高中数学选修2-3知识点总结
- 格式:docx
- 大小:50.12 KB
- 文档页数:4
2.4 正态分布1.正态曲线(1)函数______________,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数.我们称φμ,σ(x )的图象为正态分布密度曲线,简称________.(2)随机变量X 落在区间(a ,b ]的概率为P (a <X ≤b )≈__________,即由正态曲线,过点(a,0)和点(b,0)的两条x 轴的垂线,及x 轴所围成的平面图形的面积,就是X 落在区间(a ,b ]的概率的近似值.预习交流1(1)正态曲线φμ,σ(x )中参数μ,σ的意义是什么?(2)设随机变量X 的正态分布密度函数φμ,σ(x )=12πe -(x +3)24,x ∈(-∞,+∞),则参数μ,σ的值分别是( ).A .μ=3,σ=2B .μ=-3,σ=2C .μ=3,σ= 2D .μ=-3,σ= 22.正态分布一般地,如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=__________,则称X 服从________.正态分布完全由参数μ和σ确定,因此正态分布常记作________,如果随机变量X 服从正态分布,则记为________.3.正态曲线的特点(1)曲线位于x轴____,与x轴______;(2)曲线是单峰的,它关于直线____对称;(3)曲线在____处达到峰值______;(4)曲线与x轴之间的面积为__;(5)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图①;(6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“____”,表示总体的分布越集中;σ越大,曲线越“____”,表示总体的分布越分散,如图②.预习交流2设随机变量X~N(μ,σ2),且P(X≤C)=P(X>C),则C=().A.0B.σC.-μD.μ4.正态总体在三个特殊区间内取值的概率若X~N(μ,σ2),则对于任何实数a>0,概率P(μ-a<X≤μ+a)=__________.特别地有P(μ-σ<X≤μ+σ)=______,P(μ-2σ<X≤μ+2σ)=______,P(μ-3σ<X≤μ+3σ)=______.5.3σ原则正态变量在(-∞,+∞)内的取值的概率为1,正态总体几乎总取值于区间(μ-3σ,μ+3σ)之内,而在此区间以外取值的概率只有0.002 6,通常认为这种情况在一次试验中几乎不可能发生,因此在实际应用中通常认为服从于正态分布N(μ,σ2)的随机变量X只取(μ-3σ,μ+3σ)之间的值,简称为________.预习交流3(1)如何求服从正态分布的随机变量X在某区间内取值的概率?(2)正态总体N(4,4)在区间(2,6]内取值的概率为__________.答案:1.(1)φμ,σ(x)=12πσ22()2exμσ--正态曲线(2)∫b aφμ,σ(x)d x预习交流1:(1)提示:参数μ反映随机变量取值的平均水平的特征数,即若X~N(μ,σ2),则E(X)=μ.同理,参数σ是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.(2)提示:写成标准式φμ,σ(x)=12π2 e∴μ=-3,σ= 2.2.∫b aφμ,σ(x)d x正态分布N(μ,σ2)X~N(μ,σ2)3.(1)上方不相交(2)x=μ(3)x=μ1σ2π(4)1(6)瘦高矮胖预习交流2:提示:正态分布在x=μ对称的区间上概率相等,则C=μ.4.∫μ+aμ-aφμ,σ(x)d x0.682 60.954 40.997 45.3σ原则预习交流3:(1)提示:首先找出服从正态分布时μ,σ的值,再利用3σ原则求某一个区间上的概率,最后利用在关于x=μ对称的区间上概率相等求得结果.(2)提示:由题意知μ=4,σ=2,∴P(μ-σ<X≤μ+σ)=P(2<X≤6)=0.682 6.一、正态曲线的图象应用如图所示的是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机变量的期望和方差.思路分析:给出一个正态曲线就给出了该曲线的对称轴和最大值,从而就能求出总体随机变量的期望、标准差以及解析式.如图是正态分布N(μ,σ21),N(μ,σ22),N(μ,σ23)(σ1,σ2,σ3>0)相应的曲线,那么σ1,σ2,σ3的大小关系是().A.σ1>σ2>σ3 B.σ3>σ2>σ1 C.σ1>σ3>σ2D.σ2>σ1>σ3(1)用待定系数法求正态变量概率密度曲线的函数表达式,关键是确定参数μ和σ的值,并注意函数的形式.(2)当x=μ时,正态分布的概率密度函数取得最大值,即f(μ)=12πσ为最大值,并注意该式在解题中的应用.二、利用正态曲线的对称性求概率已知随机变量X服从正态分布N(2,σ2),P(X<4)=0.84,则P(X≤0)=().A.0.16 B.0.32 C.0.68 D.0.84思路分析:画出正态曲线,结合其意义及特点求解.若随机变量ξ服从正态分布N(0,1),已知P(ξ<-1.96)=0.025,则P(|ξ|<1.96)=().A.0.025 B.0.050 C.0.950 D.0.975充分利用正态曲线的对称性及面积为1的性质求解.①熟记正态曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相等.②P(X<a)=1-P(X≥a);P(X<μ-a)=P(X>μ+a).三、正态分布的应用在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~N(90,100).(1)试求考试成绩ξ位于区间(70,110]内的概率是多少?(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100]间的考生大约有多少人?思路分析:正态分布已经确定,则总体的期望μ和标准差σ就可以求出,这样就可以根据正态分布在三个常见的区间上取值的概率进行求解.为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(μ,22),且正态分布密度曲线如图所示.若体重大于58.5 kg小于等于62.5 kg属于正常情况,则这1 000名男生中属于正常情况的人数是().A.997 B.954 C.819 D.683求正态变量X在某区间内取值的概率的基本方法:(1)根据题目中给出的条件确定μ,σ的值;(2)将待求问题向(μ-σ,μ+σ],(μ-2σ,μ+2σ],(μ-3σ,μ+3σ]这三个区间进行转化;(3)利用上述区间求出相应的概率.答案:活动与探究1:解:从给出的正态曲线可知该正态曲线关于直线x=20对称,最大值是12π,所以μ=20,12πσ=12π,则σ= 2.所以概率密度函数的解析式是f(x)=12π2(20)4ex--,x∈(-∞,+∞).总体随机变量的期望是μ=20,方差是σ2=(2)2=2.迁移与应用:A活动与探究2:A解析:由X~N(2,σ2),可知其正态曲线如图所示,对称轴为x=2,则P(X≤0)=P(X≥4)=1-P(X<4)=1-0.84=0.16.迁移与应用:C解析:由已知正态曲线的对称轴为x=μ=0,∴P(ξ<-1.96)=P(ξ>1.96)=0.025.∴P(|ξ|<1.96)=1-P(ξ≥1.96)-P(ξ≤-1.96)=0.950.活动与探究3:解:∵ξ~N(90,100),∴μ=90,σ=100=10.(1)由于正态变量在区间(μ-2σ,μ+2σ]内取值的概率是0.954 4,而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,于是考试成绩ξ位于区间(70,110]内的概率就是0.954 4.(2)由μ=90,σ=10得μ-σ=80,μ+σ=100.由于正态变量在区间(μ-σ,μ+σ]内取值的概率是0.682 6,所以考试成绩ξ位于区间(80,100]内的概率是0.682 6.一共有2 000名考生,所以考试成绩在(80,100]间的考生大约有2 000×0.682 6≈1 365(人).迁移与应用:D解析:由题意,可知μ=60.5,σ=2,故P(58.5<X≤62.5)=P(μ-σ<X≤μ+σ)=0.682 6,从而属于正常情况的人数是1 000×0.682 6≈683.1.正态曲线关于y轴对称,则它所对应的正态总体的均值为().A.1 B.-1 C.0 D.不确定2.设随机变量X ~N (1,22),则D ⎝⎛⎭⎫12X =( ).A .4B .2 C.12D .1 3.已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( ).A .0.447B .0.628C .0.954D .0.9774.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为__________.5.一批灯泡的使用时间X (单位:小时)服从正态分布N (10 000,4002),则这批灯泡使用时间在(9 200,10 800]内的概率是__________.答案:1.C 解析:由正态曲线关于y 轴对称,∴μ=0,均值为0.2.D 解析:因为X ~N (1,22),所以D (X )=4,所以D ⎝⎛⎭⎫12X =14D (X )=1.3.C 解析:∵随机变量ξ服从标准正态分布N (0,σ2),∴正态曲线关于x =0对称.又P (ξ>2)=0.023,∴P (ξ<-2)=0.023.∴P (-2≤ξ≤2)=1-2×0.023=0.954.4.0.8 解析:易得P (0<ξ<1)=P (1<ξ<2),故P (0<ξ<2)=2P (0<ξ<1)=2×0.4=0.8.5.0.954 4 解析:μ=10 000,σ=400,P (9 200<X ≤10 800)=P (10 000-2×400<X ≤10 000+2×400)=0.954 4.。
高中数学选修2-3基础知识一.基本原理111111111111.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同元素中取出个元素的一个组合,所有组合个数记为m C n m .1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!!10=n C 规定:组合数性质:.2 nn n n n m n m nm n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++= 注:若12mm1212m =m m +m n n n C C ==则或 四.处理排列组合应用题1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。
分类要做到“不重不漏”。
分步乘法计数原理:完成一件事需要两个步骤。
做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。
分步要做到“步骤完整”。
n元集合A={a1,a2⋯,a n}的不同子集有2n个。
1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。
从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。
排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。
从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。
组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。
1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。
(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。
1、二项式定理: nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)( 2、通项公式: 3、特例: (1)对称性: 二项式系数的性质与首末两端“等距离”的两个二项式系数相等. (2)增减性与最大值:从第一项起至中间项,二项式系数逐渐增大,随后又逐渐减小.因此,当n 为偶数时,中间一项的二项式系数取得最大值;当n 为奇数时,中间两项的二项式系数 、 相等且同时取得最大值(3)各二项式系数的和例1:在二项式(2x-3y )9的展开式中,求: (1)二项式系数之和; (2)各项系数之和; (3)所有奇数项系数之和; (4)系数绝对值的和。
解:设(2x-3y )9=a 0x 9+a 1x 8y+a 2x 7y 2+…+a 9y 9,1(0,1,2,)r n r rr n T C a br n -+==L n n n r r n n n n xC x C x C x C x ++++++=+ΛΛ22111)(m n mn nC C -=0122r nnn n n n n C C C C C ++++++=L L 131202-=⋅⋅⋅++=⋅⋅⋅++n n n n n C C C C(1)二项式系数之和为;(2)各项系数之和为a0+a1+a2+…+a9,令x=1,y=1,∴a0+a1+a2+…+a9=(2-3)9=-1;(3)由(2)知a0+a1+a2+…+a9=-1,令x=1,y=-1,可得:a0-a1+a2-…-a9=59,将两式相加除以2可得:a0+a2+a4+a6+a8=,即为所有奇数项系数之和;(4)|a0|+|a1|+|a2|+…+|a9|=a0-a1+a2-a3+…-a9,令x=1,y=-1,则|a0|+|a1|+|a2|+…+|a9|=a0-a1+a2-a3+…-a9=59。
1、已知(2x+1)10=a0x10+ a1x9+ a2x8+……+a9x+ a10, (1)求a0+ a1+ a2+…… +a9+ a10的值(2)求a0+ a2+ a4+…… + a10的值答案 :1结论:3.( 1﹣x ) 13 的展开式中系数最小的项是 ( ) C (A)第六项 (B)第七项 (C )第八项 (D)第九项求n的值。
高中数学必修2知识点第3章 直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如:平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系 (ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
高中数学选修2-2,2-3知识点、考点、典型例题高中数学选修2-2,2-3知识点、考点、典型例题一、2-2数列的概念、数列的通项公式及递推公式1. 数列的概念数列是按照一定规律排列的一系列数,一般用字母 an 表示第n 个数。
2. 数列的通项公式数列的通项公式是指通过数列的位置 n,直接求出该位置上的数 an 的公式。
通项公式可以是一个数学式子,也可以是一个算法。
3. 数列的递推公式数列的递推公式是指通过数列前一项或前几项的值,推导出数列下一项的公式。
递推公式是数列中相邻两项之间的关系式。
4. 常见数列的通项公式和递推公式- 等差数列:an = a1 + (n-1)d (通项公式),an = an-1 + d (递推公式)- 等比数列:an = a1 * q^(n-1) (通项公式),an = an-1 * q (递推公式)- 斐波那契数列:an = an-1 + an-2 (递推公式)二、2-3数列的求和、数列的性质及应用1. 数列的求和- 等差数列的前 n 项和:Sn = (a1 + an) * n / 2- 等比数列的前 n 项和(q ≠ 1):Sn = a1 * (1 - q^n) / (1 - q) - 斐波那契数列的前 n 项和:Sn = Fn+2 - 12. 数列的性质- 常数列:数列中的每一项都是一个常数。
- 奇数列:数列中的每一项都是奇数。
- 偶数列:数列中的每一项都是偶数。
- 单调递增数列:数列中的每一项都比前一项大。
- 单调递减数列:数列中的每一项都比前一项小。
- 正项数列:数列中的每一项都是正数。
- 负项数列:数列中的每一项都是负数。
3. 数列的应用- 利用数列的递推关系,求解实际问题中的特定数值。
- 利用数列的性质,进行数学推理和证明。
- 利用数列的规律,设计算法解决问题。
典型例题:1. 已知等差数列的前三项分别为 1,5,9,求数列的通项公式和第 n 项的值。
解:设数列的首项为 a,公差为 d,则有以下等差数列的递推公式:a2 = a1 + d = 1 + da3 = a2 + d = (1 + d) + d = 1 + 2d将 a1,a2,a3 分别代入等差数列的通项公式,可得:a1 = a = 1a2 = a + d = 1 + d = 5 --> d = 4a3 = a1 + 2d = 1 + 2(4) = 9所以该等差数列的通项公式为 an = a + (n-1)d = 1 + 4(n-1) = 4n - 3第 n 项的值为:an = 4n - 32. 求等差数列 3,6,9,...,101 的前 n 项和。
高中数学选修2-3题型总结(重点)本书重点:排列组合、概率第一章 计数原理 第二章 概率 一、基础知识1.加法原理:做一件事有n 类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,……,在第n 类办法中有mn 种不同的方法,那么完成这件事一共有N=m1+m2+…+mn 种不同的方法。
2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m1种不同的方法,第2步有m2种不同的方法,……,第n 步有mn 种不同的方法,那么完成这件事共有N=m1×m2×…×mn 种不同的方法。
3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m nA =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m≤n, 注:一般地nA =1,0!=1,nn A =n!。
4.N 个不同元素的圆周排列数为n A nn =(n-1)!。
5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。
从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mnC 表示:.)!(!!!)1()1(m n m n m m n n n C m n -=+--=6.【了解】组合数的基本性质:(1)m n n mnCC -=;(2)11--+=n n m nm n CC C;(3)kn k n C C k n =--11;(4)n nk kn n nnnC C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)kn mn m k k n C C C --=。
人教A版高中数学选修2-3三角函数的基
本性质总结。
人教A版高中数学选修2-3三角函数的基本性质总结
三角函数是高中数学中的重要内容,选修2-3课程主要讲授了三角函数的基本性质。
以下是对这些基本性质进行的总结:
正弦函数的基本性质:
- 定义域为全体实数;
- 值域为闭区间[-1, 1];
- 周期为2π,即sin(x + 2π) = sin(x);
- 奇函数,即sin(-x) = -sin(x);
- 单调递增函数。
余弦函数的基本性质:
- 定义域为全体实数;
- 值域为闭区间[-1, 1];
- 周期为2π,即cos(x + 2π) = cos(x);
- 偶函数,即cos(-x) = cos(x);
- 单调递减函数。
正切函数的基本性质:
- 定义域为实数集去除所有cot(x) = 0的点;
- 值域为全体实数;
- 周期为π,即tan(x + π) = tan(x);
- 奇函数,即tan(-x) = -tan(x);
- 周期性比较复杂,在特定区间上单调增加或减少。
余切函数的基本性质:
- 定义域为实数集去除所有tan(x) = 0的点;
- 值域为全体实数;
- 周期为π,即cot(x + π) = cot(x);
- 奇函数,即cot(-x) = -cot(x);
- 周期性比较复杂,在特定区间上单调增加或减少。
以上是人教A版高中数学选修2-3三角函数的基本性质的总结。
掌握这些性质可以帮助我们更好地理解和应用三角函数在数学中的
各种问题和计算中。
计数原理【知识要点】一、分类加法原理与分布乘法计数原理1.加法原理:完成一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。
种不同的方法。
2.乘法原理:完成一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。
种不同的方法。
二、排列与组合1.排列与排列数:从n 个不同元素中,任取m(m m(m≤≤n)n)个元素,按照一定顺序排成一列,叫做从个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m (m≤≤n)n)元素的所有排列个元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用mn A 表示,表示,mn A =n(n-1)=n(n-1)……(n-m+1)=)!(!m n n -,其中m,n m,n∈∈N,m N,m≤≤n,注:一般地0n A =1,0!=1,n n A =n! 。
2.组合与组合数:一般地,从n 个不同元素中,任取m(m m(m≤≤n)n)个元素并成一组,叫做从个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。
从n 个不同元素中取出m(m m(m≤≤n)n)个元素的所有组合的个数,叫做从个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:表示:.)!(!!!)1()1(m n m n m m n n n C mn -=+--=规定:1C 0=n组合数的基本性质:(1)mn n m n C C -=;(2)11--+=n n m n m n C C C ;解决排列与组合的应用题的一般方法有:解决排列与组合的应用题的一般方法有:(1)特殊元素(位置)法)特殊元素(位置)法 (2)相邻问题的“捆绑法”)相邻问题的“捆绑法” (3)不相邻问题“插空法”)不相邻问题“插空法” (4)正难则反)正难则反 “排除法”“排除法”一、两个计数原理1、某人计划按“石家庄—青岛—广州”的路线旅游,从石家庄到青岛可乘坐汽车、火车、飞机3种交通工具,从青岛到广东可以乘坐汽车、火车、飞机、轮船4种交通工具,文此人可选择的旅行方式有 ()选择的旅行方式有A、7 种B、8 种C、10 种D、12种2、从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b 组成复数a+bi,其中虚数有其中虚数有 ()A、30个B、36个C、42个D、35个3、(07全国)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一人参加,则不同的选派方法有 ()天,要求星期五有2人参加,星期六、星期日各1人参加,则不同的选派方法有A、40种B、60种C、100 种D、120种4、有4部机床,需要加工3个不同的零件,其不同的安排方法有个不同的零件,其不同的安排方法有 ()A、43B、34C、3A D、4445、有一项活动,需在3名老师,8名男同学和5名女同学中选人参加。
高二数学选修
2-3 知识点
第一章 计数原理 知识点:
1、分类加法计数原理
:做一件事情,完成它有
N 类办法,在第一类办法中有
M 1 种不同
的方法,在第二类办法中有 M 2 种不同的方法, ⋯⋯ ,在第 N 类办法中有 M N 种不同的方
法,那么完成这件事情共有
M 1+M 2+⋯⋯ +M N 种不同的方法。
2、分步乘法计数原理 :做一件事,完成它需要分成 N 个步骤,做第一 步有 m1 种不同的
方法,做第二步有
M 2不同的方法, ⋯⋯ ,做第 N 步有 M N 不同的方法 .那么完成这件事共
有 N=M 1M 2 ...M N 种不同的方法。
3、排列 :从 n 个不同的元素中任取
m(m ≤n)个元素,按照一定顺序
排成一列,叫做从 n 个
......
不同元素中取出 m 个元素的一个排列
4、排列数 : A m
n(n
1) ( n m 1)
(n n! (m n, n, m N )
m)!
5、组合 :从 n 个不同的元素中任取 m ( m ≤n ) 个元素并成一组, 叫做从 n 个不同元素中取出
m 个元素的一个组合。
m m A m n m
n( n 1)
1) (n m m
1)
m m
n! n!
6、组合数:C n A n
n( n
(n 1)
C n
C n
A m m
m!
C n
m! (n
m)!
m
m!
m! (n
m)!
A m
C m n C
n m
n ;
C
m 1 m
m
n
C
n
C
n 1
n
0 n
1 n 1
2 n 2 2
⋯
r
n r r
⋯
n n
7、二项式定理:
( a b)
C n a
C n a
b C n a
b
C n a
b
C n b
展开8、式二的项式通通项项公式 : T r
1
C n r a n r b r (r 0, 1⋯⋯ n)
第二章 随机变量及其分布
知识点:
1、随机变量 :如果随机试验可能出现的结果可以用一个变量 X 来表示,并且 X 是随着试
验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母
X 、Y 等
或希腊字母 ξ、η 等表示。
2、离散型随机变量:
在上面的射击、产品检验等例子中,对于随机变量
X 可能取的值,
我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.
3、离散型随机变量的分布列 :一般的 ,设离散型随机变量 X 可能取的值为 x 1,x 2,..... ,x i ,......,x n
X 取每一个值 x
(i=1,2,...... )的概率 P(ξ =x
)= P ,则称表为离散型随机变量 X 的概率分
i
i
i
布,简称分布列
4、分布列性质① p i≥ 0, i =1,2,⋯;②p1 + p 2 +⋯ +p n= 1.
5、二点分布:如果随机变量X 的分布列为:
其中 0<p<1, q=1-p,则称离散型随机变量X 服从参数 p 的二点分布
6、超几何分布:一般地 , 设总数为 N 件的两类物品,其中一类有M 件,从所有物品中任取 n(n≤N) 件 ,这 n 件中所含这类物品件数X 是一个离散型随机变量,
kn k
则它取值为 k 时的概率为(
k )C M C N M(
k
0,1,2,
L
,
m
) ,
P X C
N
n
其中 m min M , n ,且n≤N ,M≤N ,n,M ,N N *
7、条件概率:对任意事件 A 和事件 B ,在已知事件 A 发生的条件下事件 B 发生的概率,叫做条件概率 .记作 P(B|A) ,读作 A 发生的条件下 B 的概率
8、公式:
P(B | A)P( AB),P(A)0.
P( A)
9、相互独立事件:事件 A( 或 B) 是否发生对事件B( 或 A) 发生的概率没有影响,这样的两个事件叫做相互独立事件。
P( A B )P( A) P(B)
10、 n 次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验
11、二项分布:设在 n 次独立重复试验中某个事件 A 发生的次数, A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p,事件 A 不发生的概率为q=1-p,那么在 n 次独立重复试验中P(k )C n k p k q n k(其中k=0,1,⋯⋯ ,n, q=1-p)
于是可得随机变量ξ的概率分布如下:
这样的随机变量ξ服从二项分布,记作ξ~ B(n , p) ,其中 n,p 为参数
12、数学期望:一般地,若离散型随机变量ξ的概率分布为
则称 Eξ= x1p1+x2p2+⋯+ xnpn+⋯为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。
13、方差 :D( ξ)=(x 1-Eξ )2· P1+(x2-Eξ )2·P2 +......+ ( x n-Eξ)2·P n叫随机变量ξ的均方
差,简称方差。
14、集中分布的期望与方差一览:
期望方差
两点分布Eξ=p Dξ=pq, q=1-p
二项分布,ξ ~ B (n,p )Eξ=np Dξ=qEξ=npq,(q=1-p )
15、正态分布:若概率密度曲线就是或近似地是函数
( x) 2
12
2
f ( x )e, x(,)
2
的图像,其中解析式中的实数、(0) 是参数,分别表示总体的平均数与标准差.则其分布叫正态分布记作: N ( ,) ,f( x )的图象称为正态曲线。
16、基本性质:
①曲线在x 轴的上方,与x 轴不相交.
②曲线关于直线 x= 对称,且在x=时位于最高点 .
③当时x
,曲线上升;当时x,曲线下降.并且当曲线向左、右两边无限延伸时,
以 x 轴为渐近线,向它无限靠近.
④当一定时,曲线的形状由确定.越大,曲线越“矮胖” ,表示总体的分布越分散;
越小,曲线越“瘦高” ,表示总体的分布越集中.
⑤当σ相同时 ,正态分布曲线的位置由期望值μ来决定.
⑥正态曲线下的总面积等于1.
17、 3原则:
从上表看到,正态总体在(2 ,2 )
以外取值的概率只有 4.6%, 在
( 3 , 3 ) 以外取值的概率只有0.3%由于这些概率很小,通常称这些情况发生为
小概率事件 .也就是说 ,通常认为这些情况在一次试验中几乎是不可能发生的.
第三章统计案例
知识点:
1、独立性检验
假设有两个分类变量X 和 Y ,它们的值域分另为{x 1, x2} 和 {y 1, y2} ,其样本频数列联表为:y1y 2总计
x1a b a+b
x2c d c+d
总计a+c b+d a+b+c+d
若要推断的论述为 H 1:“X与 Y 有关系”,可以利用独立性检验来考察两个变量是否有
关系,并且能较精确地给出这种判断的可靠程度。
具体的做法是,由表中的数据算出随机
变量 K^2 的值(即 K 的平方)K 2 = n (ad - bc) 2 / [(a+b)(c+d)(a+c)(b+d)] ,其中 n=a+b+c+d 为样本容量, K2的值越大,说明“X与 Y 有关系”成立的可能性越大。
K 2≤3.841 时, X 与 Y 无关;K 2>3.841 时, X 与 Y 有 95%可能性有关; K 2>6.635 时 X 与 Y 有 99%可能性有关
2、回归分析
、回归直线方程?
1y a bx
xy 1
x y( x x)( y y)SP
n a y bx
其中 b2,
SS x
x21x2)( x x)
(
n
2、 r 检验性质:( 1)︱ r ︳≤ 1,︱ r ︳并且越接近于1,线性相关程度越强,
︱r ︳越接近于 0,线性相关程度越弱;( 2)︱r ︳>r 0.05,表明有 95% 的把握认
为 x 与 Y 之间具有线性相关关系;︱ r ︳≤ r 0.05,我们没有理由拒绝原来的假设,这是寻找回归直线方程毫无意义!。