当前位置:文档之家› 几种容灾数据复制技术的比较

几种容灾数据复制技术的比较

几种容灾数据复制技术的比较
几种容灾数据复制技术的比较

一、概述

近几年来,容灾已经成为信息数据中心建设的热门课题。很多容灾技术也快速发展起来,对用户来说也有很广阔的选择余地。但由于容灾方案的技术复杂性和多样性,一般用户很难搞清其中的优劣以确定如何选择最适合自己状况的容灾解决方案。本文我们就容灾建设中的备份及复制技术做一个初步探讨,希望能对客户的数据中心容灾建设提供一些参考。

目前有很多种容灾技术,分类也比较复杂。但总体上可以区分为离线式容灾(冷容灾)和在线容灾(热容灾)两种类型。

二、离线式容灾

所谓的离线式容灾主要依靠备份技术来实现。其重要步骤是将数据通过备份系统备份到磁带上面,而后将磁带运送到异地保存管理。离线式容灾具有实时性低、可备份多个副本、备份范围广、长期保存、投资较少等特点,由于是备份一般是压缩后存放到磁带的方式所以数据恢复较慢,而且备份窗口内的数据都会丢失,因此一般用于数据恢复的RTO(目标恢复时间)和RPO(目标恢复点)要求较低的容灾。也有很多客户将离线式容灾和在线容灾结合起来增加系统容灾的完整性和安全性。

目前主流的备份软件主要有:

l Symantec Veritas NetBackup

l EMC Legato NetWorker

l IBM Tivoli Storage Manager

l Quest BakBone NetVault

三、在线容灾

在线容灾要求生产中心和灾备中心同时工作,生产中心和灾备中心之间有传输链路连接。数据自生产中心实时复制传送到灾备中心。在此基础上,可以在应用层进行集群管理,当生产中心遭受灾难出现故障时可由灾备中心接管并继续提供服务。因此实现在线容灾的关键是数据的复制。

和数据备份相比,数据复制技术具有实时性高、数据丢失少或零丢失、容灾恢复快、投资较高等特点。根据数据复制的层次,数据复制技术的实现可以分为三种:存储系统层数据复制、操作系统数据复制和数据库数据复制。

1、存储系统层数据复制

现在的存储设备经过多年的发展已经十分成熟。特别是中高端产品,一般都具有先进的数据管理功能。远程数据复制功能几乎是现有中高端产品的必备功能。要实现数据的复制需要在生产中心和灾备中心都部署1套这样的存储系统,数据复制功能由存储系统实现。如果距离比较近(几十公里之内)之间的链路可由两中心的存储交换机通过光纤直接连接,如果距离在100公里内也可通过增加DWDM等设备直接进行光纤连接,超过100公里的距离则可增加存储路由器进行协议转换途径WAN或INTERNET实现连接,因此从理论上可实现无限制连接。

存储系统层的数据复制技术对于主机的操作系统是完全透明的,是对于将来增加新的操作平台,可不用增加任何复制软件的投资,即可完成实现复制。这样管理比较简单,最大程度保护了用户的投资,达到充分利用资源的目的。基于存储的复制一般都是采ATM或光纤通道做为远端的链路连接,不仅可以做到异步复制,更可以做到同步复制,使两端数据可做到实时同步的目的,保证了数据的一致性。缺点是由于基于存储是由存储硬件厂商提供的,在兼容性方面有局限性。用户要使用同一厂商的devices,给用户造成的选择面太小,成本容易提高,并且对线路带宽的要求通常也较高。对于预算充足,存储环境不是很复杂的企业来说,选择基于存储的技术比较适合。

存储系统层的数据复制基于同构的存储,各个存储厂商都有自己的复制软件,如IBM PPRC、EMC SRDF、HP Continues Access、HDS TrueCopy等,以下举例说明存储系统层的数据复制原理。

远程镜像(CA)介绍

HP Continuous Access XP 通过向远地镜像复制数据来满足系统的高可用性和灾难恢复的需求。它通过同步模式,将数据从一台XP磁盘阵列上拷贝到远端的另一台XP磁盘阵列上,从而实现容灾解决方案。

Continuous Access XP Extension 使Continuous Access XP能够以高性能的异步或同步方式进行远程XP磁盘阵列的拷贝。根据标书中的要求,必须同时提供同步和异步的存储复制方式,CA完全满足。

CA是基于磁盘阵列的容灾方式。其中,CA能够实现同步/异步、同城集群/洲际集群,以及Solaris、AIX、Windows各种OS集群扩展,还可以实现新XP到新XP、老XP到新XP 以及多中心容灾等功能,全面实现了可用性与可扩展性的结合。

CA同步加上CA异步,在本地和远程XP磁盘阵列之间实现高性能实时远程数据镜像,以及快速切换及回切,使用户能轻松管理,并实现高可用性。CA同步方式的距离可以达到100公里,但是从性能的角度出发,一般都控制在50公里内。可以建设同城容灾集群,消除计划宕机时间,降低非计划的宕机时间;异步方式的距离可以达到数千公里,可以集成远程数据镜像和异构服务器的集群,增强总体方式的可用性,在同城灾难发生的时候,保证连续运作。其中,洲际集群没有距离的限制,对应用和数据完全透明,可实现全球范围的容灾方案。

同时,针对关键用户的特殊需求,CA可以实现多中心容灾解决方案,其中,同步容灾中心的距离可以达到50公里,异步中心可以在全球的任何一个地方,至少有三个中心有镜像的数据,而且三个中心之间可以实现远程容灾。

(1)CAXP磁盘卷组

CAXP的磁盘卷组由不同的XP装置内或不同CLUSTER内命名为P-VOL和S-VOL的2个逻辑磁盘卷构成。在具有CAXP磁盘卷组关系后:

P-VOL被称为主磁盘卷。P-VOL可被读/写。

S-VOL(远程磁盘卷)被称为副磁盘卷。在XP内部的控制装置的作用下,P-VOL的内容和服务器来的写数据被拷贝到S-VOL(可采用同步或异步两种方式)。CAXP卷组建立后,S-VOL

为只读磁盘卷。在一个XP里,既可有P-VOL,也可有S-VOL,这样可以实现双向数据境像。

CAXP的磁盘卷组,即P-VOL和S-VOL间,可以是相同的RAID类型,也可以是不同的RAID类型,具体的RAID级别配合表如下所示:

CAXP的RAID级别

(2)MCU和RCU

MCU(主磁盘控制器)和RCU(远程磁盘控制器)分别和P-VOL,S-VOL相连,MCU控制由服务器来的写向P-VOL的数据的写操作,还控制P-VOL和S-VOL之间数据拷贝的操作,并且提供CAXP磁盘卷组的状态和构成的管理。

RCU执行由MCU发出的写命令操作。写操作的执行方法和执行服务器来的写操作过程相同。除此之外,RCU还具有管理一部分CAXP磁盘卷组的状态和构成信息的能力。

对于任何一个磁盘卷组,都需要定义MCU/RCU。一个XP的磁盘控制装置在控制P-VOL 时,可作为MCU使用,当控制S-VOL的时侯,可作为RCU使用。

(3)CA的同步和异步复制

基于存储的数据复制,主要有同步数据复制和异步数据复制两种。

同步数据复制,指通过将本地生产数据以完全同步的方式复制到异地,每一本地IO交易均需等待远程复制的完成方予以释放。

同步方式的数据复制

同步复制方式的传输距离限制:

l FC光纤通道最大传输距离为10KM;

l ESCON通过中继方式最大可传输43KM;

l DWDM方式最大传输距离为100KM。

异步数据复制则是指将本地生产数据以后台同步的方式复制到异地,每一本地IO交易均正常释放,无需等待远程复制的完成。

异步方式的数据复制

同步复制实时性强,灾难发生时远端数据与本地数据完全同步。但这种方式因为数据在网络中的传输延迟而影响主节点的应用性能。

异步复制则不然,但可能导致灾备点数据比主点数据有一定延迟,这些延迟的数据在灾难发生后将丢失。由此可见,同步方式和异步方式实际上是各有千秋,需要依据具体的应用,在应用性能和潜在的可能丢失数据量之间作一个取舍和均衡。

(4)CAXP卷组的更新拷贝模式

在组建灾难备份系统时,往往是假定正在使用的主中心的存储数据受到毁坏。这时启动远程备份中心的备份存储系统,来接替主中心的工作或从备份存储设备中把数据恢复到主中心端,在主中心重新启动应用。不论使用哪种方法,远程备份中心的备份数据与主中心端数据的一致性将会决定灾难恢复的时间。在灾难发生后,为了尽可能减少花在数据一致性分析上的时间,以XP1024存储为例,XP1024提供用于灾难备份的CAXP磁盘卷组的拷贝模式的设

定选择来加快事后分析数据的一致性。

远程数据拷贝操作

更新拷贝模式(Fence Level)共有3种:Data、Status、Never。CAXP卷组的状态在变

为“Suspend”后,更新拷贝模式将会对P-VOL的写操作产生影响,在建立灾难备份系统方

案时,应预先考虑好CAXP卷组的一致性要求,对应的拷贝模式可由下表选出:

l 更新拷贝模式:Data——在这个模式下,P-VOL和S-VOL的一致性会完全被保证。当两个卷组之间不能保证同步时,即当卷组状态变为Suspend时,MCU将会拒绝对服务器对

P-VOL的写操作以保证两个磁盘卷的一致性。这种模式在灾害发生时将会最大限度的减少数据一致性分析所花的时间。(注:初期拷贝完成之前,如果灾害发生,将导致P-VOL和S-VOL的数据不一致,因此不能把S-VOL用于灾害恢复)。在Data这种拷贝模式下,一旦FC线路或S-VOL出现故障,都将使P-VOL的写操作停止,并向系统发出写错误信息中断系统的应用。

l 更新拷贝模式:Status——当MCU检测出CAXP卷组之间失去同步后,且无法将S-VOL 的状态改变为Suspend时,MCU会拒绝服务器向P-VOL的写操作,并对服务器发出写错误的信息。当FC链路失效时这种模式会起作用,如果客户认为S-VOL的偶尔失去同步是可容忍的,这种模式可被使用。当S-VOL由于某种原因失效时,并且卷组状态成功地变为Suspend时,P-VOL的读写操作可继续进行,这时P-VOL里更新过的磁道会被记录下来,当S-VOL被恢复后,更新数据不会自动的被拷贝到S-VOL,而需要重新同步这个卷组,数据的更新拷贝才会被执行。

l 更新拷贝模式:Never——在CAXP卷组失去同步后,无论S-VOL的状态能否被改为Suspend,服务器对P-VOL的写操作不会被中止。在这种模式下,只要P-VOL自己不出现故障,服务器传来的写操作就会被执行。当FC Link或S-VOL由于某种原因失效后,P-VOL 的更新磁道将会被MCU记录下来。故障排除后,用卷组激活命令可重新同步P-VOL和

S-VOL,这时,只拷贝P-VOL里的更新磁道。

Data及Status模式对保持数据一致性非常有好处的,但在线路或远端XP1024故障时会对主服务器造成造成一定的影响,甚至导致应用系统挂起。

在这种拷贝模式下建立起来的CAXP镜像卷组,即使在光纤或S-VOL故障引起P-VOL和S-VOL镜象卷组失去同步后,只要P-VOL没有遭到损坏,MCU就不会据绝服务器对P-VOL 发出的写操作。

从服务器端来看,P-VOL对S-VOL镜象卷的数据更新象在正常进行,服务器的应用也不会被中断。当出现光纤、DWDM、远地备份中心XP1024停电等故障时,因为不影响应用的运行,所以没有必要象“DATA”那样强制中断CAXP卷组的工作。同时必须在网管上采用必要手段,监控XP1024 Pair的状态。一旦Pair状态变成非duplex,必须尽快采取措施进行

修复,否则一旦发生灾难,由于远地的XP1024 CA拷贝与主site的数据不同步,灾难系统切换将会失败,导致不必要的停机。

虚拟存储技术的介绍

近年来,随着存储技术的不断发展,在存储系统层次数据复制技术上还出现基于网络的存储虚拟化设备来实现,这种方式的特点是依靠外加的网络层设备来实现两个存储设备之间的数据复制,数据复制过程不占用主机资源,两个存储之间的数据同步在网络层完成。

根据存储虚拟化设备工作机制的不同,一般可分为带内(In-Band)和带外(Out-of-Band)两种。

上图所示为常见存储虚拟化设备的系统结构图。存储虚拟化设备通过交换机分别连接主机端Fabric 和存储端Fabric,主要功能是管理对存储设备上的逻辑卷,对已有逻辑卷进行虚拟化或创建虚拟的条带卷,消除存储设备异构对主机系统的影响,提高存储设备的可用性和总体性能。另外一个功能就是卷复制和镜像,通过存储虚拟化设备实现两个虚拟卷之间的数据安全保护。

通过存储虚拟化设备实现卷镜像复制功能的优势在于操作由存储虚拟化设备来完成、压力集中的存储虚拟化设备上,不需要主机参与,数据复制进程安全稳定。缺点是需要增加专用存储虚拟化设备,带外方式有的需要在主机端需要安装存储虚拟化设备的客户端软件,比如UIT SVM;有的需要依赖高端智能交换机,比如EMC VSM。目前使用这种技术的产品还不是很多,成熟性还有待提高,具有这种功能的专用设备价格也相对较高,所以采用这种方案的用户比较少。

2、操作系统数据复制

主要通过操作系统或者数据卷管理器来实现对数据的远程复制。这种复制技术要求本地系统和远端系统的主机是同构的,其实现方式是基于主机的数据复制,容灾方式工作在主机的卷管理器这一层,通过磁盘卷的镜像或复制,实现数据的容灾。这种方式也不需要在两边采用同样的存储设备,具有较大的灵活性,缺点是复制功能会多少占用一些主机的CPU资源,对主机的性能有一定的影响。

目前基于原厂的逻辑卷管理软件如IBM AIX LVM、HP-UINX MirrorDisk、Sun Solaris SVM 等可以实现在本厂平台上的逻辑卷镜像,专业的数据复制软件提供了更大的灵活性,支持多个平台的逻辑卷镜像,其中代表性的软件是Symantec VERITAS Storage Foundation 软件。

Symantec VERITASStorage Foundation简介

(1)Symantec远程镜像数据容灾原理

Symantec的VERITAS Storage Foundation的镜像技术构建容灾系统是比较简单的,它只有一个条件,就是将生产中心和灾备中心之间的SAN存储区域网络通过光纤连接起来,建立城域SAN存储网络。然后就可以通过Storage Foundation提供的非常成熟的跨阵列磁盘镜像技术来实现同城容灾了,容灾方案的结构如下图所示:

从镜像原理上讲,在城域SAN存储网络上的两套磁盘系统之间的镜像,和在一个机房内的SAN上的两个磁盘系统之间的镜像并没有任何区别。

利用裸光纤将生产中心和灾备中心的SAN网络连接起来,构成城域SAN网络以后,利用VERITAS Storage Foundation的逻辑卷管理功能,就可以实现生产中心磁盘系统和灾备中心磁盘系统之间的镜像了。如下图所示:

在逻辑卷镜像过程中,利用VERITAS Storage Foundation,可以创建任意一个逻辑卷(Volume)供业务主机使用,实际上是由两个完全对等的,容量相同的磁盘片构成的,两

个磁盘片上的数据完全一样,业务主机对该Volume的任意修改,都将同时被写到位于生产中心和灾备中心的两个磁盘系统上。

采用这种方式,生产中心的磁盘阵列与同城容灾中心的磁盘阵列对于两地的主机而言是完全同等的。利用城域SAN存储网络和VERITAS Storage Foundation镜像功能,可以实现数

据系统的异地容灾。并且消除了复制技术(无论是同步还是异步)的切换的动作,从而保证零停机时间,零数据损失的实现。

(2)Symantec远程镜像数据容灾的技术特点

l 零停机时间和零数据损失

由于Storage Foundation 采用的是跨异构阵列的镜像技术,而镜像技实现原理,就决定了在这种方式下,无论是哪一边的磁盘阵列由于物理故障停顿,都不会影响数据的可用性而造成数据的损失,这从根本上实现了在物理故障的情况下,数据的高度可用性。

l 故障修复后的快速重新同步

Storage Foundation 提供的镜像技术,是基于日志的镜像技术,无论由于主机发生故障,

还是由于镜像中的链路或是硬盘发生故障导致的镜像被破坏的情况,都可以通过镜像日至得以快速恢复。这使得镜像恢复过程对系统的性能影响微乎其微。

l 跨磁盘阵列快照,实现逻辑错误快速恢复和容灾中心数据利用

Storage Foundation 提供基于卷,以及文件系统的多种快照技术,其逻辑辑快照可采用少

量磁盘空间,快速,多次的对文件系统,或者是卷作快照。因而,当用户出现数据的逻辑错误时,利用快照就可以迅速恢复文件系统或卷。这在数据保护的体系,大大的弥补了传统备份恢复保护方式速度慢的缺陷,从而把数据损失量降到最低限度。

同时,数据快照还被广泛的利用在容灾中心数据利用方面,比如可以通过快照实现数据备份、查询、测试等。

l 数据同步过程高度可控

Storage Foundation Remoter Mirror 提供完整的容灾命令集,在数据同步的过程中,可以

随时得知同步的进度,并可随时暂停、继续数据同步。

4、数据库数据复制

数据库数据复制技术通常采用日志复制功能,依靠本地和远程主机间的日志归档与传递来实现两端的数据一致。这种复制技术对系统的依赖性小,有很好的兼容性。缺点是本地复制软件向远端复制的是日志文件,这需要远端应用程序重新执行和应用才能生产可用的备份数据。

目前基于数据库的复制技术主要有:Oracle DataGuard、Oracle GoldenGate、DSG RealSync、Quest SharePlex 、IStream DDS等,以下举例说明该复制技术的运行原理。

DataGuard软件介绍

OracleData Guard 是管理、监控和自动化软件的基础架构,它创建、维护和监控一个或多个备用数据库,以保护企业数据结构不受故障、灾难、错误和崩溃的影响。

DataGuard 使备用数据库保持为与生产数据库在事务上一致的副本。这些备用数据库可能

位于距生产数据中心数千英里的远程灾难恢复站点,或者可能位于同一城市、同一校园乃至

同一建筑物内。当生产数据库由于计划中断或意外中断而变得不可用时,Data Guard 可以将任意备用数据库切换到生产角色,从而使与中断相关的停机时间减到最少,并防止任何数据丢失。

作为Oracle 数据库企业版的一个特性推出的Data Guard 能够与其他的Oracle 高可用性(HA) 解决方案(如真正应用集群(RAC) 和恢复管理器(RMAN))结合使用,以提供业内前所未有的高水平数据保护和数据可用性。

(1)DataGuard重做应用和SQL应用

备用数据库最初是从主数据库的一个备份副本创建的。一旦创建了备用数据库,Data Guard 自动将主数据库重做数据传输给备用系统,然后将重做数据应用到备用数据库中,从而使备用数据库保持为与主数据库在事务上一致的副本。

DataGuard 提供了两种方法将这些重做数据应用到备用数据库中,并使之与主数据库在事务上保持一致。这些方法与Data Guard 支持的两种类型的备用数据库对应:

●重做应用,用于物理备用数据库

● SQL应用,用于逻辑备用数据库

(2)物理备用数据库—重做应用

通过使用Oracle 介质恢复应用从主数据库接收到的重做数据,物理备用数据库与主数据库保持同步。它在物理上与主数据库逐块相同,因而数据库模式(包括索引)是相同的。

主数据库上的一个日志切换将触发备用数据库上的一个日志切换,从而使备用数据库上的归档器进程将当前的备用重做日志文件归档到备用数据库上的一个存档日志中。随后,Data Guard 重做应用使用一个专用进程(称为管理的恢复进程(MRP))读取存档日志,并将重做数据应用到物理备用数据库中。如果启用了Oracle Database 10g中的Oracle Data Guard 的新功能—实时应用,则MRP 将在RFS 进程写满当前的备用重做日志文件时直接从其中读取重做数据。

通过加载物理备用数据库并使用以下命令,可以在该数据库上启动MRP(从而应用重做数据):ALTER DATABASE RECOVERMANAGED STANDBY DATABASE DISCONNECT FROM SESSION;介质恢复进程可以并行运行,以获得Data Guard 重做应用的最佳性能。在Oracle Database 10g 之前的版本中,这需要在上述RECOVER MANAGED STANDBY DATABASE 命令中使用PARALLEL 子句。在Oracle Database 10g中,MRP 可以在启

动(无需PARALLEL 子句)时自动确定并行恢复进程的最佳数量,这个数字视备用服务器上可用的CPU 数量而定。

物理备用数据库可以以只读方式打开,并且可以在其打开时对其运行查询,但无法在其以只读方式打开的同时运行恢复。在备用数据库以只读方式打开时,传送给它的重做数据将在备用站点上累积而不应用。不过,可以随时在物理备用数据库上恢复操作,并自动应用累积的重做数据。这允许物理备用数据库以一个序列运行,这个序列可能包括在恢复中运行一段时间,然后以只读方式打开来运行报表,接着重新运行恢复来应用尚未应用的重做数据。

要以只读方式打开物理备用数据库,则需使用以下命令在备用数据库上取消恢复:ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;然后可以只读方式打开数据库:ALTER DATABASE OPEN。

(3)逻辑备用数据库--SQL 应用

尽管数据的物理组织和结构可能不同,但逻辑备用数据库包含与主数据库相同的逻辑信息。SQL 应用技术将从主数据库接收到的重做数据转换成SQL 语句,然后在备用数据库上执行SQL 语句,以使逻辑备用数据库与主数据库保持同步。从而,在将SQL 应用到逻辑备用数据库上的同时,可以访问逻辑备用数据库来进行查询和报表操作。

由于使用SQL 语句更新逻辑备用数据库,因此它保持以读写模式打开,而从主数据库中更新的表可以同时用于诸如报表、合计、查询等其他任务如。.还可通过在维护的表上创建额外的索引和物化视图来优化这些任务。逻辑备用数据库可以承载多个数据库模式,用户可以对这些模式中不从主数据库进行更新的表上执行普通的数据处理操作。

SQL应用使用许多并行的执行服务器和后台进程,它们将来自主数据库的更改应用到逻辑备用数据库中。下图显示了信息流和每一个进程所起的作用。

这些不同的SQL 应用进程可以通过在逻辑备用数据库上输入这条简单的命令来启动:ALTERDATABASE START LOGICAL STANDBY APPLY;出于每个SQL 应用进程的考虑,读取器进程从存档日志(如果启用了实时应用,也可以是备用重做日志,)中读取重做记录。准备器进程将块更改转换成表更改或逻辑更改记录(LCR)。在这里,LCR 并不代表任何特定的事务。构造器进程对来自各个LCR 的已完成事务进行组合。分析器进程检查完成的事务,辨明不同事务之间的相关性。协调器进程(也称为逻辑备用进程,即LSP)负责将事务分配给应用进程、监控事务之间的相关性以及批准将更改提交给逻辑备用数据库。应用器进程将已指定事务的LCR 应用到数据库中,并在协调器指示提交事务时提交。Data Guard 提供视图来帮助查看每个进程的状态。

(4)DataGuard数据保护模式

l 最大保护模式

最大保护模式为主数据库提供了最高水平的数据保护,从而确保了一个全面的零数据丢失灾难恢复解决方案。当在最大保护模式下运行时,重做记录由日志写入器(LGWR)进程从主数据库同步地传输到备用数据库,并且直到确认事务数据在至少一个备用服务器上的磁盘上可用时,才在主数据库上提交事务。强烈建议,这种模式应至少配置两个备用数据库。当最后参与的备用数据库不可用时,主数据库上的处理将停止。这就确保了当主数据库与其所有备用数据库失去联系时,不会丢失事务。

由于重做传输的同步特性,这种最大保护模式可能潜在地影响主数据库响应时间。可以通过配置一个低延迟网络,并为它分配足够应付高峰事务负载的带宽来将这种影响减到最小。需要这种最大保护模式的企业有股票交易所、货币交易所、金融机构等。

l 最高可用性模式

最高可用性模式拥有仅次于最高水平的主数据库数据可用性。如同最大保护模式一样,重做数据由LGWR从主数据库同步地传输到备用数据库,直到确认事务数据在备用服务器的磁盘上可用时,事务才在主数据库上完成。不过,在这种模式下(与最大保护模式不同),如果最后参与的备用数据库变为不可用—例如由于网络连接问题,处理将在主数据库上继续进行。备用数据库与主数据库相比,可能暂时落在后面,但当它再次变为可用时,备用数据库将使用主数据库上累积的归档日志自动同步,而不会丢失数据。

由于同步重做传输,这种保护模式可潜在地影响响应时间和吞吐量。可以通过配置一个低延迟网络,并为它分配足够应付高峰事务负载的带宽来将这种影响减到最小。

最高可用性模式适用于想要确保获得零数据丢失保护,但不想让生产数据库受网络/备用服务器故障影响的企业。如果又一个故障随后影响了生产数据库,然后最初的网络/备用服务器故障得到解决,那么这些企业将接受数据丢失的可能性。

l 最高性能模式

最高性能模式是默认的保护模式。它与最高可用性模式相比,提供了稍微少一些的主数据库数据保护,但提供了更高的性能。在这种模式下,当主数据库处理事务时,重做数据由LGWR进程异步传输到备用数据库上。另外,也可以将主数据库上的归档器进程(ARCH)

配置为在这种模式下传输重做数据。在任何情况下,均先完成主数据库上的写操作,主数据

库的提交操作不等待备用数据库确认接收。如果任意备用目标数据库变为不可用,则处理将在主数据库上继续进行,这对性能只有很小的影响或没有影响。

在主数据库出现故障的情况下,尚未被发送到备用数据库的重做数据会丢失。但是,如果网络有足够的吞吐量来跟上重做流量高峰,并且使用了LGWR进程来将重做流量传输到备用服务器,则丢失的事务将非常少或者为零。

当主数据库上的可用性和性能比丢失少量数据的风险更重要时,应该使用最高性能模式。这种模式还适合于WAN上的DataGuard部署,在WAN中,网络的内在延迟可能限制同步重做传输的适用性。

基于数据库日志跟踪分析的复制软件介绍

目前市场数据库复制技术的工作原理大都与Oracle log相关,例如DNT IDR数据库复制产品就是通过对Oracle Log日志进行分析获取跟踪源系统的交易指令,然后将交易指令传到目标端进行重新执行的方式来实现数据复制的。本文以DNT IDR软件为例介绍基于数据库日志跟踪分析的复制原理。

DNT IDR(以下简称IDR),是基于交易的逻辑级Oracle数据同步软件,利用数据库日志在线跟踪、分析技术,将生产数据库的交易信息以事务为单位,通过异步的方式,实时的传递、装载到目标数据库中,以达到源端、目标端数据保持同步的目的。是一种准实时同步软件。该软件具有以下特点:

l IDR不依赖硬件的同步能力,支持多种系统平台,具有部署简单、同步速度快、交易延迟时间短的特点。

l IDR能够支持不同Oracle版本之间的交易同步。

l IDR同步的目标数据库为在线打开状态,可以随时复用。

l IDR适用于(异构)热容灾、数据迁移、数据集中、数据分发、分担业务等应用领域。

IDR利用数据库日志在线跟踪、分析技术,反向工程解析日志,将生产数据库的交易信息以事务为单位,通过异步的方式,实时的传递、装载到目标数据库中,以达到源端、目标端数据保持同步的目的。

IDR技术原理与架构

(1)IDR的同步原理

a、历史数据同步

使用快照方式:首次同步时,对于同步map所涉及的每一个表的同步过程如下:

l 锁该表;

l 记录同步时刻的scn;

l 读取该表数据;

l 在读取该表数据时接着将该表解锁,无需等待该表数据读取完毕。

在表做开始同步的时刻,锁表是为了保证该表在日志中不会有交易发生,同时又因为记录了scn,也不会有多余的交易被抓取、也不会漏掉相关交易。

开始读取数据时,利用了oracle数据库自身提供的“多版本”特性,能够保证读取数据的一致性。同时对该表进行解锁,又使该表被锁的时间不会太长从而严重影响正常交易。

这种方式保证了源端在任何时刻下都可以进行首次数据的批量同步而不会影响同步数据的准确性。

读文件方式:首次同步时,对于同步map所涉及的每一个表的同步过程如下:

l 记录同步时刻的scn;

l 读取该表数据;

首次同步时,直接从oracle数据文件中读取该表数据,同时记录同步时刻的scn,由于这种方式要求在同步过程中,没有交易产生,因此会保证历史数据抓取的准确性。在同步完成后,将变化数据实时抓取。

b、交易抓取

IDR通过事先创建的试图来捕获日志变化,由于每次捕获的日志的物理位置都会记录,因此可以得出日志变化量。

后续的抓取日志、分析交易、传输交易,完全由IDR独自完成,不使用oracle数据库任何资源。

在每次抓取的日志量处理完成后,记录在IDR的缓存目录中,因此对于日常运行过程中,IDR 停止或其它原因需要读取归档日志时,根据记录的日志物理位置来定位需要抓取的归档日志。

IDR抓取日志跟oracle数据库是写日志是并行操作而又互不影响。

正常情况下,IDR都是准实时的抓取变化日志量。

对于源端是rac环境来说:rac环境中,在每一个实例所在的主机操作系统上可以读取另外主机的在线日志(包括归档日志)。通过每一个实例的日志和scn来保证交易顺序的准确性。

c、交易分析

严格按照源端Oracle数据库内部SCN执行顺序以及已经提交的交易来合成交易文件,该

交易文件号是依次递增并且是唯一的,从0开始,交易文件号的算法跟oracle的scn算法

一样,可以保证在oracle数据库正常使用期间,保证。IDR能够正常使用。

IDR只处理已经完成提交的交易,对于回滚操作,IDR不处理该操作。

d、交易传输

IDR只传输交易内容,不传输交易内容的数据结构,采用专有的合成交易文件格式,只有IDR 提供的工具才可以解析交易内容,这样即证了在网络传输过程中数据的安全性又可以保证网络传输过程中数据的准确性。

满足下列三种情况,源端将删除该交易文件:

l 接受的交易文件号跟源端传输的一样。

l 接受的交易文件大小跟源端传输的一样。

l 接受的交易文件校验码跟源端传输的一样。

e、交易装载

目标端接受交易合成文件后,首先存放在缓存目录中,然后严格按照从小到大顺序进行装载,装载的交易文件不能缺失。否则装载的进程将一直处于等待状态,因此无论目标端是rac环境还是单机环境都可以保证装载的准确性。

这样就可以保证在目标端装载过程中,保证按照源端合成的交易文件顺序来装载。

(2)IDR支持的同步特性

a、支持的同步对象

IDR支持两种级别数据库对象的同步:用户级同步、表级同步。

用户级同步:源端数据库指定用户及其所包含的表、视图、索引、过程、函数、包、序列等数据对象全部同步到目标端数据库指定的用户下。

IDR支持源端用户名和目标端用户名不同的同步方式。

表级同步:表级同步分为单表同步和多表同步。

单表同步指定源端数据库指定用户下的单个表同步到目标端数据库指定用户下的单个表。

多表同步,即group方式,针对多个用户,每个用户只同步指定的部分表同步的情况。

b、支持的同步模式

同步模式主要指源端和目标端的架构模式,具体分为

1:1模式、1:n模式、n:1模式、1:1:1模式四种。

1对1的同步模式:

n对1同步模式:

1对n同步模式:

级联同步:

可以根据具体情况选择或组合以上同步模式到您所需要的应用架构中。

c、数据同步方式

IDR支持历史数据同步、只同步变化数据同步两种方式。这两种方式和有效结合或单独使用。

历史数据指同步时刻已经存在的数据,历史数据同步方式分为两种:

l 快照方式

快照方式利用oracle的select的多版本特性,将历史数据抓取到目标端,同时可选择将变化数据实时同步,在历史数据装载完成后,再装载变化数据。历史数据的抓取与变化数据的抓取之间无缝结合,有业务运行也不影响数据同步的准确性。

相对而言,快照方式同步数据时间长,对于系统资源占有大。

l 读文件方式

读文件方式指IDR直接读取oracle数据文件中的表数据,同时可选择变化数据实时抓取。

相对而言,快照方式同步数据时间端,对于系统资源占有小。但是这种方式抓取历史数据时,源端系统不能有业务,否则无法保证同步数据的准确性。

变化数据同步有两种应用方式:

l 与历史数据同步方式结合

IDR支持历史数据与变化数据无缝结合的同步模式,这种方式无需停止业务。

l 单独同步变化数据。

这种方式是在两边数据已经一致的情况下,将某一边数据库现产生的交易同步到另外一边的数据库中。

d、数据定位方式

目标端装载交易时,对于目标端对应数据(表的记录)的定位方式分为rowid和where两种方式。

rowid方式:使用rowid同步方式,由于在目标端装载时直接根据rowid方式定位表纪录的物理位置,不会因为数量量的差异而影响查找纪录的速度。

使用rowid方式时,首先必须进行全同步+增量同步结合的模式,后续的增量数据依赖全同步数据。即使源端某些表的纪录完全相同,则也不会影响数据的准确性。

Where方式:Where方式在目标端装载数据时,对于目标端对应的数据查找依赖对应表的where条件,对于对应数据的查找速度完全依赖于数据库本身的查找速度。

主要满足两种应用需要:

一种跟rowid方式相同,差别在于表的数据不能出现重复纪录。

另外一种方式是只同步变化数据部分。只依赖源端和目标端相关表的数据结构。这种方式采用IDR的只进行增量同步的方式进行。

(3)IDR同步的性能

a、读取在线日志

IDR是直接通过读取Oracle日志来分析出交易内容,而不是通过数据库表来得到,这样将不依赖数据库本身的数据内容而直接得到交易信息。从而大大加快了合成交易文件的速度。

b、内存中完成交易解析

源端在线日志的抓取的最新位置是通过查询数据库实例sga的动态视图得到的,这样不仅速度快而且不会直接影响源端数据库的物理I/O。

信息安全及其前沿技术综述

信息安全及其前沿技术综述 一、信息安全基本概念 1、定义 (1)国内的回答 ●可以把信息安全保密内容分为:实体安全、运行安全、数据安全和管理安全四个方面。(沈昌祥) ●计算机安全包括:实体安全;软件安全;运行安全;数据安全;(教科书)●计算机信息人机系统安全的目标是着力于实体安全、运行安全、信息安全和人员安全维护。安全保护的直接对象是计算机信息系统,实现安全保护的关键因素是人。(等级保护条例) (2)国外的回答 ●信息安全是使信息避免一系列威胁,保障商务的连续性,最大限度地减少商务的损失,最大限度地获取投资和商务的回报,涉及的是机密性、完整性、可用性。(BS7799) ●信息安全就是对信息的机密性、完整性、可用性的保护。(教科书) ●信息安全涉及到信息的保密 (3)信息安全的发展渊源来看 1)通信保密阶段(40—70年代) ●以密码学研究为主 ●重在数据安全层面 2)计算机系统安全阶段(70—80年代) ●开始针对信息系统的安全进行研究 ●重在物理安全层与运行安全层,兼顾数据安全层 3)网络信息系统安全阶段(>90年代) ●开始针对信息安全体系进行研究 ●重在运行安全与数据安全层,兼顾内容安全层 2、信息安全两种主要论点

●机密性(保密性):就是对抗对手的被动攻击,保证信息不泄漏给 未经授权的人。 ●完整性:就是对抗对手主动攻击,防止信息被未经授权的篡改。 ●可用性:就是保证信息及信息系统确实为授权使用者所用。 (可控性:就是对信息及信息系统实施安全监控。) 二、为什么需要信息安全 信息、信息处理过程及对信息起支持作用的信息系统和信息网络都是重要的商务资产。信息的保密性、完整性和可用性对保持竞争优势、资金流动、效益、法律符合性和商业形象都是至关重要的。 然而,越来越多的组织及其信息系统和网络面临着包括计算机诈骗、间谍、蓄意破坏、火灾、水灾等大范围的安全威胁,诸如计算机病毒、计算机入侵、DoS 攻击等手段造成的信息灾难已变得更加普遍,有计划而不易被察觉。 组织对信息系统和信息服务的依赖意味着更易受到安全威胁的破坏,公共和私人网络的互连及信息资源的共享增大了实现访问控制的难度。

认识数据备份和容灾的重要性

认识数据备份和容灾的重要性 现在无论企业网络规模大小,我们都建议有一个完善、适用的数据备份和容灾方案,因为现在的网络安全形式太严峻了,网络安全威胁无时无刻都存在着,数据备份和容灾也就显着尤为重要。但是,对于国内许多企业老总和网管员来说,对数据备份和容灾的认识还相当不够,这可以从几百位网管员经常说他们的数据损坏或丢失了无法修复的现象中得到证明。 1.数据备份的意义 目前,从国际上来看,以美国为首的发达国家都非常重视数据存储备份技术,而且将其充分利用,服务器与磁带机的连接已经达到60%以上。而在国内,据专业调查机构调查显示,只有不到15%的服务器连有备份设备,这就意味着85%以上的服务器中的数据面临着随时有可能遭到全部破坏的危险。而且这15%中绝大部分是属于金融、电信、证券等大型企业领域或事业单位。由此可见,国内用户对备份的认识与国外相比存在着相当大的差距。 这种巨大的差距,也就体现了国内与国内经济实力和观念上的巨大差距。一方面,因为国内的企业通常比较小,信息化程度比较低,因此对网络的依赖程度也就小许多。另一方面,国内的企业大多数是属于刚起步的中小型企业,它们还没有像国内一些著名企业那样丰富的经历,更少有国外公司那样因数据丢失或毁坏而遭受重大损失的亲身体验。其实这都是错误的,因为现在的经济环境与几年前都有着天壤之别,更别说与之前的十几年,甚至几十年相比了。在现在的社会网络大环境中,即使是小型企业也可能有许多的工作通过网络来完成,也必将有许多企业信息以数据的形式而保存在服务器或计算机上。它们对计算机和网络的依赖程度必将一天天加重。由此可见,无论是国内的大型企业,还是占有绝大多数的中小型企业,都必须从现在起重视数据备份这一项我们以前总认为“无用”的工作。一旦等到重大损失出现,再来补救就为时已晚了。前车之鉴,希望我们能够吸取。 根据3M公司的调查显示,对于市场营销部门来说,恢复数据至少需要19天,耗资17000美圆;对于财务部门来说,这一过程至少需要21天,耗资19000美圆;而对于工程部门来说,这一过程将延至42天,耗资达98000美圆。而且在恢复过程中,整个部门实际上是处在瘫痪状态。在今天,长达42天的瘫痪足以导致任何一家公司破产,而唯一可以将损失降至最小的行之有效的办法莫过于数据的存储备份。其实数据备份并不是“无用”,而是有相当大的作用,它可以在一定程度上决定了一个企业的生死。 2.数据破坏的主要原因 了解了数据备份的意义后,我们再来了解一下可能性造成数据被破坏的一些主要因素。虽然我们不可能全面避免这些不利因素的发生,但至少我们可以做到有针对性的预防。而且有些主观上的因素还是可以尽量减少的。 目前造成网络数据破坏的原因主要有以下几个方面:(1)自然灾害,如水灾、火灾、雷击、地震等造成计算机系统的破坏,导致存储数据被破坏或丢失,这属于客观因素我们无能为力。(2)计算机设备故障,其中包括存储介质的老化、失效,这也属于客观原因,但可以提前预防,只需经常做到维护,就可以及时发现问题,避免灾难的发生。(3)系统管理员及维护人员的误操作,这属于主观因素,虽然不可能完全避免,但至少可以尽量减少。(4)病毒感染造成的数据破坏和网络上的“黑客”攻击,这虽然也可归属于客观因素,但其实我们还是可以做好预防的,而且还有可能完全避免这类灾难的发生。 3.有关数据备份的几种错误认识 在一般人脑海里,往往把备份和拷贝等同起来,把备份单纯看做是更换磁带、为磁带编号等一个完全程式化的、单调的操作过程。其实不然,因为除了拷贝外,还包括更重要的内容,如备份管理和数据恢复。备份管理包括备份计划的制订,自动备份活动程序的编写、备份日志记录的管理等。事实上,备份管理是一个全面的概念,它不仅包含制度的制定和磁带

两地三中心容灾方案

Xx项目存储方案介绍

目录 1. 现状综述 (4) 2. 总体建设方案 (4) 2.1. 建设原则和策略 (4) 2.1.1. 建设原则 (4) 2.1.2. 建设策略 (5) 2.2. 建设目标 (7) 2.2.1. 总体目标 (7) 2.2.2. 分期目标 (7) 2.3. 建设内容 (7) 2.4. 总体设计方案 (8) 3. 容灾的核心技术及选择 (9) 3.1. 容灾系统衡量指标 (9) 3.2. 容灾级别 (10) 3.3. 常见容灾建设模式 (11) 3.3.1. 同城容灾 (11) 3.3.2. 异地容灾 (11) 3.3.3. 两地三中心 (11) 3.3.4. 双活数据中心 (11) 3.4. 常用的数据复制技术 (12) 3.4.1. 基于存储层的容灾复制方案 (13) 3.4.2. 基于主机数据复制技术的灾备方案 (18) 3.4.3. 基于数据库的数据复制技术构建灾备方案 (20) 3.5. 如何选择最优的容灾方案 (28) 3.5.1. 数据容灾技术选择原理 (28) 3.5.2. 数据容灾技术选择度量标准 (29) 3.6. 本项目容灾模式及技术的选择 (29) 3.6.1. 容灾模式选择 (29) 3.6.2. 容灾中心选址 (30) 3.6.3. 数据复制技术的选择 (32) 4. 推荐方案概述 (33) 4.1. 技术路线选择 (33) 4.2. 总体方案架构 (33) 4.3. 数据库容灾系统设计 (35) 4.3.1. Golden Gate技术原理 (36) 4.3.2. 各委办局和同城容灾中心之间的数据库复制 (37) 4.3.3. 同城容灾中心和异地容灾中心之间的数据库复制 (40) 4.4. 非结构化数据容灾系统设计 (40) 4.4.1. 同城容灾中心和生产中心之间的数据容灾 (41) 4.4.2. 同城容灾中心和远程容灾中心的数据容灾 (43) 4.4.3. 应用级容灾几种实现方式 (44) 4.5. 一体化集中备份系统 (45) 4.6. 容灾网络建设方案设计 (46)

数据中心容灾备份方案完整版

数据中心容灾备份方案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

数据保护系统 医院备份、容灾及归档数据容灾 解决方案 1、前言 在医院信息化建设中,HIS、PACS、RIS、LIS 等临床信息系统得到广泛应用。医院信息化 HIS、LIS 和 PACS 等系统是目前各个医院的核心业务系统,承担了病人诊疗信息、行政管理信息、检验信息的录入、查询及监控等工作,任何的系统停机或数据丢失轻则降低患者的满意度、医院的信誉丢失,重则引起医患纠纷、法律问题或社会问题。为了保证各业务系统的高可用性,必须针对核心系统建立数据安全保护,做到“不停、不丢、可追查”,以确保核心业务系统得到全面保护。 随着电子病历新规在 4 月 1 日的正式施行,《电子病历应用管理规范(试行)》要求电子病历的书写、存储、使用和封存等均需按相关规定进行,根据规范,门(急)诊电子病历由医疗机构保管的,保存时间自患者最后一次就诊之日起不少于15 年;住院电子病历保存时间自患者最后一次出院之日起不少于 30 年。

2、医院备份、容灾及归档解决方案 针对医疗卫生行业的特点和医院信息化建设中的主要应用,包括:HIS、PACS、RIS、LIS 等,本公司推出基于数据保护系统的多种解决方案,以达到对医院信息化系统提供全面的保护以及核心应用系统的异地备份容灾 数据备份解决方案 针对于医院的 HIS、PACS、LIS 等服务器进行数据备份时,数据保护系统的备份架构采用三层构架。 备份软件主控层(内置一体机):负责管理制定全域内的备份策略和跟踪客户端的备份,能够管理磁盘空间和磁带库库及光盘库,实现多个客户端的数据备份。备份软件主服务器是备份域内集中管理的核心。 客户端层(数据库和操作系统客户端):其他应用服务器和数据库服务器安装备份软件标准客户端,通过这个客户端完成每台服务器的 LAN 或 LAN-FREE 备份工作。另外,为包含数据库的客户端安装数据库代理程序,从而保证数据库的在线热备份。 备份介质层(内置虚拟带库):主流备份介质有备份存储或虚拟带库等磁盘介质、物理磁带库等,一般建议将备份存储或虚拟带库等磁盘介质作为一级备份介质,用于近期的备份数据存放,将物理磁带库或者光盘库作为二级备份介质,用于长期的备份数据存放。

数据中心容灾备份方案

数据保护系统 医院备份、容灾及归档数据容灾 解决方案

1、前言 在医院信息化建设中,HIS、PACS、RIS、LIS 等临床信息系统得到广泛应用。医院信息化HIS、LIS 和PACS 等系统是目前各个医院的核心业务系统,承担了 病人诊疗信息、行政管理信息、检验信息的录入、查询及监控等工作,任何的系统停机或数据丢失轻则降低患者的满意度、医院的信誉丢失,重则引起医患纠纷、法律问题或社会问题。为了保证各业务系统的高可用性,必须针对核心系统建立数据安全保护,做到“不停、不丢、可追查”,以确保核心业务系统得到全面保护。 随着电子病历新规在 4 月 1 日的正式施行,《电子病历应用管理规范(试行)》要求电子病历的书写、存储、使用和封存等均需按相关规定进行,根据规范,门(急)诊电子病历由医疗机构保管的,保存时间自患者最后一次就诊之日起不少于15 年;住院电子病历保存时间自患者最后一次出院之日起不少于30 年。

2、医院备份、容灾及归档解决方案 针对医疗卫生行业的特点和医院信息化建设中的主要应用,包括:HIS、PACS、RIS、LIS 等,本公司推出基于数据保护系统的多种解决方案,以达到对医院信息化系统提供全面的保护以及核心应用系统的异地备份容灾 2.1 数据备份解决方案 针对于医院的HIS、PACS、LIS 等服务器进行数据备份时,数据保护系统的备份架构采用三层构架。 备份软件主控层(内置一体机):负责管理制定全域内的备份策略和跟踪客户端的备份,能够管理磁盘空间和磁带库库及光盘库,实现多个客户端的数据备份。备份软件主服务器是备份域内集中管理的核心。 客户端层(数据库和操作系统客户端):其他应用服务器和数据库服务器安装备份软件标准客户端,通过这个客户端完成每台服务器的LAN 或LAN-FREE 备份工作。另外,为包含数据库的客户端安装数据库代理程序,从而保证数据库的在线热备份。

几种容灾数据复制技术的比较

一、概述 近几年来,容灾已经成为信息数据中心建设的热门课题。很多容灾技术也快速发展起来,对用户来说也有很广阔的选择余地。但由于容灾方案的技术复杂性和多样性,一般用户很难搞清其中的优劣以确定如何选择最适合自己状况的容灾解决方案。本文我们就容灾建设中的备份及复制技术做一个初步探讨,希望能对客户的数据中心容灾建设提供一些参考。 目前有很多种容灾技术,分类也比较复杂。但总体上可以区分为离线式容灾(冷容灾)和在线容灾(热容灾)两种类型。 二、离线式容灾 所谓的离线式容灾主要依靠备份技术来实现。其重要步骤是将数据通过备份系统备份到磁带上面,而后将磁带运送到异地保存管理。离线式容灾具有实时性低、可备份多个副本、备份范围广、长期保存、投资较少等特点,由于是备份一般是压缩后存放到磁带的方式所以数据恢复较慢,而且备份窗口内的数据都会丢失,因此一般用于数据恢复的RTO(目标恢复时间)和RPO(目标恢复点)要求较低的容灾。也有很多客户将离线式容灾和在线容灾结合起来增加系统容灾的完整性和安全性。 目前主流的备份软件主要有: l Symantec Veritas NetBackup l EMC Legato NetWorker l IBM Tivoli Storage Manager l Quest BakBone NetVault 三、在线容灾 在线容灾要求生产中心和灾备中心同时工作,生产中心和灾备中心之间有传输链路连接。数据自生产中心实时复制传送到灾备中心。在此基础上,可以在应用层进行集群管理,当生产中心遭受灾难出现故障时可由灾备中心接管并继续提供服务。因此实现在线容灾的关键是数据的复制。 和数据备份相比,数据复制技术具有实时性高、数据丢失少或零丢失、容灾恢复快、投资较高等特点。根据数据复制的层次,数据复制技术的实现可以分为三种:存储系统层数据复制、操作系统数据复制和数据库数据复制。

六种数据库容灾方案

六种数据库容灾方案 1、经典方案,即双机ha,单盘阵的环境。 简单的说,双机热备就是用两台机器,一台处于工作状态,一台处于备用状态,但备用状态下,也是开机状态,只是开机后没有进行其他的操作。打个比方来说,在网关处架上两台频宽管理设备,将两台的配置设定为一致,只是以一台的状态为主,一台为次。主状态下的频宽管理设备工作,处理事件,次状态下的频宽管理设备处于休眠,一旦主机出现故障,备用频宽管理设备将自动转为工作状态,代替原来的主机。这就是“双机热备”。 2、单机双盘阵(os层镜像)。针对某些用户的双盘阵冗余的需求,我提出了在os层安装卷管理软件,用软件对两台盘阵做镜像的方案,但只有单机工作,一台盘阵挂了,因为os层的软raid的作用,系统仍然可以工作。 3、双机双柜(os层镜像)方案,这个方案,仍然是用os层做镜像,但是用了双机ha,这种方式有个尚未确认的风险,非纯软方式的ha要求主机有共享的存储系统。一台机器对盘阵lun做的镜像虚拟卷,是否也适用另一台主机,也就是说,a主机做的镜像,b主机接管后,是否会透明的认出a机做镜像之后的逻辑虚拟卷,如果ab两主机互相都能认,那么就是成功的方案!! 4、双机双柜(底层镜像)。这种方案,虽然共享的lun不是在一台物理盘阵上,但是被底层存储远程镜像到另一台盘阵上,能保持数据的一致性

5、双机双柜纯软方式HA。这种方案,主机装纯软HA软件,虽然纯软不需要外接盘阵,但是接了盘阵,照样可行。 6、双机双柜(hacmp geo),其实geo大体上就是个类似于纯软HA的软件。

数据库安全 (一)数据库安全的定义 数据库安全包含两层含义:第一层是指系统运行安全,系统运行安全通常受到的威胁如下,一些网络不法分子通过网络,局域网等途径通过入侵电脑使系统无法正常启动,或超负荷让机子运行大量算法,并关闭cpu风扇,使cpu过热烧坏等破坏性活动;第二层是指系统信息安全,系统安全通常受到的威胁如下,黑客对数据库入侵,并盗取想要的资料。 编辑本段 (二)数据库安全的特征 数据库系统的安全特性主要是针对数据而言的,包括数据独立性、数据安全性、数据完整性、并发控制、故障恢复等几个方面。下面分别对其进行介绍 1.数据独立性 数据独立性包括物理独立性和逻辑独立性两个方面。物理独立性是指用户的应用程序与存储在磁盘上的数据库中的数据是相互独立的;逻辑独立性是指用户的应用程序与数据库的逻辑结构是相互独立的。 2.数据安全性 操作系统中的对象一般情况下是文件,而数据库支持的应用要求更为精细。通常比较完整的数据库对数据安全性采取以下措施: (1)将数据库中需要保护的部分与其他部分相隔。 (2)采用授权规则,如账户、口令和权限控制等访问控制方法。 (3)对数据进行加密后存储于数据库。 3.数据完整性 数据完整性包括数据的正确性、有效性和一致性。正确性是指数据的输入值与数据表对应域的类型一样;有效性是指数据库中的理论数值满足现实应用中对该数值段的约束;一致性是指不同用户使用的同一数据应该是一样的。保证数据的完整性,需要防止合法用户使用数据库时向数据库中加入不合语义的数据 4.并发控制 如果数据库应用要实现多用户共享数据,就可能在同一时刻多个用户要存取数据,这种事件叫做并发事件。当一个用户取出数据进行修改,在修改存入数据库之前如有其它用户再取此数据,那么读出的数据就是不正确的。这时就需要对这种并发操作施行控制,排除和避免这种错误的发生,保证数据的正确性。 5.故障恢复 由数据库管理系统提供一套方法,可及时发现故障和修复故障,从而防止数据被破坏。数据库系统能尽快恢复数据库系统运行时出现的故障,可能是物理上或是逻辑上的错误。比如对系统的误操作造成的数据错误等。 SQL server数据库安全策略 SQL Server2000[1]的安全配置在进行SQL Server2000数据库的安全配置之前,首先必须对操作系统进行安全配置,保证操作系统处于安全状态。然后对要使用的操作数据库软件(程序)进行必要的安全审核,比如对ASP、PHP等脚本,这是很多基于数据库的Web应用常出现的安全隐患,对于脚本主要是一个过滤问题,需要过滤一些类似“,;@/”等字符,防止破坏者构造恶意的SQL语句。接着,安装SQL Server2000后请打上最新SQL补丁SP3。 SQL Server的安全配置 1.使用安全的密码策略 我们把密码策略摆在所有安全配置的第一步,请注意,很多数据库账号的密码过于简单,这跟系统密码过于简单是一个道理。对于sa更应该注意,同时不要让sa账号的密码写于应用程序或者脚本中。健壮的密码是安全的第一步,建议密码含有多种数字字母组合并9位以上。SQL Server2000安装的时候,如果是使用混合模式,那么就需要输入sa的密码,除非您确认必须使用空密码,这比以前的版本有所改进。同时养成定期修改密码的好习惯,数据库管理员应该定期查看是否有不符合密码要求的账号。 2.使用安全的账号策略 由于SQL Server不能更改sa用户名称,也不能删除这个超级用户,所以,我们必须对这个账号进行最强的保

容灾需求分析及方案建议

中国联通XX分公司综合电信业务支撑系统容灾一期工程 需求分析及方案建议书

目录 1.项目综述 (4) 1.1项目概述 (4) 1.2项目整体建设思想 (5) 1.3需求分析 (6) 1.3.1XX联通现有综合电信业务支撑系统状况 (6) 1.3.1.1总体架构 (6) 1.3.1.2系统组织及设备构成 (7) 1.3.1.2.1 综合营帐系统介绍 (7) 1.3.1.2.2专业计费系统现状 (9) 1.3.1.3 数据构成 (10) 2.系统容灾方案 (11) 2.1容灾系统的整体思想 (12) 2.1.1XX联通容灾系统实现功能目标 (13) 2.1.2XX联通容灾实施服务内容 (14) 2.1.3XX联通容灾方案实施阶段与步骤 (15) 2.2XX联通综合电信业务支撑系统的容灾方案的设计原则 (18) 2.3XX联通综合电信业务支撑系统的容灾方案的取定 (19) 2.4数据复制技术的选择 (20) 2.5系统容灾方案的总体设计 (23) 2.5.1 存储资源规划 (23) 2.5.2 容灾中心主机系统方案 (25) 2.5.2.1服务器的选型 (26) 2.5.2.2服务器的配置 (26) 2.5.2.3 Oracle数据库的升级 (27) 2.5.3.4容灾中心的备份方案 (28) 2.5.4 网络系统方案 (28) 2.5.4.1用于数据传输的TCP/IP网络 (29) 2.5.4.2基于数据远程同步的SAN网络 (30) 2.5.5 EMC总体方案描述 (32) 2.5.5.1 EMC容灾方案 (33) 2.5.5.2 日后应用系统切换 (34) 2.5.5.3 本期系统总体资源描述 (37) 2.5.5.4 具体实施步骤 (39) 2.5.5.5 灾难处理 (40) 3.容灾系统监控 (42)

容灾备份-解决方案方法

容灾备份系统 2010-8-11 项目背景 随着计算机技术的快速发展,每个企业都在大量的使用计算机处理自己的核心数据,这些数据往往是企业生产经营必不可少的部分。依赖这些数据的计算机系统的停机往往会造成企业生产经营活动的停顿,给企业造成巨大的损失。所以,可以说,这些数据是企业的生命核心。

企业的IT 管理员为了保证生产经营活动的持续运行,不断的加强对系统和数据的保护,如使用基于双机的高可用技术,磁盘阵列系统的RAID 技术等。然而,人们依然无法 回避由于磁盘故障,人为失误,应用程序的逻辑错误,自然灾害等原因带来的系统停机或者 数据丢失。所以,数据备份作为数据保护的最后一道屏障,必不可少。 二、功能介绍 实时保护:连续捕获、实时备份数据变化,全过程保护数据安全。实现真正的持续性 数据保护(CDP),无需设置任何备份时间点,居国内外同类产品领先地位。 完善备份:同一软件可实现“数据库双机热备+接管”、“本地实时灾备” 、“异 地实时灾备” ,全方位保证数据库安全。 任意回退:可按任意操作步数或时间点进行数据回退。主数据库遭到破坏时,备份数 据库可将主数据库回退到损坏前最后时刻的状态,且能保证事件的完整性。 快速恢复:主数据库或表损坏,从站自动检测,提示回退的步数。恢复1个G数据 库在3-5分钟。 增量备份:只备份变化部分,在保障备份数据安全的同时减少备份的工作量。 错峰机制:在系统负荷极大时暂停备份以免系统瘫痪,当系统负荷下降时备份暂停 期间的数据,并重新开始实时备份。 低耗资源:对主数据库压力小,系统采用消息机制,只有灾数据库发生变化时才触 发,只传数据库的变化部分,不同于文件拷贝,和数据表的轮询。 操作简单:自主开发设计,着重考虑国内用户使用习惯,安装、设置非常简单。维护 方便:启动或连接中断后重连时,自动校验主从站数据,保证数据准确。 加密传输:底层通讯采用自主研发的通讯平台,所有数据都是用加密数据包进行数据 交换,充分保证数据安全。 高性价比:在各项性能领先的同时,价格远远优于国外软件。当选择不接管的热 容灾备份方式时,从站可采用低档Server 或高稳定性的PC(有足够的存储空间即 可),从而实现极低的总体成本。 通用性好:不对数据库中的应用做任何修改。与数据库中表的结构无关,且无任 何限制。对数据库备份完整:如TABLES(表)、DIAGRAM(S关系图)、VIEWS(视图)、USERS(用户)、ROLES、RULES等。

4种容灾技术对比解析

美创科技 关于不同容灾技术对比解析 文初,我们先来看两组数据: 业务中断造成的损失: 证券业:6,450,000美元/小时 金融信用卡:2,600,000美元/小时 银行数据中心:2,500,000美元/小时 在线拍卖交易:225,000 美元/小时 1GB数据丢失的损失: 市场营销数据:870,000美元 财务数据:972,800美元 工程数据:5,017,600美元 从上述数据可以清晰地看出,不论是业务中断还是数据丢失,都会造成严重的经济损失。除直接的经济损失外,还有隐性的损失,比如声誉受损、客户信心和忠诚度丢失、竞争地位受损,甚至还包括监管合规风险。 相比于以上的损失,容灾建设就具有十分重要的现实意义。容灾系统建设是一个涉及面广、专业性强的系统工程,如何选择合理的容灾架构?

接下来对市面上的各种容灾可用技术进行分析和对比,给大家做参考。 一、基于应用层容灾技术 ?实现原理 生产中心的应用程序通过应用层交易分发的模式,将交易数据传送到部署于容灾中心的灾备系统。由生产中心和容灾中心共同处理相同的交易数据,以确保两边数据的一致性。 ?优缺点分析 优点:实现双活的数据中心,容灾端随时可提供服务,通过网络漂移可以实现无缝接管。 缺点:如果采用同步方式会影响前台的响应速度。需要对应用进行大量改造,实现难度大。数据一致性完全需要有应用软件控制,可能会有数据不一致的情况。 二、基于卷管理层的容灾技术

?实现原理 运行在物理的存储设备或逻辑的卷管理器上,甚至也可以运行在数据传输层上。当数据块写入生产数据的存储设备时,卷复制系统可以捕获数据的拷贝并将其存放在另外一个存储设备中,实现数据同步。当生产中心发生灾难的时候时,可以在容灾服务器上激活相应的卷组和逻辑卷,进而启动数据和应用系统,实现业务系统快速恢复。 ?优缺点分析 优点: 可以对操作系统级别实现容灾,对应用透明性,兼容各类应用、数据库等; 能够实现切换过程中IP地址、MAC地址的克隆; 对于存储之系统透明,生产和容灾可以采用不同的磁盘阵列。 缺点: IO捕获进程在高并发环境下会对生产系统造成较大的资源消耗; 在内存型应用的情况下,如数据库的延迟缓存刷新,会经常出现备端数据库无法启动的情况; 通常采用异步模式,RPO的值一般在分钟级别。

大数据存储方式概述

大数据存储方式概述 随着信息社会的发展,越来越多的信息被数据化,尤其是伴随着Internet的发展,数据呈爆炸式增长。从存储服务的发展趋势来看,一方面,是对数据的存储量的需求越来越大,另一方面,是对数据的有效管理提出了更高的要求。首先是存储容量的急剧膨胀,从而对于存储服务器提出了更大的需求;其次是数据持续时间的增加。最后,对数据存储的管理提出了更高的要求。数据的多样化、地理上的分散性、对重要数据的保护等等都对数据管理提出了更高的要求。随着数字图书馆、电子商务、多媒体传输等用的不断发展,数据从GB、TB 到PB量级海量急速增长。存储产品已不再是附属于服务器的辅助设备,而成为互联网中最主要的花费所在。海量存储技术已成为继计算机浪潮和互联网浪潮之后的第三次浪潮,磁盘阵列与网络存储成为先锋。 一、海量数据存储简介 海量存储的含义在于,其在数据存储中的容量增长是没有止境的。因此,用户需要不断地扩张存储空间。但是,存储容量的增长往往同存储性能并不成正比。这也就造成了数据存储上的误区和障碍。海量存储技术的概念已经不仅仅是单台的存储设备。而多个存储设备的连接使得数据管理成为一大难题。因此,统一平台的数据管理产品近年来受到了广大用户的欢迎。这一类型产品能够整合不同平台的存储设备在一个单一的控制界面上,结合虚拟化软件对存储资源进行管理。这样的产品无疑简化了用户的管理。 数据容量的增长是无限的,如果只是一味的添加存储设备,那么无疑会大幅增加存储成本。因此,海量存储对于数据的精简也提出了要求。同时,不同应用对于存储容量的需求也有所不同,而应用所要求的存储空间往往并不能得到充分利用,这也造成了浪费。 针对以上的问题,重复数据删除和自动精简配置两项技术在近年来受到了广泛的关注和追捧。重复数据删除通过文件块级的比对,将重复的数据块删除而只留下单一实例。这一做法使得冗余的存储空间得到释放,从客观上增加了存储容量。 二、企业在处理海量数据存储中存在的问题 目前企业存储面临几个问题,一是存储数据的成本在不断地增加,如何削减开支节约成本以保证高可用性;二是数据存储容量爆炸性增长且难以预估;三是越来越复杂的环境使得存储的数据无法管理。企业信息架构如何适应现状去提供一个较为理想的解决方案,目前业界有几个发展方向。 1.存储虚拟化 对于存储面临的难题,业界采用的解决手段之一就是存储虚拟化。虚拟存储的概念实际上在早期的计算机虚拟存储器中就已经很好地得以体现,常说的网络存储虚拟化只不过是在更大规模范围内体现存储虚拟化的思想。该技术通过聚合多个存储设备的空间,灵活部署存储空间的分配,从而实现现有存储空间高利用率,避免了不必要的设备开支。 存储虚拟化的好处显而易见,可实现存储系统的整合,提高存储空间的利用率,简化系统的管理,保护原有投资等。越来越多的厂商正积极投身于存储虚拟化领域,比如数据复制、自动精简配置等技术也用到了虚拟化技术。虚拟化并不是一个单独的产品,而是存储系统的一项基本功能。它对于整合异构存储环境、降低系统整体拥有成本是十分有效的。在存储系统的各个层面和不同应用领域都广泛使用虚拟化这个概念。考虑整个存储层次大体分为应用、文件和块设备三个层次,相应的虚拟化技术也大致可以按这三个层次分类。 目前大部分设备提供商和服务提供商都在自己的产品中包含存储虚拟化技术,使得用户能够方便地使用。 2.容量扩展 目前而言,在发展趋势上,存储管理的重点已经从对存储资源的管理转变到对数据资源

数据存储容灾技术浅析

容灾技术浅析 本帖最后由爱如潮水于2009-10-29 10:42 编辑 1.概念篇 1.1 容灾的定义 在给出容灾的概念之前,有必要先给出灾难的定义。从一个计算机系统的角度讲,一切引起系统非正常停机的事件都可以称为灾难。大致可以分成以下三个类型: 自然灾害,包括地震、火灾、洪水、雷电等,这种灾难破坏性大,影响面广; 设备故障,包括主机的CPU、硬盘等损坏,电源中断以及网络故障等,这类灾难影响范围比较小,破坏性小。 人为操作破坏,包括误操作、人为蓄意破坏等等。 容灾(Disaster Tolerance),就是在上述的灾难发生时,在保证生产系统的数据尽量少丢失的情况下,保持生存系统的业务不间断地运行。 一个和容灾易混淆的概念是容错(FaultTolerance),容错指在计算机系统的软件、硬件发生故障时,保证计算机系统中仍能工作的能力。容错和容灾最大的区别是,容错可以通过硬件冗余、错误检查和热交换再加上特殊的软件来实现,而容灾必须通过系统冗余、灾难检测和系统迁移等技术来实现。当设备故障不能通过容错机制解决而导致系统宕机时,这种故障的解决就属于容灾的范畴。 另外一个容易和容灾混淆的概念是灾难恢复(DisasterRecovery),灾难恢复指的是在灾难发生后,将系统恢复到正常运作的能力。灾难恢复和容灾的区别是,容灾强调的是在灾难发生时,保证系统业务持续不间断地运行的能力,而灾难恢复强调的灾难之后,系统的恢复能力。现在的容灾系统都包含着灾难恢复的功能,所以本文的讨论除了包括容灾方面的内容,还包括了灾难恢复的部分内容。 1.2 容灾的评价指标 现在工业界都以数据丢失量和系统恢复时间作为标准,对某个容灾系统进行评价,公认的评价标准是RPO和RTO。 RPO(Recovery Point Objective): 恢复点目标,以时间为单位,即在灾难发生时,系统和数据必须恢复到的时间点要求。RPO标志系统能够容忍的最大数据丢失量。系统容忍丢失的数据量越小,RPO的值越小。 RTO(Recovery Time Objective): 恢复时间目标,以时间为单位,即在灾难发生后,信息系统或业务功能从停止到必须恢复的时间要求。RTO标志系统能够容忍的服务停止的最长时间。系统服务的紧迫性要求越高,RTO的值越小。

如何选择本地容灾技术和方案

如何选择本地容灾技术和方案 一、为什么需要容灾 为什么要建容灾呢?这是经济和社会发展来决定的。社会、经济、个人生活的发展需要各行各业提供高质量、高效率的业务或服务能力,在这个需求背景下企业陆续建设各信息化系统来提高自身的运作;信息化取代了原来的手工劳动,或者改变了原来的生产流程,或者创造了新的业务模式或商业模式,从而又推动了经济、社会的发展。当生产、工作、生活开始依赖这些IT系统时,一个新的行业和社会需求便产生了,这就是容灾行业。其目的是保障这些IT系统能够持续稳定的运行,从而保障这个企业持续正常的开展业务。国家为容灾这个行业制定了《信息系统灾难恢复规范》这个标准,同时也明确规定银行、电力、铁路、民航、证券、保险、海关、税务八大重点行业必需建设灾难恢复体系。 二、容灾行业的状况 1)容灾行业蓬勃发展 在国家和容灾厂商的推动下,容灾这个行业蓬勃发展。现状就是厂商很多,产品也很多。 但是,如同其他IT细分行业一样,容灾产品也是过剩的。存储厂商提供存储层的容灾技术和产品,如IBM、HP、EMC、HDS等等。这些一线的存储厂商提供的容灾产品主要用于高端行业。国外的、专业的备份软件大厂商提供基于软件的备份或容灾,如赛门铁克、飞康、CommVault等等,在传统备份软件领域,赛门铁克是老大,甚至老版本的Windows中集成了她的简化程序ntbackup。这些国外的软件厂商提供的产品主要用于中高端行业。国内也有很多,如浪擎等厂商,各有各的技术和产品。另外,数据库厂商都会自带定时备份技术,可设置定时调度策略来定时备份数据。 2)选择本地的、实惠的容灾 完全按照国标规定的七个要素来建设,资金、人力投入太大。因此,在实际的建设过程中,企业更多的选择还是不同机房的、不同楼层或楼宇的本地容灾。目的是防备软硬件故障、机房停电、中毒、人为误操作等等更加常见的破坏因素,或者准备一套备用系统用于例行维护使用,或者实现生产、查询相分离的业务建设。这样的建设目的非常实惠。本文所说的的灾难是主要指各种故障因素,因此本文所论述的容灾就是指本地容灾。 3)容灾技术指标RTO、RPO 容灾有两个非常重要的技术指标,RTO和RPO。理解起来很简单就是需要多少时间恢复业务系统和丢失多少的数据。从理论上讲,这两个指标越小越好,最好都是零。这两个指标不同的量级对应不同的投入成本和技术路线。就目前而言做容灾,要求RPO趋于零,RTO达到秒级或分钟级。 三、选择合适的容灾方案 容灾建设一般按照“统筹规划、资源共享、分批实施、平战结合”原则。考虑建设容灾的因素: 1)在选择合适的容灾要考虑投入成本和回报 对于银行、电信运营商、医疗、证券、电力、交通等行业而言,核心业务系统的数据对于企业的正常运行

数据容灾备份设计方案

数据容灾备份设计方案 1.1数据备份的主要方式 目前比较实用的的数据备份方式可分为本地备份异地保存、远程磁带库与光盘库、远程关键数据+定期备份、远程数据库复制、网络数据镜像、远程镜像磁盘等六种。 (1)本地备份异地保存 是指按一定的时间间隔(如一天)将系统某一时刻的数据备份到磁带、磁盘、光盘等介质上,然后及时地传递到远离运行中心的、安全的地方保存起来。 (2)远程磁带库、光盘库 是指通过网络将数据传送到远离生产中心的磁带库或光盘库系统。本方式要求在生产系统与磁带库或光盘库系统之间建立通信线路。 — (3)远程关键数据+定期备份 本方式定期备份全部数据,同时生产系统实时向备份系统传送数据库日志或应用系统交易流水等关键数据。 (4)远程数据库复制 生产系统相分离的备份系统上建立生产系统上重要数据库的一个镜像拷贝,通过通信线路将生产系统的数据库日志传送到备份系统,使备份系统的数据库与生产系统的数据库数据变化保持同步。 (5)网络数据镜像 是指对生产系统的数据库数据和重要的数据与目标文件进行监控与跟踪,并将对这些数据及目标文件的操作日志通过网络实时传送到备份系统,备份系统则根据操作日志对磁盘中数据进行更新,以保证生产系统与备份系统数据同步。 (6)远程镜像磁盘 利用高速光纤通信线路和特殊的磁盘控制技术将镜像磁盘安放到远 …

离生产系统的地方,镜像磁盘的数据与主磁盘数据以实时同步或实时异步方式保持一致。磁盘镜像可备份所有类型的数据。备份拓扑网络结构1.2(即东风东路院区中心机广州市第八人民医院具有两个不同地点的中心机房房和嘉禾院区中心机房),在这基础上是可以构建一个异地容灾的数据备份系统,以确保本单位的系统正常运营及对关键业务数据进行有效地保护,以下设计方案仅提供参考。嘉禾院区数据中心东风东院区数据中心 本方案中,我们采用EMC的CDP保护技术来实现数据的连续保护和容灾系统。 1.在东风东院区数据中心部署一台EMC 480统一存储平台,配置一个大容量光纤磁盘存储设备,作为整个系统数据集中存储平台。 2.在嘉禾院区数据中心部署一台EMC 480统一存储系统,配置一个大容量光纤磁盘存储设备,作为整个平台的灾备存储平台。 ) 3.两地各部署两台EMC RecoverPoint/SE RPA,采用CLR技术,即CDP(持续数据保护)+CRR(持续远程复制),实现并发的本地和远程数据保护。 4.在东风东院区数据中心本地采用EMC RecoverPoint/SE CDP(持续数据保护)技术实现本地的数据保护。. 5.两地采用EMC RecoverPoint/SE CRR(持续远程复制)技术,实现远程的数据保护。由于两地之间专线的带宽有限,可以采用EMC Recoverpoint/SE异步复制技术,将东风东院区数据中心EMC480上的数据定时复制到嘉禾院区数据中心。根据带宽的大小,如果后期专线带宽有所增加,RecoverPoint会自动切换同步、异步、快照时间点三种复制方式,尽最大可能保证数据的零丢失。 1.3本地数据数据保护(CDP)设计

数据库容灾、复制解决方案全分析(绝对精品)

数据库容灾、复制解决方案全分析(绝对精品) 目前,针对oracle数据库的远程复制、容灾主要有以下几种技术或解决方案: (1)基于存储层的容灾复制方案 这种技术的复制机制是通过基于SAN的存储局域网进行复制,复制针对每个IO进行,复制的数据量比较大;系统可以实现数据的同步或异步两种方式的复制.对大数据量的系统来说有很大的优势(每天日志量在60G以上),但是对主机、操作系统、数据库版本等要求一致,且对络环境的要求比较高。 目标系统不需要有主机,只要有存储设备就可以,如果需要目标系统可读,需要额外的配置和设备,比较麻烦。 (2)基于逻辑卷的容灾复制方案 这种技术的机制是通过基于TCP/IP的网络环境进行复制,由操作系统进程捕捉逻辑卷的变化进行复制。其特点与基于存储设备的复制方案比较类似,也可以选择同步或异步两种方式,对主机的软、硬件环境的一致性要求也比较高,对大数据量的应用比较有优势。其目标系统如果要实现可读,需要创建第三方镜像。个人认为这种技术和上面提到的基于存储的复制技术比较适合于超大数据量的系统,或者是应用系统的容灾复制。 我一直有一个困惑,存储级的复制,假如是同步的,能保证数据库所有文件一致吗?或者说是保证在异常发生的那一刻有足够的缓冲来保障? 也就是说,复制的时候起文件写入顺序和oracle的顺序一致吗?如果不一致就可能有问题,那么是通过什么机制来实现的呢? 上次一个存储厂商来讲产品,我问技术工程师这个问题,没有能给出答案 我对存储级的复制没有深入的研究过,主要是我自己的一些理解,你们帮我看一下吧…… 我觉得基于存储的复制应该是捕捉原系统存储上的每一个变化,而不是每隔一段时间去复制一下原系统存储上文件内容的改变结果,所以在任意时刻,如果原系统的文件是一致的,那么目标端也应该是一致的,如果原系统没有一致,那目标端也会一样的。形象一点说它的原理可能有点像raid 0,就是说它的写入顺序应该和原系统是一样的。不知道我的理解对不对。另外,在发生故障的那一刻,如果是类似断电的情况,那么肯定会有缓存中数据的损失,也不能100%保证数据文件的一致。一般来说是用这种方式做oracle的容灾备份,在发生灾难以后目标系统的数据库一般是只有2/3的机会是可以正常启动的(这是我接触过的很多这方面的技术人员的一种说法,我没有实际测试过)。我在一个移动运营商那里看到过实际的情况,他们的数据库没有归档,虽然使用了存储级的备份,但是白天却是不做同步的,只有在晚上再将存储同步,到第二天早上,再把存储的同步断掉,然后由另外一台主机来启动目标端存储上的数据库,而且基本上是有1/3的机会目标端数据库是起不来的,需要重新同步。 所以我觉得如果不是数据量大的惊人,其他方式没办法做到同步,或者要同时对数据库和应用进行容灾,存储级的方案是没有什么优势的,尤其是它对网络的环境要求是非常高的,在异地环境中几乎不可能实现。

几种主要的容灾产品对比概述-PUBLIC

A.数据容灾和数据备份的概述 什么是容灾系统?有了备份系统还需要容灾系统吗?这些问题有很多的客户都提到,而且振振有辞的声明,我们有备份系统可以容灾了!其实,容灾不单单是备份那么简单!容灾是指当灾难发生时,IT系统可以在最短时间内、最少的损失下恢复业务的运行。讨论容灾正是我们建设医院业务连续性的重要部分,因为容灾系统的建立可以最大限度的减少系统下线时间。 数据备份是数据容灾的基础 数据备份是业务连续性中的数据安全的最后一道防线,其目的是为了系统数据崩溃时能够快速的恢复数据。虽然它也算一种容灾方案,但这种容灾能力非常有限,因为传统的备份主要是采用数据内置或外置的磁带机进行冷备份,备份磁带同时也在机房中统一管理,一旦整个机房出现了灾难,如火灾、盗窃和地震等灾难时,这些备份磁带也随之销毁,所存储的磁带备份也起不到任何容灾功能。 容灾不是简单备份 真正的数据容灾就是要避免传统冷备份所具有先天不足,它能在灾难发生时,全面、及时地恢复整个系统。容灾按其容灾能力的高低可分为多个层次,例如国际标准SHARE 78 定义的容灾系统有七个层次:从最简单的仅在本地进行磁带备份,到将备份的磁带存储在异地,再到建立应用系统实时切换的异地备份系统,恢复时间也可以从几天到小时级到分钟级、秒级或0数据丢失等。 无论是采用哪种容灾方案,数据备份还是最基础的,没有备份的数据,任何容灾方案都没有现实意义。但光有备份是不够的,容灾也必不可少。容灾对于IT而言,就是提供一个能防止各种灾难的计算机信息系统。从技术上看,衡量容灾系统有两个主要指标:RPO (Recovery P oint Object)和RTO(Recovery Time Object),其中RPO代表了当灾难发生时允许丢失的数据量;而RTO则代表了系统恢复的时间。 容灾不仅是技术 容灾是一个工程,而不仅仅是技术。目前很多客户还停留在对容灾技术的关注上,而对容灾的流程、规范及其具体措施还不太清楚。也从不对容灾方案的可行性进行评估,认为只要建立了容灾方案即可高枕无忧,其实这具有很大风险。特别一些中小企业认为自己的企业为了数据备份和容灾,整年花费了大量的人力和财力,而结果几年下来根本就没有发生任何大的灾难,于是放松了警惕。可一旦发生了灾难时,后悔晚矣!这一点国外的跨国公司就做得非常好,尽管几年

数据备份和容灾需求分析

数据备份和容灾需求分析 数据备份和容灾需求分析 现在无论企业网络规模大小,我们都建议有一个完善、适用的数据备份和容灾方案,因为现在的网络安全形式太严峻了,网络安全威胁无时无刻都存在着。但是,对于国内许多企业老总和网管员来说,对数据备份和容灾的认识还相当不够,这可以从我们专用群中的几百位网管员经常向我报告说他们的数据损坏或丢失了无法修复的现象中得到证明。 1.数据备份的意义 目前,从国际上来看,以美国为首的发达国家都非常重视数据存储备份技术,而且将其充分利用,服务器与磁带机的连接已经达到60%以上。而在国内,据专业调查机构调查显示,只有不到15%的服务器连有备份设备,这就意味着85%以上的服务器中的数据面临着随时有可能遭到全部破坏的危险。而且这15%中绝大部分是属于金融、电信、证券等大型企业领域或事业单位。由此可见,国内用户对备份的认识与国外相比存在着相当大的差距。 这种巨大的差距,也就体现了国内与国内经济实力和观念上的巨大差距。一方面,因为国内的企业通常比较小,信息化程度比较低,因此对网络的依赖程度也就小许多。另一方面,国内的企业大多数是属于刚起步的中小型企业,它们还没有像国内一些著名企业那样丰富的经历,更少有国外公司那样因数据丢失或毁坏而遭受重大损失的亲身体验。其实这都是错误的,因为现在的经济环境与几年前都有着天壤之别,更别说与之前的十几年,甚至几十年相比了。在现在的社会网络大环境中,即使是小型企业也可能有许多的工作通过网络来完成,也必将有许多企业信息以数据的形式而保存在服务器或计算机上。它们对计算机和网络的依赖程度必将一天天加重。由此可见,无论是国内的大型企业,还是占有绝大多数的中小型企业,都必须从现在起重视数据备份这一项我们以前总认为“无用”的工作。一旦等到重大损失出现,再来补救就为时已晚了。前车之鉴,希望我们能够吸取。 根据3M公司的调查显示,对于市场营销部门来说,恢复数据至少需要19天,耗资17000美圆;对于财务部门来说,这一过程至少需要21天,耗资19000美圆;而对于工程部门来说,这一过程将延至42天,耗资达98000美圆。而且在恢复过程中,整个部门实际上是处在瘫痪状态。在今天,长达 42天的瘫痪足

相关主题
文本预览
相关文档 最新文档