行【答案】D【解析】【分析】根据平行线的定义,即可求得此题的答案,注意举反例的方法.【详解】---A.在同一平面内,没有公共点的两条线段不一定平行,故本选项错误;B.在同一平面内,没有公共点的两条射线不一定平行,故本选项错误;C.在同一平面内,不垂直的两条直线不一定互相平行,故本选项错误;D.在同一个平面内,不相交的两条直线一定互相平行,故本选项正确;【点睛】此题考查了平行线的判定.解题的关键是熟记平行线的定义.5.下列说法不正确的是( )A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过一点只能画一条直线与已知直线垂直D.在同一平面内,经过直线外一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据平行线的定义及平行公理进行判断.【详解】A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B. C.D是公理,正确.故选A.【点睛】本题考查了平行线的定义和公理,熟练掌握定义和公理是解题的关键.6.在同一平面内,无公共顶点的两个直角,如果它们有一条边共线,那么另一边互相( )A.平行B.垂直C.共线D.平行或共线【答案】A【解析】【分析】结合图形,由平行线的判断定理进行分析.【详解】如图所示:- - 优质无公共顶点的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行.故选A.【点睛】本题考查了平行线的判定,熟练掌握判定定理是解题的关键.7.下列结论正确的是()A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行【答案】D【解析】【分析】本题可结合平行线的定义,垂线的性质和平行公理进行判定即可.【详解】(1)过一点有且只有一条直线与已知直线垂直,应强调在同一平面内,故本项错误;(2)过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.(3)在同一平面内,不相交的两条直线是平行线,射线不一定,故本项错误;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行是正确的.故选D.【点睛】本题主要考查了平行线的定义,垂线的性质和平行公理.熟练掌握公理和概念是解决本题的关键.8.在同一平面内,直线AB与CD相交,AB与EF平行,则CD与EF( )A.平行B.相交C.重合D.三种情况都有可能【答案】B---【解析】【分析】先根据题意画出图形,即可得出答案.【详解】如图,∵在同一平面内,直线AB与CD相交于点O,AB∥EF,∴CD与EF的位置关系是相交,故选B.【点睛】本题考查了平行线的性质的应用,能根据题意画出图形是解此题的关键,注意:数形结合思想的应用.9.下列语句不正确的是( )A.在同一平面内,过直线外一点有且只有一条直线与已知直线平行B.两直线被第三条直线所截,如果同位角相等,那么两直线平行C.两点确定一条直线D.内错角相等【答案】D【解析】【分析】根据平行线的公理、推论及平行线的判定,可得答案.【详解】A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故A正确;B、两直线被第三直线所截,如果同位角相等,那么两直线平行,故B正确;C、两点确定一条直线,故C正确;D、两直线平行,内错角相等,故D错误;故选D.- - 优质【点睛】本题考查了平行公理及推论,熟记公理、推论是解题关键.10.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与已知直线平行;④两点之间的距离是两点间的线段;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等.A.1个B.2个C.3个D.4个【答案】B【解析】【分析】依据线段的性质、平行公理、两点间的距离以及垂线的定义,即可得到正确结论.【详解】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,错误;③过直线外一点有且仅有一条直线与已知直线平行,正确;④两点之间的距离是两点间的线段的长度,错误;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等或互补,错误.故选:B.【点睛】本题考查线段的性质、平行公理、两点间的距离以及垂线的定义,解题时注意:平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度.11.下列说法中正确的是()A.两条相交的直线叫做平行线B.在直线外一点,只能画出一条直线与已知直线平行C.如果a∥b,b∥c,则a不与b平行D.两条不平行的射线,在同一平面内一定相交【答案】B【解析】【分析】根据平行线的性质进行解题即可,见详解.---【详解】解:两条不相交的直线叫做平行线,故A错误,在直线外一点,只能画出一条直线与已知直线平行,正确,如果a∥b,b∥c,则a∥b,平行线的传递性,故C错误,射线一端固定,另一端无限延伸,故D错误,综上,选B.【点睛】本题考查了平行线的性质,属于简单题,熟悉平行线的性质是解题关键.12.如图,若AB∥CD,CD∥EF,那么AB和EF的位置关系是()A.平行B.相交C.垂直D.不能确定【答案】A【解析】【分析】根据平行线的传递性即可解题.【详解】解:∵AB∥CD,CD∥EF,∴AB∥EF,(平行线的传递性)故选A.【点睛】本题考查了平行线的传递性,属于简单题,熟悉平行线的性质是解题关键.13.一条直线与另两条平行直线的关系是( )A.一定与两条平行线平行B.可能与两条平行线的一条平行,一条相交C.一定与两条平行线相交D.与两条平行线都平行或都相交【答案】D【解析】【分析】根据在同一平面内,两条直线的位置关系有两种:平行和相交,可知如果一条直线与另两条平行线中的一条相交,则它与另一条平行线也相交;如果一条直线与另两条平行线- - 优质中的一条平行,则它与另一条平行线也平行即可求出本题答案.【详解】∵在同一平面内,两条直线的位置关系有两种:平行和相交,∴如果一条直线与另两条平行线中的一条相交,则它与另一条平行线也相交,否则与平行公理相矛盾;如果一条直线与另两条平行线中的一条平行,根据平行于同一直线的两条直线平行,则它与另一条平行线也平行.故答案为:D.【点睛】本题考查了平行线的相关知识,熟练掌握平行线的有关性质是本题解题的关键. 14.下列说法中,正确的个数为( )①过一点有无数条直线与已知直线平行;②如果a∥b,a∥c,那么b∥c;③如果两线段不相交,那么它们就平行;④如果两直线不相交,那么它们就平行.A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行线的定义、公理及推论判断即可求出本题答案.【详解】(1)过直线外一点有且只有一条直线与已知直线平行,故错误;(2)根据平行公理的推论,正确;(3)线段的长度是有限的,不相交也不一定平行,故错误;(4)应该是“在同一平面内”,故错误.正确的只有一个,故选A.故答案为:A.【点睛】本题考查了平行公理及推论,平行线,熟练掌握该知识点是本题解题的关键.15.已知在同一平面内有一直线AB和一点P,过点P画AB的平行线,可画( ) A.1条B.0条C.1条或0条D.无数条【答案】C【解析】【分析】--- -- 优质根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行可得答案.【详解】如果点P 在直线上,过点P 画直线与AB 的平行线可画0条,如果点P 在直线外,过点P 画直线与AB 的平行线可画1条.故答案为:C.【点睛】本题考查了平行公理及推论,熟练掌握该知识点是本题解题的关键.16.下列说法中,正确的是( )A .平面内,没有公共点的两条线段平行B .平面内,没有公共点的两条射线平行C .没有公共点的两条直线互相平行D .互相平行的两条直线没有公共点【答案】D【解析】【分析】回忆线段之间、射线之间与直线之间的位置关系;对于A ,可在纸上画出两条没有公共点的线段,观察两条线段的位置关系;对于B ,可在纸上画出两条没有公共点的射线,观察两条线段的位置关系;对于C ,思考若两条直线不在一个平面内,是否能够得到两条直线不平行也不相交,对于D ,根据平行线的定义可作出判断.【详解】对于A ,如图所示,A 错误;对于B ,如图所示,B 错误;对于C ,如果两条直线不在同一个平面内,不相交也可能不平行,则C 错误; 对于D ,根据平行线的定义可知D 正确.故答案为:D.【点睛】本题考查了两条直线的位置关系,直线、射线、线段的定义,熟练掌握直线的位置关系及相关定义是本题解题的关键.17.下面说法正确的是()A.过两点有且只有一条直线B.平角是一条直线C.两条直线不相交就一定平行D.过一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据直线公理:经过两点有且只有一条直线;角的概念;平行线的定义和平行公理及推论进行判断.【详解】A、由直线公理可知,过两点有且只有一条直线,故本选项正确;B、平角是有公共端点是两条射线组成的图形,故本选项错误;C、同一平面内两条直线不相交就一定平行,故本选项错误;D、经过直线外一点有且只有一条直线与已知直线平行,故本选项错误.故选:A.【点睛】本题属于综合题,考查了直线的性质:两点确定一条直线;角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边;同一平面内,两条直线的位置关系:平行或相交;平行公理:经过直线外一点,有且只有一条直线与这条直线平行.18.下列说法错误的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行【答案】D【解析】【分析】A.根据对顶角的性质判定即可;B.根据线段的性质判定即可;C.根据补角的性质判定即可;D.根据平行公理判定即可.【详解】A.对顶角相等,故选项正确;-- - -- 优质B .两点之间连线中,线段最短,故选项正确;C .等角的补角相等,故选项正确;D .过直线外一点P ,能画一条直线与已知直线平行,故选项错误.故选D .【点睛】本题分别考查了对顶角、邻补角的性质、线段的性质、余角、补角的关系及平行公理,都是基础知识,熟练掌握这些知识即可解决问题.二、填空题19.L 1,l 2,l 3为同一平面内的三条直线,如果l 1与l 2不平行,l 2与l 3不平行,则l 1与l 3的位置关系是___________.【答案】相交或平行【解析】【分析】根据关键语句“若与不平行, 与不平行,”画出图形,图形有两种情况,根据图形可得答案.【详解】根据题意可得图形:根据图形可知:若与不平行,与不平行,则与可能相交或平行,故答案为:相交或平行.【点睛】本题主要考查了直线的位置关系,在同一平面内,两条直线的位置关系:平行或相交.20.小明列举生活中几个例子,你认为是平行线的是_____(填序号).①马路上斑马线;②火车铁轨;③直跑道线;④长方形门框上下边.【答案】①②③④【解析】【分析】根据平行线的判定进行判断即可.【详解】解:是平行线的是①②③④.故答案为:①②③④【点睛】本题考查了平行线的含义,应结合生活实际进行解答.21.如图,用符号表示下列两棱的位置关系.AB____A′B′;AA′____AB;AD____B′C′.【答案】∥⊥∥【解析】【分析】根据题意,可由立体图形中的平行线的判定条件,以及垂直的判定条件进行分析,然后填空即可.【详解】解:由图可知,AB∥A′B′,AA′⊥AB,AD∥B′C′【点睛】本题主要考查的是直线的位置关系.22.如图,在正方体中,与线段AB平行的线段有____条.【答案】3【解析】【分析】与线段AB平行的线段的种类为:①直接与AB平行,②与平行于AB的线段平行.【详解】--- -- 优质解:与AB 平行的线段是:DC 、EF ;与CD 平行的线段是:HG ,所以与AB 线段平行的线段有:EF 、HG 、DC .故答案是:EF 、HG 、DC .【点睛】本题考查了平行线.平行线的定义:在同一平面内,不相交的两条直线叫平行线.23.如图所示,用直尺和三角尺作直线AB ,CD ,从图中可知,直线AB 与直线CD 的位置关系为_____.【答案】平行【解析】【分析】根据同位角相等,两直线平行判断.【详解】如图,根据题意,∠1与∠2是三角尺的同一个角,所以∠1=∠2,所以,AB ∥CD (同位角相等,两直线平行).故答案为:平行.【点睛】本题考查了平行线的判定熟练掌握同位角相等,两直线平行,并准确识图是解题的关键.24.在如图的长方体中,与棱AB 平行的棱有_____________________________;与棱AA ′平行的棱有______________________________.【答案】CD,A′B′,C′D′;DD′,BB′,CC′.【解析】【分析】根据平行的定义,结合图形直接找出和棱AB平行的棱,与棱AA′平行的棱即可.【详解】由图可知,和棱AB平行的棱有CD,A′B′,C′D′;与棱AA′平行的棱有DD′,BB′,CC′.故答案为:CD,A′B′,C′D′;DD′,BB′,CC′.【点睛】本题考查了认识立体图形的知识点,熟练掌握平行的定义是本题解题的关键.25.在同一平面内,直线AB与直线CD满足下列条件,则其对应的位置关系是(1)若直线AB与直线CD没有公共点,则直线AB与直线CD的位置关系为__________;(2)直线AB与直线CD有且只有一个公共点,则直线AB与直线CD的位置关系为_____.【答案】平行;相交.【解析】【分析】根据“在同一平面内,两条直线的位置关系是:平行或相交.平行没有公共点,相交只有一个公共点”即可推出本题答案.【详解】在同一平面内,直线AB与CD满足下列条件,则其对应的位置关系是:(1)若AB与CD没有公共点,则AB与CD的位置关系是平行;(2)若AB与CD有且只有一个公共点,则AB与CD的位置关系为相交.故答案为:(1)平行;(2)相交.【点睛】本题考查了直线的位置关系,熟练掌握判定方法是本题解题的关键.三、解答题26.把图中的互相平行的线段用符号“∥”写出来,互相垂直的线段用符号“⊥”写出--- - -优质来:【答案】详见解析.【解析】【分析】根据平行线和垂直的定义即可解答.【详解】解:如图所示,在长方体中:互相平行的线段:AB ∥CD ,EF ∥GH ,MN ∥PQ ;互相垂直的线段:AB ⊥EF ,AB ⊥GH ,CD ⊥EF ,CD ⊥GH .【点睛】本题考查了平行线和垂直的定义,理解定义是解题的关键.27.如图,过点O ′分别画AB ,CD 的平行线.【答案】详见解析.【解析】【分析】把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和O ′点重合,过O ′点沿三角板的直角边画直线即可.【详解】解:如图,【点睛】本题考查了学生利用直尺和三角板作平行线的能力28.如图, 按要求完成作图.(1)过点P作AB的平行线EF;(2)过点P作CD的平行线MN;(3)过点P作AB的垂线段,垂足为G.【答案】作图见解析【解析】【分析】利用题中几何语言画出对应的几何图形.【详解】如图,【点睛】本题考查了平行线的作法和作垂线的步骤.29.我们知道相交的两条直线的交点个数是1;两条平行线的交点个数是0;平面内三条平行线的交点个数是0,经过同一点的三条直线的交点个数是1;依此类推……(1)请你画图说明平面内五条直线最多有几个交点.(2)平面内五条直线可以有4个交点吗?如果可以,请你画出符合条件的所有图形;如果不可以,请说明理由.(3)在平面内画出10条直线,使交点个数恰好是31.【答案】(1)平面内五条直线的交点最多有10个,(2)五条直线可以有4个交点,(3)答案不唯一.【解析】【分析】(1)直接让五条直线中的任意两条互相相交即可;(2)不妨先让其中的四条直线相交得到3个交点,然后再使最后一条直线,与其中任-- --- 优质意一条相交且与之前的交点不重合即可,接下来自己试着想想还有哪些画法;(3)结合已知,利用平行线的性质画出图形即可.【详解】解:(1)平面内五条直线的交点最多有10个,如图①.(2)五条直线可以有4个交点,如图②(a ∥b ∥c ∥d ),图③(AD ∥BC ,AB ∥DC ),图④(a ∥b ).(3)答案不唯一,如图,a ∥b ∥c ∥d ∥e ,f ∥g ∥h ,l ∥m .【点睛】此题考查平面内不重合直线的位置关系,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.30.如图,在方格纸上:(1)已有的四条线段中,哪些是互相平行的?(2)过点M 画AB 的平行线.(3)过点N 画GH 的平行线.【答案】(1)AB ∥CD ;(2)画图见解析;(3)画图见解析.【解析】【分析】(1)根据图形可观察出互相平行的线段.(2)过点M画AB的平行线.(3)过点N画GH的平行线.【详解】(1)由图形可得:AB∥CD.(2)(3)所画图形如下:【点睛】本题考查了平行线的判定方法及过一点作平行线的知识,属于基础题,主要掌握平行线的判定方法及作图的基本步骤.。
四年级上册数学一课一练平行与垂直一、单选题1.从直线外一点画已知直线的平行线,可以画()条.A. 1B. 2C. 无数2.从直线外一点到己知直线所画的线段中,( )最短。
A. 线段B. 直线C. 垂直线段3.下面三组直线,()组的两条线互相垂直。
A. B. C.4.在同一平面内,与一条直线相距4厘米的直线有()条.A. 1B. 2C. 无数二、判断题5.判断对错.如果直线AB是直线CD的垂线,那么直线CD也一定是直线AB的垂线.6.两条直线互相垂直,相交的四个角相等。
7.在同一平面内有三条直线a、b、c,已知a与b互相平行、b与c互相平行,则a∥c.()三、填空题8.通过两点能画________条直线。
与已知直线平行的直线有________条。
9.当两条直线相交成直角时,这两条直线就互相________。
10.下面的各组直线,互相垂直的是A. B. C. D.11.两条平行线之间的距离是6厘米,在这两条平行线之间作一条垂线,这条垂线的长是________厘米。
四、解答题12.如图折线,这是一条公路的示意图,M点处有一个商场。
(1)请你量出这条公路拐角的度数,并标记在图中。
(2)从AO段修一条路通往商场,使距离最短,请你画出来。
(3)以商场为起点,往东修一条路与OB平行,请你画出来。
五、作图题13.(1)①过A点画BD的平行线②过B点画CD的垂线。
(2)画一个长4厘米,宽2厘米的长方形。
14.图中从点A向小河如何修路最近? 请画出来。
六、综合题15.如图,AB垂直于BC,且AB=6厘米,BC=8厘米,AC=10厘米。
(1)点C到AB的距离是________厘米。
(2)点A到BC的距离是________厘米。
(3)A,C两点间的距离是________厘米。
参考答案一、单选题1.【答案】A【解析】【解答】解:从直线外一点画已知直线的平行线,可以画1条。
故答案为:A。
【分析】过直线外一点有且只有一条直线与已知直线平行。
第4节直线、平面平行的判定及其性质考试要求1。
以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题。
知识梳理1.直线与平面平行(1)直线与平面平行的定义直线l与平面α没有公共点,则称直线l与平面α平行。
(2)判定定理与性质定理文字语言图形表示符号表示判定定理平面外一条直线与此平面内的一条直线平行,则该直线平行于此平面a⊄α,b⊂α,a∥b⇒a∥α性质定理一条直线和一个平面平行,则过这条a∥α,a⊂β,α∩β直线的任一平面与此平面的交线与该直线平行=b⇒a∥b2。
平面与平面平行(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β性质定两个平面平行,则其中一个平面内的直线平行于α∥β,a⊂α⇒a∥β理另一个平面如果两个平行平面同时和第三个平面相交,那么它们的交线平行α∥β,α∩γ=a,β∩γ=b⇒a∥b3。
与垂直相关的平行的判定(1)a⊥α,b⊥α⇒a∥b.(2)a⊥α,a⊥β⇒α∥β。
[常用结论与易错提醒]1.平行关系的转化2。
平面与平面平行的六个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面。
(2)夹在两个平行平面间的平行线段长度相等。
(3)经过平面外一点有且只有一个平面与已知平面平行。
(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.(6)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.诊断自测1.判断下列说法的正误。
(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行。
()(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条。
平行线性质练习题1. 已知直线AB和CD平行,若BE平分∠ABC,求证:BE也平分∠ECD。
2. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:同旁内角互补。
3. 若直线a ∥ b,直线b ∥ c,求证:直线a ∥ c。
4. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 120°,求∠EFD的度数。
5. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,BC = DA,求证:四边形ABCD是平行四边形。
6. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,求证:PQ也垂直于l2。
7. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:内错角相等。
8. 若直线a ∥ b,直线c与a、b都相交,且∠1 = ∠2,求证:直线c ∥ b。
9. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠AEF = 30°,求∠CFD的度数。
10. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AD = BC,求证:四边形ABCD是矩形。
11. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ = QR,PR = QR,求证:∠PQR = 90°。
12. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:同位角相等。
13. 若直线a ∥ b,直线c与a、b都相交,且∠1 + ∠2 = 180°,求证:直线c ∥ a。
14. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 135°,求∠EFD的度数。
15. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AC= BD,求证:四边形ABCD是菱形。
16. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,且PQ = QR,求证:PR垂直于l2。
平行线的判定练习题一、选择题(每小题3分,共36分)1.下面四个图中,∠1=∠2一定成立的是( C )2.如图,已知点O 是直线AB 上一点,∠1=65°,则∠2的度数是( D )A.25°B.65°C.105°D.115°3.下列说法正确的是( A )A.a ,b ,c 是直线,且a ∥b,b∥c,则a∥cB.a ,b ,c 是直线,且a⊥b,b⊥c,则a⊥cC.a ,b ,c 是直线,且a ∥b,b⊥c,则a∥cD.a ,b ,c 是直线,且a∥b,b∥c,则a⊥c4.如图,下列各语句中,错误的语句是( B )A .∠ADE 与∠B 是同位角 B.∠BDE 与∠C 是同旁内角C.∠BDE 与∠AED 是内错角D.∠BDE 与∠DEC 是同旁内角5.如图,点O 在直线AB 上,且OC⊥OD.若∠COA=36°,则∠DOB 大小为( B )A.36°B.54°C.64°D.72°6.体育课上,老师测量跳远成绩的依据是( C )A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短D.两点确定一条直线7.如图,∠ACB=90°,CD⊥AB ,垂足为D ,则下面的结论中,不正确的是( A )A.点B 到AC 的垂线段是线段CAB.CD 与AB 互相垂直C.AC 与BC 互相垂直D.线段AC 的长度是点A 到BC 的距离8.如图,直线AB ,CD 相交于点0,E0⊥CD.下列说法错误的是( C )A.∠AOD =∠BOCB.∠AOE+∠B 0D=90°C.∠AOC=∠AOED.∠AOD+∠BOD=180°9.如图,直线AB ,CD 相交于点0,0E 平分∠AOD.若∠CO E =140°,则∠BOC=( D )A.50°B.60°C.70°D.80°10.对于图中标记的各角,下列条件能够推理得到a∥b 的是( D )(第4题)(第5题)(第2题)(第7题) (第8题)A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°11.如图,90,ACD CE AB ︒∠=⊥,垂足为E ,则下面的结论中,不正确的是(A )A.点C 到AB 的垂线段是线段CDB.CD 与AC 互相垂直C.AB 与CE 互相垂直D.线段CD 的长度是点D 到AC 的距离12.如图,已知1234∠=∠=∠=∠,则图中的平行线有( C )A.2组B.3组C.4组D.5组二、填空题(每小题3分,共15分)13.已知∠α=35°40’,则∠α的余角为______,补角为______.14.如图,AC⊥BC,AC=3,BC=4,AB=5,则点B 到AC 的距离为______.15.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD 的度数是______.16.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O ,则OA 与OB 重合的理由是______.17.如图,AB⊥EF 于点G ,CD⊥EF 于点H ,GP 平分∠EGB,HQ 平分∠CHF,则图中互相平行的直线有__________________.三、解答题(共49分)18.(5分)一个角的补角比这个角的余角的3倍大10°,求这个角的度数.19.(共9分,每空1分)如图,完成下列推理过程.(1)已知∠1=108°,∠2=72°,由∠1+∠2=108°+72°=180°,可得______∥______,根据是________;(2)已知∠1=108°,∠3=108°,由∠l=108°=∠3,可得______∥______,根据是___________;(3)已知∠2=72°,∠4=72°,由∠2=72°=∠4,可得______∥______,根据是_________.20. (5分)如图,在直角三角形ABC 中,∠ACB=90°,将直角三角形ABC 向下翻折,使点A 与点C 重合,折痕为DE ,试说明:DE ∥BC.21. (5分)如图,已知∠1与∠3互余,∠2与∠3的余角互补,问直线l1∥l2吗?为什么?22. (5分)如图,直线AB,CD相交于点0,OA平分∠EOC.(1)若∠E0C=72°,求∠BOD的度数;(2)若∠D0E=2∠AOC,判断射线0E,0D的位置关系并说明理由.23.(5分)如图,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.试判断AD与BC的位置关系,并说明理由.24.(5分)如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.25.(5分)已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.26.(5分)如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.参考答案1.C2.D3.B4.B5.A6.C7.A8.C9.D 10.D13.54°20’ 144°20’ 14.4 15.153° 16.同一平面内,过一点有且只有一条直线与已知直线垂直 17.AB∥CD,GP∥HQ18.解:这个角的度数为50°19.(1)AB CD 同旁内角互补,两直线平行 (2)AB CD 同位角相等,两直线平行(3)AE DF 内错角相等,两直线平行20.解:因为将直角三角形ABC向下翻折,使点A与点C重合,折痕为DE,所以∠AED=∠CED=90°.又因为∠ACB=90°,所以∠AED=∠ACB=90°.所以DE∥BC.21.解l1∥l2.理由:因为∠1+∠3=90°,∠2+(90°-∠3)=180°,所以∠3=90°-∠l,∠2+90°-90°+∠1=180°.所以∠2+∠1=180°.所以l1∥l2.22.解:(l)∠BOD=36°.(2)0E⊥0D.理由如下:因为∠D OE=2∠AOC,OA平分∠EOC,所以∠DO E=∠EOC.又因为∠DOE+∠EOC=180°,所以∠DOE=∠EOC=90°.所以OE⊥OD.23.解:AD∥BC.理由如下:因为DE平分∠ADC,CE平分∠BCD,所以∠ADC=2∠1,∠BCD =2∠2.因为∠1+∠2=90°,所以∠ADC+∠BCD=2(∠1+∠2)=180°,所以AD∥BC.24.(1)AD与BC一定平行.理由如下:∵AB⊥AC,∴∠BAC=90°,∵∠1=30°,∠B=60°,∴∠1+∠BAC+∠B=180°,即∠BAD+∠B=180°,∴AD∥BC.(2)AB与CD不一定平行.25.:∵∠1+∠2=180°,∠1=130°,∴∠2=50°,∵∠A=50°,∴∠A=∠2,∴AB∥CD.26.DB与EC的位置关系是平行,理由:∵∠1=∠3,∠2=∠4(对顶角相等),又∵∠1=∠2,∴∠3=∠4,∴BD∥EC.。