轴的扭转和弯曲设计参考文献
- 格式:ppt
- 大小:1.51 MB
- 文档页数:36
薄壁杆件的弯曲扭转作用摘要薄壁杆件在竖向荷载作用下将受弯和受扭,产生自由扭转应力和约束扭转应力,截面上的总应力等于平面弯曲正应力加约束扭转正应力。
运用实验力学的应变片理论测量出结构在荷载作用下的应变,进而求出应力大小与方向。
并且运用理论计算进行核对。
之后进行误差理论的分析,进而了解薄壁杆件的受力情况。
关键词薄壁杆件自由扭转约束扭转应力Abstract:Under the vertical load ,the torsion stress and restraining twist rotation stress will be made in thin-wall element,the bend and torsion will occur.Plane bending stress plus restraining twist rotation stress are equal to total stress on the whole section. And measure the stress by Electrical method, get the accurate strain and stress, the exact direction of them. Meanwhile, checking in by analyzing of theory.Besides,through the error analyses, have a profound understanding about the thin-wall element.Key words:thin-wall element; torsion; restraining twist rotation; stress一.引言:钢结构薄壁杆件在实际工程中的应用,引起了工程设计的重视,如型钢或由几个狭长矩形钢板组合的截面等都是薄壁杆件。
空心传动轴的优化设计一、问题描述设计一重量最轻的空心传动轴。
空心传动轴的D 、d 分别为轴的外径和内径。
轴的长度不得小于5m 。
轴的材料为45钢,密度为7.8×10-6㎏/㎜,弹性模量E=2×105MPa ,许用切应力[τ]=60MPa 。
轴所受扭矩为M=2×106N·mm 。
二、分析设计变量:外径D 、内径d 、长度l设计要求:满足强度,稳定性和结构尺寸要求外,还应达到重量最轻目的。
三、数学建模所设计的空心传动轴应满足以下条件:(1) 扭转强度 空心传动轴的扭转切应力不得超过许用值,即τ≤[]τ空心传动轴的扭转切应力: ()4416dD MD-=πτ 经整理得 0107.1544≤⨯+-D D d(2) 抗皱稳定性扭转切应力不得超过扭转稳定得临界切应力:ττ'≤2327.0⎪⎭⎫⎝⎛-='D d D E τ 整理得:028.722344≤⎪⎭⎫⎝⎛---D d D d D D(3)结构尺寸min l l ≥0≥d 0≥-d D⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=l d D x x x X 321 则目标函数为:()()[]()3222166221012.61012.6min x x x d D l x f -⨯=⨯-=-- 约束条件为:0107.1107.1)(1541425441≤⨯+-=⨯+-=x x x D D d X g08.728.72)(2/3121424112/3442≤⎪⎪⎭⎫⎝⎛---=⎪⎭⎫⎝⎛---=X xx x x x x D d D d D D g055)(33≤-=-=x l X g0)(24≤-==x d X g 0)(215<+-=-=x x d D X g四、优化方法、编程及结果分析1优化方法综合上述分析可得优化数学模型为:()Tx x x X 321,,=;)(min x f ;()0..≤x g t s i 。
圆轴扭转变形计算及其工程意义姓名:王晓东指导老师:刘科元作者单位:中国矿业大学银川学院机电系摘要:圆轴本身的特点是容易绕自己的轴线旋转或在一个平面上滚动,因此轴的特点在机械传动上发挥了很大的优势。
根据工作中的需要,对轴的设计要求要有标准的尺度把握。
而轴是用来旋转的,其旋转时定会有一定的变形,这变形就是扭转变形。
关键词:扭转;扭矩和扭矩图;应力和变形;强度和刚度引言:圆轴运用在机床,运用在汽车上等不同的机械上,它的用途都依靠于一对力偶工作。
这对力偶大小相同方向相反作用在轴的两端。
它们所产生的扭转变形,并不是简简单单的,受力情况是复杂的。
本篇小论是对扭转变形一小部分的分析。
(一)扭转圆轴在工作时以转动的方式带动另一段的旋转,另一端阻挠带动给其反作用力,瞬间两端产生一对大小相等方向相反且垂直于轴线的力偶。
在这对力偶的作用下,杆件的任意两个横截面都绕轴线发生相对转动,产生扭转变形。
(二)扭转时的内力——扭矩、扭矩图1、扭矩作用在轴上的外力偶矩称为扭矩。
常用T表示。
轴受到力偶矩作用时,轴受到力作用,形状发生改变即扭转变形,如下图所示在工程中,作用于轴上的外力偶矩往往不是直接给出的,而是给出工作中轴所传递的功率P和转速n。
因此需要运用功率和转速来计算外力偶矩。
即nP T 9550= P 的单位是千瓦()Kw 、n 的单位是转/分()m in r 、T 的单位是牛顿•米()m N • 2.扭矩图在实际生产中,同一根轴上安装多个相同或不同的齿轮来传递动力。
这些齿轮之间的力偶矩旋转方向可能不同,因此会对轴产生不同形式的扭转。
此时,需要对这根轴所受到的扭矩进行分析,方可做出适用于生产的轴。
在分析一根轴上分扭矩时利用扭矩图能够方便有效地解决轴上扭矩随横截面位置变。
例 一传动轴的计算简图如下,作用于其上的外力偶之矩的大小分别是:m kN Ma•=2,m kN M b •=5.3,m kN M c •=1,m kN M d •=5.0转向如图。
基于齿轮传动的机械动力学研究文献综述摘要:本文结合相关文献对机械动力学中齿轮传动动力学部分的研究进行了综述。
综合文献对齿轮传动动力学研究现状和发展趋势有了整体把握。
关键词:动力学;齿轮传动;综述;The Literature Review of Mechanical Dynamics based on gear transmissionAbstract:In this paper, the studies of mechanical dynamics of gear transmission were reviewed. On the whole, we grasp the studies status anddevelopment trend of gear transmission.Keywords: Dynamics;Gear transmission;Review1.前言随着机械向高效、高速、精密、多功能方向发展,对传动机械的功能和性能的要求也越来越高,机械的工作性能、使用寿命、能源消耗、振动噪声等在很大程度上取决于传动系统的性能。
因此必须重视对传动系统的研究。
机械系统中的传动主要分为机械传动、流体传动(液压传动、液力传动、气压传动、液体粘性传动和高等优点机械传动的形式也有多种,如各种齿轮传动、带(链)传动、摩擦传动等。
齿轮传动是机械传动中的主要形式之一。
在机械传动中占有主导地位。
由于它具有速比范围大、功率范围广、结构紧凑可靠等优点,已广泛应用于各种机械设备和仪器仪表中。
成为现有机械产品中所占比重最大的一种传动。
齿轮从发明到现在经历了无数次更新换代,主要向高速、重载、平稳性、体积小、低噪等方向发展。
2. 齿轮动力学的发展概述齿轮的发展要追溯到公元前,迄今已有3000年的历史。
虽然自古代人们就使用了齿轮传动,但由于动力限制了机器的速度。
因此齿轮传动的研究迟迟未发展到动力学研究的阶段。
第一次工业革命推动了机器速度的提高,Euler提出的渐开线齿廓被广泛运用,这属于从齿轮机构的几何设计角度来适应速度的提高。
轴系部件结构设计本文介绍了轴系部件结构设计的重要性,以及本文的目的和结构安排。
轴系部件结构设计是机械工程领域中重要的设计任务之一。
轴系部件是指连接和传递动力的轴、轴承、联轴器等部件。
它们的结构设计直接影响到机械设备的性能、寿命和可靠性。
良好的轴系部件结构设计能够保证机械设备的正常运转。
首先,合理设计的轴可以实现传递动力和承载负荷的功能;其次,优化设计的轴承能够减少能量损失和机械设备的故障率;还有,恰当选择的联轴器可以实现动力传递的可靠性和高效性。
本文的目的在于深入探讨轴系部件结构设计的关键要素和原则,并提供相关的设计指导。
首先,我们将介绍轴系部件结构设计的基本原则和考虑因素;然后,我们将详细讨论轴的设计要点和注意事项;接着,我们将重点介绍轴承的选择和安装方法;最后,我们将讨论联轴器的选型和安装步骤。
通过阅读本文,读者将了解到轴系部件结构设计的重要性,并可以获得实用的设计指导,以提升机械设备的性能和可靠性。
参考文献请注意,本文引言部分未引用任何内容,其信息为创造性生成)本部分将介绍轴系部件的不同分类和各自的功能。
轴系部件包括轴承、齿轮、连接件等,它们在机械系统中起着重要的作用。
1.轴承轴承是轴系部件中的重要组成部分,它用于支撑轴的旋转运动并减少摩擦。
根据结构和用途的不同,轴承可以分为滚动轴承和滑动轴承。
滚动轴承采用滚动体(如球、柱体、圆锥体)和轴承座的结构,适用于高速转动、小摩擦、高精度要求的场景。
滑动轴承则采用润滑剂在轴和轴承之间形成薄膜,减少摩擦力,适用于低速大负荷的场景。
2.齿轮齿轮是一种通过齿的啮合传递力和运动的机构,常用于机械传动系统中。
齿轮根据齿的形状和用途可以分为直齿轮、斜齿轮、蜗杆齿轮等。
直齿轮是最常见的齿轮形式,它的齿面与轴线平行,适用于传递旋转运动和转矩的工况。
斜齿轮的齿面与轴线倾斜,可以传递更大的力和转矩。
蜗杆齿轮用于角度传动,具有较高的传动比和安全性。
3.连接件连接件用于连接轴系部件和其他机械部件,保证它们协同工作。
转轴结构及设计转轴端部加载方案与结构设计【摘要】加载是试验机与试验台设计的一个重要部分。
加深对加载的研究对提高试验机与试验台的性能来说很有意义。
本文从机械可拆卸快速联接设计入手对转轴端部加载方案与结构设计进行了研究。
本文先是介绍了转轴的强度计算、结构设计、刚度校核及电机选择,为后面的方案和结构设计作了准备工作。
然后在此基础上根据课题的要求为转轴端部加载系统设计了四套旋转台方案和四套加载方案,并分析了各自的优缺点。
其中在旋转台方案四中本文设计了一种比较特殊的自锁装置。
最后根据转轴端部加载的方案设计和结构设计画出了四套旋转台方案和四套加载方案的CAD图。
【关键词】机械加载,可拆卸联接,旋转台自锁,同心圆柱体,转轴第1章绪论本章介绍了试验机在国内外的发展状况,并着重介绍了其加载方式及发展,最后阐明本文研究的内容及意义。
1.1试验机简介试验机是一种产品或材料在投入使用前,对其质量或性能按设计要求进行验证的仪器[1]。
试验机作为一种单独的产品,诞生于二百多年前的西欧。
当时没有独立的生产厂商,都是依附或从属于机械或建筑行业里的一个检验部门为试验和检测而自行制造并继而兼之销售的。
所以试验机在起初可以说是还没形成一个市场的。
最初的产品很简单,品种也少,当时只有采用机械杠杆、砝码加载的原理制成的拉力试验机,用以测定钢铁和其它金属材料的抗拉强度,即抵御外部载荷而不被破坏的最大抗力。
随着材料科学和材料力学的发展试验机便逐渐成为一种专门用于研究各类材料机械性能(力学性能)的手段和工具。
试验机在起初的需求量并不大,所以各国企业创建的初期规模都不大,最多四、五十人,产品产值在该国的国民经济及工业统计数字中都占不上角色。
但伴随工业、建筑的不断发展,各种新材料的不断涌现,从安全设计和节约材料的基点出发,社会对试验机产品的需求日益迫切和扩大。
试验机产业也逐渐形成了一个比较大的市场。
经过大约一百多年的发展,到了二十世纪初,在世界范围内基本建成了世界试验机产业的四大生产体系:英国试验机生产体系,以瑞士、德国为主的欧洲大陆试验机生产体系,远东日本试验体机生产体系和北美洲(美国)试验机生产系。
2024年机械设计基础课程教案讲义轴的设计教案一、教学内容本节课选自《机械设计基础》教材第四章第二节,主题为轴的设计。
详细内容包括:轴的类型与结构特点、轴的材料选择、轴的强度计算、轴的刚度计算、轴的振动分析等。
二、教学目标1. 理解并掌握轴的类型、结构特点及其在机械系统中的应用。
2. 学会根据工作条件选择合适的轴材料,并进行轴的强度和刚度计算。
3. 了解轴的振动原因及防治措施,提高轴的设计水平。
三、教学难点与重点重点:轴的材料选择、强度计算、刚度计算。
难点:轴的振动分析及防治措施。
四、教具与学具准备1. 教具:PPT、黑板、粉笔。
2. 学具:计算器、教材、笔记本。
五、教学过程1. 实践情景引入(5分钟):通过展示不同类型的轴及其在机械设备中的应用,激发学生对轴设计的学习兴趣。
详细内容:介绍汽车传动轴、涡轮轴、曲轴等轴的类型及结构特点。
2. 理论讲解(15分钟):讲解轴的材料选择、强度计算、刚度计算及振动分析。
详细内容:(1)轴的材料选择:介绍常用轴材料及其性能,如碳钢、合金钢等。
(2)轴的强度计算:讲解轴的扭转强度、弯曲强度计算方法。
(3)轴的刚度计算:介绍轴的扭转刚度、弯曲刚度计算方法。
(4)轴的振动分析:分析轴振动的原因、危害及防治措施。
3. 例题讲解(15分钟):讲解一道轴的设计计算题,巩固所学知识。
详细内容:某汽车传动轴设计计算。
4. 随堂练习(10分钟):布置一道轴设计计算题目,让学生独立完成。
详细内容:某涡轮轴设计计算。
六、板书设计1. 轴的类型与结构特点2. 轴的材料选择3. 轴的强度计算4. 轴的刚度计算5. 轴的振动分析七、作业设计1. 作业题目:(1)简述轴的类型及结构特点。
(2)某轴的材料为45钢,直径为50mm,工作扭矩为1000N·m,试计算其扭转强度。
(3)某轴的材料为40Cr,直径为60mm,工作弯矩为1000N·m,试计算其弯曲强度。
2. 答案:(2)扭转强度计算公式:τ = T/(πd^3/16),其中T为扭矩,d为轴径。