细胞生物学 第十章
- 格式:doc
- 大小:35.00 KB
- 文档页数:9
第十章细胞核与染色体1.细胞核:真核细胞中由双层膜所包被的,包含由DNA、组蛋白等组织而成的染色质的细胞器,是细胞内储存遗传物质的场所,也是基因组复制、RNA合成和加工、核糖体组装的场所。
它是细胞内最大的细胞器,真核生物的细胞都有细胞核,只有成熟的红细胞和植物成熟的筛管没有细胞核。
核膜上有核孔及其环状结构形成核孔复合体,它与大分子物质的运输有关。
2.核被膜:真核细胞内细胞质与细胞核之间由双层膜构成,分别称为外核膜与内核膜。
双层核膜上镶嵌有核孔复合体,能选择性地运输核内外物质。
内膜面向核质,内、外膜间有20~40nm的透明空隙,称为核周间隙,膜上有核孔。
3.核被膜的功能:一方面,核被膜构成了核、质之间的天然选择性屏障,将细胞分成核与质两大结构与功能区域,使得DNA复制、RNA转录与加工在核内进行,而蛋白质翻译则局限在细胞质中。
这样既避免了核质间彼此相互干扰,使细胞的生命活动秩序更加井然,同时还能保护核内的DNA分子免受损伤。
另一方面,核被膜调控细胞核内外的物质交换和信息交流。
核被膜并不是完全封闭的,核质之间进行着频繁的物质交换与信息交流。
这些物质交换与信息交流主要是通过核被膜上的核孔复合体进行的。
4.内、外核膜各有特点:①外核膜表面常附有核糖体颗粒,且常常与糙面内质网相连续,使核周间隙与内质网腔彼此相通、从这种结构上的联系出发,外核膜可以被看作是糙面内质网的一个特化区域。
②内核膜表面光滑,无核糖体颗粒附着,但紧贴其内表面有一层致密的纤维网络结构,即核纤层。
内核膜上有一些特有的蛋白成分,如核纤层蛋白B受体(lamin B receptor,LBR)。
5.核纤层:位于核膜内侧,由核纤层蛋白组成的纤维状网络结构。
在与核质相邻的核膜内表面有一层厚30~160nm的网络状蛋白质,叫核纤层,对核被膜起支撑作用。
核纤层由3种分子量为6~7万道尔顿的多肽亚单位α、β、γ所组成,核纤层纤维的直径约10 nm,属于中间纤维的一种,其中β亚基与内核膜的特异受体蛋白相结合,α、γ亚单位与β相连接,而α、γ又同染色质的特定部分相结合。
第十章细胞连接与细胞黏附封闭连接细胞连接锚定连接通讯连接一封闭连接(紧密连接)分布于各种上皮细胞,如消化道上皮、膀胱上皮、睾丸曲细精管生精上皮的支持细胞基部、腺体的上皮细胞管腔面的顶端侧面区域、脑毛细血管内皮细胞之间等跨膜蛋白颗粒形成的封闭索,交错形成网状,环绕每个上皮细胞的顶部,连接相邻细胞,封闭细胞间隙,防止小分子从细胞一侧经过细胞间隙进入另一侧穿膜蛋白闭合蛋白occludin 45kD的四次穿膜蛋白C端与N端均伸向细胞质封闭蛋白claudin 20-27kD的四次穿膜蛋白C端与N端均伸向细胞质胞质外周蛋白PDZ蛋白、ZO家族。
紧密连接的两个主要功能:1封闭上皮细胞的间隙,形成与外界隔离的封闭带,防止细胞外物质无选择地通过细胞间隙进入组织,或从组织回流入腔中,保持内环境的稳定。
如:血脑屏障blood-brain barrier、血睾屏障blood-testis barrier保护器官免受异物伤害2形成上皮细胞质膜蛋白与膜脂分子侧向扩散的屏障,维持上皮细胞的极性。
如紧密连接限制膜蛋白、膜脂分子流动性,保证在小肠上皮内胞质营养物质运转的方向性,还将上皮细胞联合成一个整体二锚定连接由细胞骨架纤维参与,存在于相互接触的细胞间或细胞与细胞外基质之间的细胞连接;主要作用是形成能够抵抗机械张力的牢固粘合;广泛分布于动物各种组织中,特别是上皮、心肌和子宫颈等需要承受机械压力的组织细胞与细胞间的黏着连接黏着带adhesion belt 黏着连接adhering junction 细胞与细胞外基质间的黏合连接黏着斑与肌动蛋白纤维相连的锚定连接adhesion plaque桥粒连接desmosome junction 细胞与细胞间的连接桥粒desmosome与中间纤维相连的锚定连接细胞与细胞外基质间的连接半桥粒hemidesmosome细胞内锚定蛋白intracellular anchor proteins:在细胞膜的胞质面形成一个突出的斑,并将连接复合体与肌动蛋白纤维/中间纤维相连穿膜黏着蛋白transmembrane adhension proteins:其胞质区域连接细胞内锚定蛋白,其细胞外区域与细胞外基质蛋白或相邻细胞特异的穿膜黏着蛋白(一)黏着连接是由肌动蛋白丝参与的锚定连接1黏着带位于上皮细胞紧密连接的下方,是相邻细胞之间形成的一个连续的带状结构参与形成黏着带的穿膜黏着蛋白称:钙黏着蛋白cadherin,是Ca2+依赖性细胞黏附分子胞内锚定蛋白:α、β、γ联蛋白(catenins),α-辅肌动蛋白(actinin)、黏着斑蛋白(vinculin)等,锚定肌动蛋白丝作用1在维持细胞形态和组织器官完整性2为上皮细胞、心肌细胞提供了抵抗机械张力的牢固黏合2 黏着斑位于上皮细胞基底部,是细胞通过局部黏附与细胞外基质之间形成的黏合连接参与黏着斑连接的穿膜黏着蛋白是整联蛋白integrin,也称整合素;其胞外部分与细胞外基质(纤连蛋白、胶原) 相连,胞内部分通过锚定蛋白与肌动蛋白丝相连黏着斑部位的锚定蛋白有:踝蛋白talin、α-辅肌动蛋白、细丝蛋白filamin、纽蛋白vinculin 等黏着斑在肌细胞、肌腱(主要是胶原) 形成的连接中很常见体外培养细胞常通过黏着斑附着于培养皿表面,黏着斑的形成、解离对细胞的铺展和迁移有重要意义(二)桥粒连接是由中间纤维介导的锚定连接桥粒连接广泛分布于承受强拉力的组织中,如皮肤、心肌、消化道、膀胱、子宫、阴道等处的上皮细胞之间;根据分布位置,分为:桥粒、半桥粒两种1 桥粒位于上皮细胞黏着带下方,是相邻细胞接触点上的一种类似斑点状(纽扣)的结构桥粒斑(中间纤维附着部位)由多种蛋白组成包括桥粒斑珠蛋白plakoglobin、桥粒斑蛋白desmoplakin不同组织的细胞中附着于桥粒斑的中间纤维不同胰蛋白酶、胶原酶、透明质酸酶、Ca2+螯合剂,均能破坏桥粒结构桥粒破坏:自身免疫缺陷病——天疱疮2 半桥粒上皮细胞与基膜之间的连接装置,结构仅为桥粒的一半半桥粒的胞质斑由网蛋白plectin组成,与胞内中间纤维相连;半桥粒的跨膜黏着蛋白是整联蛋白integrin、穿膜蛋白BP180,与基底膜中的层粘连蛋白结合,从而将细胞与基底膜牢固锚定在一起主要功能:把上皮细胞与其下方的基底膜连在一起,防止机械力造成的上皮组织剥离半桥粒破坏:大泡性类天疱疮;层粘连蛋白、整联蛋白α6或β4基因突变,均引起大泡性表皮松懈症,症状类似前者三通讯连接通讯连接communicating junction:进行细胞间的电信号、化学信号的通讯联系,从而完成群体细胞间的合作与协调动物组织中有两种通讯连接:间隙连接gap junction、化学突触chemical synapse(一) 间隙连接是动物组织中普遍存在的一种细胞连接方式除骨骼肌细胞及血细胞外,几乎所有的动物组织细胞都利用间隙连接进行通讯连接间隙连接的基本结构单位是连接子connexon,长7.5nm,外径6nm,由6个相同或相似的跨膜蛋白——连接子蛋白connexin(都有4个保守的a螺旋穿膜区)环绕而成,中央是1.5~2nm 的亲水性通道一个连接子可以由不同连接子蛋白构成——异源连接子;也可由相同连接子蛋白构成——同源连接子不同连接子蛋白构成的连接子,在通透性、导电率、可调节性方面是不同的,其分布具有组织细胞特异性重要功能是:加强相邻细胞的机械连接介导细胞间通讯间隙连接的通讯方式代谢藕联metabolic coupling电藕联electric coupling1 代谢耦联通过连接子形成亲水性通道,允许如无机离子、葡萄糖、氨基酸、核苷酸、维生素、cAMP等从一个细胞迅速进入另一个细胞内,使代谢产物迅速平均分配到相邻细胞中,在胚胎发育早期特别重要间隙连接的通透性是可以调节的,降低pH,或升高Ca2+离子浓度,均可降低间隙连接的通透性(细胞受损时,Ca2+大量进入细胞,导致间隙连接关闭,以免周围细胞受到伤害;肿瘤细胞间隙连接明显减少或丧失,失去控制)2 电耦联其连接子是种离子通道,带电的离子能通过间隙连接达到相邻细胞在具有电兴奋性的组织细胞间,广泛存在电耦联现象;带电离子通过连接子,使动作电位从一个细胞扩散到另一个细胞,速度快而准确(二)突触主要存在于神经细胞之间和神经细胞与肌细胞的接触部位突触电突触细胞间形成间隙连接速度快而准确化学突触化学突触主要存在于神经细胞之间、神经细胞与肌细胞之间的接触部位,突触间隙20nm宽,传递神经递质,引起突触后膜动作电位,速度不及电突触。
第十章细胞连接与细胞黏附细胞连接:人和多细胞动物体内除结缔组织和血液外,各种组织的细胞之间按一定排列方式,在相邻细胞表面形成各种连接结构,以加强细胞间的机械联系和维持组织结构的完整性、协调性,这种细胞表面与其他细胞或细胞外基质结合的特化区称为细胞连接。
(是细胞质膜局部区域特化形成的细胞间联系结构)紧密连接:通常位于上皮顶端两相邻细胞间,是相邻细胞膜共同构成的一个完全封闭液体流通的屏障,是两个细胞间紧密相连的区域,在紧密连接处的细胞质膜几乎融合并紧紧结合在一起,融合部位细胞间隙消失。
封闭索:两相邻细胞的紧密连接区域是一种“焊接线”样的带状网络,焊接线又称脊线,脊线由成串排列的特殊穿膜蛋白质颗粒构成,这种在相邻细胞膜上形成的特征性结构称封闭索。
锚定连接:是一类由细胞骨架纤维参与,存在于细胞间或细胞与细胞外基质之间的连接结构,其主要作用是形成能够抵抗机械张力的牢固黏合,广泛分布于动物各种组织中,参与组织器官形态和功能的维持、细胞的迁移运动以及发育和分化等多种过程。
黏着连接:与肌动蛋白丝相连接的锚定连接,又可分为黏着带和黏着斑两大类。
黏着带:位于上皮细胞紧密连接的下方,是相邻细胞间形成的一个连续的带状结构,在维持细胞形态和组织器官完整性方面具有重要作用,特别是为上皮细胞和心肌细胞提供了抵抗机械张力的牢固黏合。
黏着斑:位于上皮细胞基底部,是细胞通过局部黏附与细胞外基质之间形成的黏着连接,常见于肌细胞与肌腱(主要是胶原)形成的连接中,对细胞铺展和迁移有重要意义,还可参与细胞信号转导。
桥粒连接:与中间纤维相连的锚定连接,又可分为桥粒和半桥粒两类。
桥粒:位于上皮细胞黏着带的下方,是相邻细胞间的一种斑点状的锚定连接结构。
是一种坚韧、牢固的细胞连接结构,对上皮细胞结构的维持非常重要。
桥粒连接处相邻细胞质膜的胞质侧各有一致密的胞质斑(桥粒斑),是由多种胞内锚定蛋白包括桥粒斑珠蛋白和桥粒斑蛋白构成的复合物,是中间纤维附着的部。
大学课程《细胞生物学》章节测试及参考答案第十章细胞增殖及其调控一、名词解释1、细胞周期2、细胞周期检验点3、细胞同步化4、有丝分裂5、减数分裂二、填空题1、在细胞有丝分裂中, 微管的作用是;微丝的作用是。
2、中心粒是由_________构成的,每个中心体各含有一对互相__________的中心粒,在细胞周期的______________期进行复制。
3、动物细胞的有丝分裂器有、、和四种类型的微管;植物细胞中没有。
4、细胞分裂的方式有、和。
5、细胞周期可分为四个时期即、、和。
6、最重要的人工细胞周期同步化的方法有阻断法和阻断法。
7、2001年诺贝尔医学和生理学奖授予了三位科学家,他们在方面作出了杰出贡献。
8、按照细胞增殖能力不同,可将细胞分为三类即、和。
9、在细胞周期调控中,调控细胞越过G1/S期限制点的CDK与周期蛋白的复合物称为。
10、以培养细胞为材料,通过有丝分裂选择法可以获得M期的细胞,这是因为培养的细胞在M期时。
11、用DNA合成阻断法获得同化细胞时,常用的阻断剂是和。
12、MPF由两个亚单位组成,即和。
当两者结合后表现出蛋白激酶活性,其中为催化亚单位,为调节亚单位。
13、肝细胞和肌细胞属于不同细胞周期类型,肝细胞在受到损伤情况下能进行分裂,而肌细胞却不行,由此可判断肝细胞属于,而肌细胞属于。
14、细胞周期中重要的检验点包括、、和。
15、根据染色体的行为变化,人为地将有丝分裂划分为、、、和、、等六个时期。
16、在减数分裂的前期发生同源染色体的和等位基因的;在有丝分裂后期中,是发生分离,而在减数分裂后期I中则是发生分离。
三、选择题1、若在显微镜下观察到的某细胞具有核仁, 并且核物质与细胞质的界限清晰, 则可判定此细胞处于细胞的( )。
A、间期B、前期C、中期D、后期2、在细胞分裂中期与纺锤体的动粒微管相连,保证染色体平均分配到两个子细胞中的结构是()。
A、复制源B、着丝粒C、端粒D、动粒3、关于细胞周期限制点的表述,错误的是()。
第十章知识点自测(一)选择题1、能够稳定微丝(MF)得特异性药物就是( )A.秋水仙素B.细胞松弛素 C。
笔环肽 D、紫杉醇2、较稳定、分布具组织特异性得细胞质骨架成分就是( )ﻩﻩA.MT B。
IF C.MF D、以上都不就是3、细胞骨架分子装配中没有极性得就是( )A、微丝 B、微管C.中间纤维 D.以上全就是4、用细胞松弛素处理细胞可阻断下列( )得形成A、胞饮泡B。
吞噬泡 C。
分泌小泡 D。
包被小泡5、下列属于微管永久结构得就是( )A.收缩环B、纤毛 C、微绒毛 D。
伪足6、肌动踏车行为需要消耗能量,由下列哪项水解提供()A.ATPB.GTPC。
CTP D.TTP7、下列细胞骨架中,只有9+0结构得就是()A.鞭毛 B。
中心粒C、中间丝D。
纤毛8、用适当浓度得秋水仙素处理分裂细胞,可导致()A。
姐妹染色单体不分离,细胞停滞在有丝分裂中期B。
姐妹染色单体分开,但不向两极运动C、微管破坏,纺锤体消失D。
微管与微丝都破坏,使细胞不能分裂9、下列蛋白质没有核苷酸结合位点得就是()A。
α—微管蛋白B、β—微管蛋白C。
肌动蛋白 D、中间丝蛋白10、下列分子没有马达蛋白功能得就是()A。
胞质动力蛋白 B.驱动蛋白 C、肌球蛋白 D、MAP211、下列药物能抑制胞质环流得就是()A、细胞松弛素B、紫杉醇C、秋水仙素D、长春花碱12、下列物质中,()抑制微管得解聚、A、秋水仙碱B、紫杉醇C、鬼笔环肽 D、细胞松弛素B13、微管全就是以三联管得形式存在得结构( )A.纤毛B. 中心粒C。
鞭毛 D、动粒微管14、在下列微管中对秋水仙素最敏感得就是( )A.细胞质微管B. 纤维微管C、中心粒微管 D。
鞭毛微管15、微管蛋白得异二聚体上有哪种核苷三磷酸得结合位点( )。
A.UTPB. CTP C。
GTP D.ATP16、下列药物中仅与已聚合微丝结合得药物就是( )。
A.秋水仙碱B。
长春花碱C.鬼笔环肽D。
紫杉醇17、当肌肉收缩时,会发生下面哪一种变化( )、A.I带加宽 B。
肌动蛋白纤维发生收缩C.肌球蛋白纤维收缩 D、机节变短18。
若在显微镜下比较收缩得肌节与松弛得肌节, 下列明哪些区域宽度就是不变得( ).A。
A带 B。
I带 C。
H带D、整个肌节19、当用秋水仙素处理细胞以后,下面哪种说法不正确( )。
A、有丝分裂与减数分裂将不能正常进行B、肌动蛋白纤维装配受到抑制C. 细胞器在胞内得位置将改变D。
细胞形状将改变20.下列哪个不就是微管组织中心( )。
A、中心体B、基体 . C。
微管蛋白二聚体D、高尔基体得反面膜囊区域21.下列美于微丝描述错误得就是( )。
A、存在于小肠上皮细胞微绒毛内 B、由微管蛋白组装而成C。
特定情况下,能快速组装与去组装 D。
存在于胞质分裂收缩环22.依赖于微丝得分子马达就是( )。
A.驱动蛋白B.马达蛋白C.肌球蛋白 D、 A与 B都就是(二)判断题l.细胞中得所有微丝均为动态结构。
( )2.胞质骨架得3种结构都具有极性与踏车行为。
( )3.微管得极性就是指其正、负两端分别带有不同得电荷。
( )4.胞质分裂时,收缩环就是由微管形成得、( )5.驱动蛋白家族中,既有介导转运膜泡向微管( +)端运动得成员,也有介导转运膜泡向微管(—)端运动得成员、( )6。
微管蛋白单体与肌动蛋白单体都有一个 GTP结合位点、( )7。
中间丝就是一个杆状结构, 其头尾就是不可变得, 中间杆部就是可变得、( )8.微管蛋白由α、β微管蛋白两个亚基组成、在这两个亚基上各有一个 GTP 结合位点,但α亚基上得 GTP不可交换,β亚基上得 GTP就是可以交换得、( )9、动物皮肤与鳞片中含有色素细胞,它改变皮肤颜色得原理就是:细胞内得色素颗粒沿微管在细胞内转运,由于色素颗粒分布不同导致颜色得变化。
( )10.应力纤维由大量平行得微丝组成,主要在胞质分裂方面起作用、( )11、细胞伪足得形成依赖于肌动蛋白得聚合,并由此产生推动细胞运动得力。
() 12、真核细胞与原核细胞都具有鞭毛这一特化结构,真核细胞得鞭毛结构复杂,而核细胞得鞭毛相对简单。
( )13、秋水仙素可同微丝得(+)端结合,并阻止新得单体加入、( ) ,l4.微管得负极指向MTOC,正极背向MTOC。
( )15.有丝分裂得药物秋水仙碱与微管蛋白单体结合后, 可以阻止二聚体得形成。
( )16. 纤毛得运动就是微管收缩得结果。
( )17. 细胞松弛素B就是从真菌中分离得一种生物碱,它可以与微丝得末端结合,并阻止新得单体聚合。
( )18。
微管在体外组装时,受离子得影响很大,所以要尽量除去Mg离子与Ca离子( )19、紫衫醇只结合到聚合得微管上,不与未聚合得微管蛋白二聚体反应。
接触紫杉醇后细胞内会积累大量微管,可使细胞分裂停止于有丝分裂期。
( )20、与微丝及微管一样,细胞质中间丝存在于所有得真核细胞。
( ) 21。
微丝末端肌动蛋白亚基ATP水解与微管末端β-微管蛋白上GTP水解导致自由能与聚合物构象变化,更容易发生解聚。
( )22、在有丝分裂过程中,核膜得解体主要涉及核纤层蛋白得去磷酸化,核膜重建涉及核纤层蛋白得磷酸化、( )23. 向微管正极端行走得马达蛋白将货物往细胞内部运输。
( )(三)名词比对1、中心体(centrosome)与基体(basal body)2、微管组织中心(microtubule organizing center)与核仁组织区(nucleolar organizing region)3. 肌球蛋白(myosin)与驱动蛋白(kinesin)4、微管蛋白(microtubule)与微管结合蛋白(microtubule associated protein,MAP)5。
应力纤维(stress fiber)与中间丝(intermediate filament)(四) 分析与思考1. 用细胞松弛素B处理培养得动物细胞,能观察到什么现象?如何解释?2。
单细胞绿藻得运动缺陷型或突变株,其鞭毛精细结构中可能因缺失哪些部分导致运动缺陷或异常?原因何在?3。
微管装配过程中得动态不稳定性造成微管快速伸长或缩短。
请设想一条正处于缩短状态得微管:(1) 如果要停止缩短并进入伸长状态,其末端必须发生什么变化?(2) 发生这一转换后微管蛋白得浓度有什么变化?(3) 如果溶液中只有GDP而没有GTP,将会发生什么情况?(4) 如果溶液中存在不能被水解得GTP类似物,将会发生什么情况?发生这些变化得理论依据就是什么?4.小鼠驱动蛋白KIF 1B基因缺陷得纯合子在出生时就会死亡。
这种基因缺陷得杂合子小鼠虽然能够存活下来,但却表现出进行性肌无力。
人类2A型Charc ot-Marietooth疾病患者也有一个KIF 1B基因拷贝缺失。
存活下来得基因缺陷小鼠与人类得疾病患者具有相似得进行性神经性疾病。
请您推测驱动蛋白一个基因拷贝得缺失为什么能对神经系统功能产生如此重大得影响?5。
在细胞骨架蛋白研究过程中,(1)分别有哪些脊椎动物组织适于分离微管蛋白、肌动蛋白与角蛋白?(2)您推测哪种蛋白溶解度低较难分离?(3)在分离微管蛋白与肌动蛋白得过程中,分别容易混入细胞内得那些蛋白?6。
基因组序列分析表明,某些植物细胞缺乏胞质动力蛋白(如拟南芥),然而在另一些植物细胞中又就是存在得(如水稻)(1)可以设计哪些实验来证实这一分析?(2)您推测没有胞质动力蛋白得植物细胞如何实现向微管负极得膜泡运输?答案:(一)选择题1.C 2、B 3.C 4。
B 5、B6。
A 7、B 8、C 9.D 10。
D 11。
A 12、B 13、B 14。
A 15。
C 16。
C17、D 18。
A 19、B 20。
C 21、B 22、C(二)判断题1.x 大多数非肌细胞中,微丝就是一种动态结构。
2.X 中间丝没有。
3.X 微管蛋白二聚体在两端聚合速度不同,组装较快得一端称为正极,而另一端称为负极。
4.X胞质收缩环由肌动蛋白/肌球蛋白Ⅱ组装而成。
5.√6.X 肌动蛋白单体有一个ATP结合位点、7.X 细胞质中间丝蛋白分子中部杆状区氨基酸残基组成高度保守,两侧头部与尾部高度不变。
8.√9.√10.X 应力纤维通过黏着斑与细胞外基质相连。
11.√12.√13.x 秋水仙素与微管蛋白亚基结合,具有抑制微管组装得作用。
14.√15.X 结合秋水仙素得微管蛋白亚基组装到微管末端后,阻止其她微管蛋白亚基得组装,但并不影响微管得去组装,从而导致细胞内微管网络得解体。
16.X 纤毛运动本质就是由轴丝动力蛋白所介导得相邻二联体微管之间得相互滑动。
17.√18.X要尽量除去Ca2+。
19.√20.X 中间丝本不就是所有真核细胞必需得结构组分。
21.√22.X 解体涉及核纤层蛋白磷酸化,重建涉及去磷酸化。
23.X 负极端。
(三)名词对比1、二者都就是动物细胞中得微管组织中心,同源,在某些时候可以相互转变,且都具有自我复制能力。
中心体细胞间期位于细胞核附近,有丝分裂期位于纺锤体得两极。
含有一对彼此垂直分布得中心粒,外面被中心粒外围物质所包围。
基体位于鞭毛与纤毛根部,在结构上与中心粒基本一致、2。
微管组织中心就是细胞中微管起始组装得地方,如中心体、基体等部位。
MT OC决定了微管得极性,负极指向微管组织中心,正极背向微管组织中心。
核仁组织区位于染色体得次缢痕部位,就是rRNG基因所在部位(5SrRNG基因除外),与间期细胞核仁形成有关、3. 肌球蛋白就是沿微丝运动得马达蛋白、通常含有3个功能结构域:马达结构域、调控结构域与尾部结构域,其中马达结构域位于头部,包含一个肌动蛋白亚基结合位点与一个具有ATP酶活性得ATP结合位点。
驱动蛋白就是沿微管运动得马达蛋白、由2条具有马达结构域得重链与2条与具有“货物”结合功能得轻链组成,其中马达结构域具有ATP结合位点与微管结合位点。
4。
微管蛋白都就是由α/β-微管蛋白两亚基结合而成得异二聚体、就是微管组装得基本结构单位。
微管结合蛋白就是结合在微管表面得一类蛋白质,具有稳定微管,对微管网络得结构与功能进行调节得作用。
5、应力纤维由肌动蛋白丝组成,还含有肌球蛋白Ⅱ、原肌球蛋白、细丝蛋白与α—辅肌动蛋白等结构成分。
中间丝就是直径约10nm得致密索状得细胞骨架纤维。
(四)综合分析1.出现双核细胞,抑制微丝聚合,不能形成正常收缩环,细胞质分裂受阻或不能分裂。
2.(1)缺失轴丝中得中央鞘或中央微管,缺失放射辐,缺失动力蛋白臂,缺失外周微管。
(2)原因就是中央微管与周围微管间得相互滑动受阻。
3.(1)由于失去了GTP帽,即末端得微管蛋白亚基都以结合GDP得形式存在,微管因而缩短。
溶液中带有GTP得微管蛋白亚基仍会添加到末端,但就是寿命很短,因为GTP可能被水解,或者围绕着得微管蛋白亚基解体使其脱落下来。