人教版初一数学数据的收集
- 格式:pdf
- 大小:877.22 KB
- 文档页数:7
人教版七年级数学(下册)第十章-数据的收
集、整理与总结教案
教学目标
1. 理解数据的概念和数据在日常生活中的作用。
2. 掌握数据的收集方法,包括观察法、实验法和调查法。
3. 学会整理数据的方法,包括制作频数表、制作条形统计图和
折线统计图。
4. 能够运用所学知识对数据进行分析和总结。
教学准备
1. 教材:人教版七年级数学(下册)第十章教材。
2. 教具:白板、黑板、多媒体课件、绘图工具。
教学过程
1. 导入:通过实例引入数据的概念和作用,激发学生的研究兴趣。
2. 授课:介绍数据的收集方法,包括观察法、实验法和调查法,并进行详细讲解和示范。
3. 练:分组进行实践操作,让学生亲自收集数据,并使用合适
的方法整理和表达数据。
4. 深化:引导学生分析和总结所收集的数据,提出问题并讨论。
5. 归纳:对本节课所学内容进行归纳总结,强化学生对数据收集、整理和总结方法的理解。
6. 作业:布置相应的练题和作业,巩固所学知识。
教学评价
1. 观察学生在课堂上的表现和参与程度。
2. 检查学生的作业完成情况和答案正确率。
3. 进行小组或个别评价,关注学生的理解深度和解决问题的能力。
教学活动设计合理,有助于学生对数据的收集、整理和总结方
法有更深入的认识。
七年级数据的收集与整理方法收集和整理数据是数学学习中的重要环节,也是培养学生数据分析和解决问题能力的关键之一。
本文将介绍七年级数据的收集与整理方法,并提供一些实用的技巧和经验。
一、数据收集方法1. 直接观察法:通过直接观察对象或现象,并记录所需的数据。
例如,统计班级同学的身高、体重等信息,可以通过直接测量和记录来收集数据。
2. 调查法:通过设计问卷、进行访谈等方式,收集所需的数据。
调查法适用于需要了解他人观点、喜好、习惯等方面的数据收集,比如调查同学们对假期旅行目的地的偏好等。
3. 实验法:通过设计实验来获取数据。
实验法常用于科学实验,如测试不同养料对植物生长速度的影响,可以通过设置对照组和实验组,并记录相关数据。
二、数据整理方法1. 制作表格:将收集到的数据整理成表格形式,便于比较和分析。
表格通常有表头和数据行,其中表头用于说明各列数据的含义,数据行记录具体的数据。
2. 绘制图表:使用图表可以更直观地展示数据的特点和规律。
常见的图表类型有柱状图、折线图、饼图等。
选择适当的图表类型可以更好地表达数据之间的关系和趋势。
3. 数据分类与整理:根据需要,可以将数据进行分类和分组,便于比较和分析。
例如,统计同学们的成绩时,可以按科目进行分类,进一步分析各科目的得分情况。
4. 数据计算与统计:对于数字数据,可以进行计算和统计。
常见的统计指标包括平均数、中位数、众数等,通过计算这些指标可以更好地描述数据的特征。
三、数据收集与整理的注意事项1. 样本选择:在进行数据收集时,应该选择具有代表性的样本,以确保数据的准确性和可靠性。
样本的选择应尽量避免主观偏见,并能够反映整体的特点。
2. 数据记录与保存:在数据收集过程中,要确保准确地记录和保存数据。
可以使用纸质记录表或电子表格等工具,将数据整理妥善保存以备后续分析和应用。
3. 数据分析与解读:收集和整理好数据后,应对数据进行分析和解读。
通过分析数据的规律和趋势,可以得出结论和提出问题,启发学生思考和探索。
人教版初一数学数据的收集整理与描述重难点归纳单选题1、以下调查中,适宜全面调查的是()A.调查某批次汽车的抗撞击能力B.调查某班学生的身高情况C.调查春节联欢晚会的收视率D.调查济宁市居民日平均用水量答案:B解析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.解:A、调查某批次汽车的抗撞击能力,适合抽样调查,故A选项错误;B、调查某班学生的身高情况,适合全面调查,故B选项正确;C、调查春节联欢晚会的收视率,适合抽样调查,故C选项错误;D、调查济宁市居民日平均用水量,适于抽样调查,故D选项错误.故选B.小提示:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是()A.第一天B.第二天C.第三天D.第四天答案:B解析:根据图象中的信息即可得到结论.由图象中的信息可知,利润=售价﹣进价,利润最大的天数是第二天,故选B.3、在一个不透明的盒子中装有20个黄、白两种颜色的乒乓球,除颜色外其它都相同,小明进行了多次摸球实验,发现摸到白色乒乓球的频率稳定在0.2左右,由此可知盒子中黄色乒乓球的个数可能是()A.2个B.4个C.18个D.16个答案:D解析:根据频率=频数÷总数,可以求得白色乒乓球的个数,从而得到黄色乒乓球个数.解:∵白色乒乓球的频率稳定在0.2左右∴白色乒乓球的个数=20×0.2=4个∴黄色乒乓球的个数=20-4=16个故选D.本题主要考查了频率与频数的计算,解题的关键在于能够熟练掌握频率=频数÷总数.4、在频数分布直方图中,各小矩形的面积等于( ).A.相应各组的频数B.组数C.相应各组的频率D.组距答案:C解析:根据频数分布直方图的意义,可知小矩形的面积之和等于1,频率之和也为1,所以各小矩形的面积=相应各组的频率.故选C.5、已知某班有40名学生,将他们的身高分成4组,在160~165cm区间的有8名学生,那么这个小组的人数占全体的()A.10%B.15%C.20%D.25%答案:C解析:用这个小组的人数除以全班人数即可求得结果.根据题意得:8÷40=20%.故选C.小提示:本题主要考查了有理数除法的应用,掌握理数除法法则是解题的关键.6、在一个不透明的盒子中装有20个黄、白两种颜色的乒乓球,除颜色外其它都相同,小明进行了多次摸球实验,发现摸到白色乒乓球的频率稳定在0.2左右,由此可知盒子中黄色乒乓球的个数可能是()A.2个B.4个C.18个D.16个解析:根据频率=频数÷总数,可以求得白色乒乓球的个数,从而得到黄色乒乓球个数.解:∵白色乒乓球的频率稳定在0.2左右∴白色乒乓球的个数=20×0.2=4个∴黄色乒乓球的个数=20-4=16个故选D.小提示:本题主要考查了频率与频数的计算,解题的关键在于能够熟练掌握频率=频数÷总数.7、某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %答案:C解析:观察直方图,根据直方图中提供的数据逐项进行分析即可得.观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;×100%=8 %,故D选项错误,D. 最喜欢田径的人数占总人数的450故选C.小提示:本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.8、下列调查中,适宜采用全面调查(普查)方式的是()A.对疫情后某班学生心理健康状况的调查B.对某大型自然保护区树木高度的调查C.对义乌市市民实施低碳生活情况的调查D.对某个工厂口罩质量的调查答案:A解析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.解:(1)对疫情后某班学生心理健康状况的调查,适合全面调查;(2)对某大型自然保护区树木高度的调查,适合抽样调查;(3)对义乌市市民实施低碳生活情况的调查,适合抽样调查;(4)对某个工厂口罩质量的调查,适合抽样调查.故选:A.小提示:本题考查了抽样调查和全面调查的区别.选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.填空题9、希望中学制作了学生选择棋类、武术、摄影、绘画四门校本课程情况的扇形统计图. 该校有1200名学生,从图中可以看出选择绘画的学生约为________人.答案:120解析:先算出绘画的学生所占的百分比,再乘以总人数即可算出来.1200×(1−20%−30%−40%)=120(人)故答案是:120.小提示:本题主要考察扇形统计图的计算,题目较容易.10、首都国际机场连续五年排名全球最繁忙机场第二位,该机场2012﹣2016年客流量统计结果如表:根据统计表中提供的信息,预估首都国际机场2017年客流量约__万人次,你的预估理由是_____________________________.答案: 9823; 由之前连续3年增长率预估2017年客流量的增长率约为4.5%解析:∵2012∼2013年客流量的增长率为(8371−8192) ÷8192×100%≈2.19%,2013∼2014年客流量的增长率为(8613−8371) ÷8371×100%≈2.89%,2014∼2015年客流量的增长率为(8994−8613) ÷8613×100%≈4.42%2015∼2016年客流量的增长率为(9400−8994) ÷8994×100%≈4.51%,∴预估2017年的客流量增长率约为4.5%,即2017年客流量约为9400×(1+4.5%)=9823(万人次),故答案为9823,由之前连续3年增长率预估2017年客流量的增长率约为4.5%.11、如图,直方图从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,作品总件数为____件.答案:48解析:由各长方形的高的比得到各段的频率之比,即可得到第二组的频率,再由数据总和=某段的频数÷该段的频率,即可计算作品总数.∵从左至右各长方形的高的比为2:3:4:6:1,∴频率之比为2:3:4:6:1;∴第二组的频率3,16∵第二组的频数为9,∴作品有9÷3=48(件).16所以答案是:48.小提示:本题考查了频数分布直方图,熟练掌握频数分布直方图的意义是解题的关键.12、如图是30名学生数学成绩的频数分布直方图,如图可知40.5~50.5这一分数段的频数为2,组距是__________,组数是__________,70.5~80.5分数段的频数是____________.答案: 10 6 8解析:根据组距的定义求出组距、数出组数、读出70.5~80.5分数段的频数即可.解:该频数分布直方图的组距为:50.5-40.5=10;组数为6;70.5~80.5分数段的频数为8.故填:10,6,8.小提示:本题主要考查了频数分布直方图的要素,理解频数分布直方图各要素的定义成为解答本题的关键.13、近日,广州市教育局出台《广州市教育局关于加强中小学(幼儿园)劳动教育的指导意见》和《广州市中小学劳动教育指导纲要》,明确学生会抄自家的电表等.小海6月初连续几天在同一时刻记录家里电表显示的度数如下表,根据小海的记录,请你估计小海家6月(30天)的用电量约为__千瓦·时.答案:270.小提示:此题考查了平均数及其计算,掌握平均数的计算并用平均数估算总数是解决本题的关键.解析:根据电表显示的度数算出7天的平均用电量,再乘6月份的总天数从而求出用电量.=9(千瓦·时),解:由表知这连续7天的用电量的平均数为275−2127则估计小海家6月(30天)的用电量约为30×9=270(千瓦·时),解答题14、某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,以下是根据调查结果绘制的统计图表的一部分.4本及以上10根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为______人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为______%;(2)被调查学生的总人数为______人,其中读书量为2本的学生数为______人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.答案:(1)4,20;(2)50,15;(3)231人.解析:(1)由频数分布表与扇形统计图中的信息可得答案;(2)读书量达到4本及以上的学生数为10人,占被调查学生总人数的百分比为20%,可得总人数,利用总人数与读书量为2本的学生数的频率为0.3,可得读书量为2本的学生数.(3)利用样本中的学生读书量为3本的频率估计全年级的读书量为3本的学生人数,从而可得答案.解:(1)由频数分布表中得:读书量为1本的学生数为4人,由扇形统计图得:读书量达到4本及以上的学生数占被调查学生总人数的百分比为20%.所以答案是:4,20.(2)由频数分布表中得:读书量达到4本及以上的学生数为10人,∴被调查学生的总人数为:1020%=100020=50(人),由读书量为2本的学生数的频率为0.3,所以读书量为2本的学生数为:50×0.3=15(人).所以答案是:50,15.(3)由被调查的50人中,学生读书量为3本的学生人数有:50−4−15−10=21人,所以550名学生中学生读书量为3本的学生人数有:550×2150=11×21=231(人).答:550名学生中学生读书量为3本的学生人数有231人.小提示:本题考查的是从频数分布表与扇形统计图中获取信息,利用信息作决策,同时考查用样本估计总体,掌握以上知识是解题的关键.15、“戒烟一小时,健康亿人行”.今年国际无烟日,小华就公众对在餐厅吸烟的态度进行了随机抽样调查,主要有四种态度:A.顾客出面制止;B.劝说进吸烟室:C.餐厅老板出面制止;D.无所谓.他将调查结果绘制了两幅不完整的统计图.请你根据图中的信息回答下列问题:(1)求这次抽样的公众有_______人?(2)求统计图①中C有_______人?(3)在统计图②中,求“无所谓”部分所对应的圆心角是______度?(4)若城区人口有20万人,估计赞成“餐厅老板出面制止”的有______万人?答案:(1)200(2)60(3)18(4)6解析:(1)根据题意可得:A类的有20人,占10%;即可求得总人数;(2)总人数减去A、B、D类人数,可求得C类的人数;(3)根据扇形图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比,可求得“无所谓”部分所对应的圆心角度数;(4)用样本估计总体,可估计赞成的人数.解:(1)∵A类的有20人,占10%,∴故总人数为20÷10%=200人,所以答案是:200;(2)由(1)的结论可求得C 类的人数为200−20−10−110=60人,所以答案是:60;(3)“无所谓”部分有10人,占总人数的10200,所对应的圆心角度数为10200×360°=18°,所以答案是:18;(4)由条形图可得:C 类的人数为60人,占总数的310,则城区人口有20万人,估计赞成“餐厅老板出面制止”的有20×310=6万,所以答案是:6.小提示:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。
第十章数据的收集与整理【知识梳理】一、调查与收集数据想知道“喜欢哪种动物的同学最多”,要通过调查来收据数据.其过程主要有如下步骤:1、明确调查问题——喜欢哪种动物的同学最多;2、明确调查对象——全班每个同学;3、选择调查方法——采用问卷调查;4、展开调查——每位同学将自己最喜欢的动物写在调查问卷上,收集每位同学最喜欢的动物,进行编号;5、整理数据——用“划记法”记录数据;6、得出结论——划记最多的动物,即为同学们喜欢的最多的动物;7、描述数据——统计表是描述数据最常用的方式,为了更直观地获取信息,还可以用条形统计图和扇形统计图来描述数据.二、调查方式的有关概念统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种方式.实际上最常用的调查方式是抽样调查.1、全面调查:在“喜欢哪种动物的同学最多”调查活动中,全班同学都是考察对象。
像这样考察全体对象的调查属于全面调查,又称为“普查”.2、抽样调查:在“调查中小学生的视力情况”调查活动中,采用了调查部分学生的方式来收集数据,根据部分学生的视力来估计整个地区学生的视力情况.这种调查称为抽样调查.这里,整个地区的中小学生的视力情况是要考察的全体对象,称为总体;所有实际被调查的小学生、初中生和高中生的视力组成一个样本.注意:(1)抽样调查只考虑总体中的一个样本,因此其优点是调查范围小,节省时间、人力、物力,但其调查结果往往不如全面调查得到的结果准确.(2)抽样调查时一般应注意:被调查的对象不能太少,被调查的对象应是随意抽取的,调查的对象应是真实的.因此,抽样调查时既要关注样本的广泛性又要关注其代表性.方法点拨:(1)全面调查是对总体中每个对象进行调查,调查范围广,数据详细;而调查样本有局限性,数据不全面;(2)当受客观条件限制,无法对所有对象进行全面调查时,往往采用抽样调查;(3)当调查具有破坏性时,不允许进行全面调查;4. ⑴总体:把所要考察对象的①叫总体.⑵个体:②考察对象叫做个体.⑶样本:从总体中所抽取的一部分③叫做总体的一个样本.⑷样本容量:样本中个体的④叫做样本容量.规律总结:①弄清考察对象是明确总体、个体、样本的关键;②总体或样本中的每一个数据表示个体,不同的个体在数值上是可以相同的,样本中有多少个体,样本容量就是多少,样本容量没有单位.三、统计图的选择——条形统计图、扇形统计图和折线统计图,它们各具特色:条形统计图能清晰地展现出每个项目的具体数目,扇形统计图能清晰地展现出各部分在总体中所占的百分比,折线统计图能清晰地展现出事物变化的情形。
第十章数据的收集、整理与描述10.1统计调查一、统计调查1、数据处理的过程(1)数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。
收集数据的方法:a、民意调查:如投票选举 b、实地调查:如现场进行观察、收集、统计数据 c、媒体调查:报纸、电视、电话、网络等调查都是媒体调查。
注意:选择收集数据的方法,要掌握两个要点:①是要简便易行,②要真实、全面。
数据处理可以帮助我们了解生活中的现象,对未知的事情作出合理的推断和预测。
2、统计调查的方式及其优点(1)全面调查:考察全体对像的调查叫做全面调查。
(2)划计法:整理数据时,用正的每一划(笔画)代表一个数据,这种记录数据的方法叫划计法。
例如:统计中编号为1的数据每出现一次记一划,最后记为“正正一”,即共出现11次。
(3)百分比:每个对象出现的次数与总次数的比。
注意:①调查方式有两种:一种是全面调查,另一种是抽样调查。
②划计之和为总次数,百分比之和为1。
③划计法是记录数据常用的方法,根据个人的习惯也可改用其他方法。
全面调查的优点是可靠,、真实,抽样调查的优点是省时、省力,减少破坏性。
*3、抽样调查(1)抽样调查是这样的一种主法同,它只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况。
(2)为了获得较为准确的调查结果,抽样时要注意样本的广泛性和代表性,即采取随机抽查的方法。
*4、总体和样本总体:要考查的全体对象称为总体。
个体:组成总体的每一个考察对象称为个体。
样本:从总体当中抽出的所有实际被调查的对象组成一个样本。
样本容量:样本中包含的个体的数目叫样本容量(不带单位)。
*10.2直方图1、数据频数(数据表格)数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在数据组中各数据的分布情况。
要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况。
*2、(频数)直方图(统计各个数据出现的次数,即频数,并用图像展示出来)为了直观地表示一组数据的分布情况,可以以频数分布表为基础,绘制分布直方图。
人教版初一数学数据的收集整理与描述笔记重点大全单选题1、某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100B.被抽取的100名学生家长C.被抽取的100名学生家长的意见D.全校学生家长的意见答案:C解析:根据样本的定义,结合题意,即可得到答案.解:某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是:被抽取的100名学生家长的意见.故选C.小提示:本题考查样本的定义,解题的关键是熟练掌握样本的定义.2、某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %答案:C解析:观察直方图,根据直方图中提供的数据逐项进行分析即可得.观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;×100%=8 %,故D选项错误,D. 最喜欢田径的人数占总人数的450故选C.小提示:本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.3、某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四答案:A解析:通过条形统计图可以看出套餐一出现了50人,最多,即可得出答案.解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;故选:A.小提示:本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中得到必要的信息是解决问题的关键.4、为了调查某校学生的视力情况,在全校的1000名学生中随机抽取了80名学生,下列说法正确的是()A.此次调查属于全面调查B.1000名学生是总体C.样本容量是80D.被抽取的每一名学生称为个体答案:C解析:根据总体、个体、样本、样本容量的概念,分别进行判断,即可得到答案.解:A、此次调查属于抽样调查,故A错误;B、1000名学生的视力情况是总体,故B错误;C、样本容量是80,故C正确;D、被抽取的每一名学生的视力称为个体,故D错误;故选:C.小提示:本题考查了数据的收集,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.5、某商店一周内每天卖出的衬衫数量分别是15件、17件、18件、14件、21件、16件、18件,为了反映这一周内每天销售量的变化情况,可以制作的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.以上统计图答案:B解析:由扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;直方图能够清楚地表示出每组的具体数目,分组的时候,数据是连续的;可分析得出答案.解:根据统计图的特点,知折线统计图表示的是事物的变化情况,能反映这一周销售衬衣的变化情况,故选:B.小提示:此题根据扇形统计图、折线统计图、条形统计图、直方图各自的特点来判断.6、有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是().A.4B.5C.6D.7答案:C解析:根据组数=(最大值-最小值)÷组距计算即可.解:∵在样本数据中最大值与最小值的差为35-15=20,又∵组距为4,∵20÷4=5,∴应该分成5+1=6组.故选:C.小提示:本题考查的是组数的计算,解题关键是明确用最大值减最小值的差除以组距可得组数.7、根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误..的是()A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°答案:C解析:根据扇形统计图中的百分比的意义逐一判断即可得.解:A.扇形统计图能反映各部分在总体中所占的百分比,此选项正确;B.每天阅读30分钟以上的居民家庭孩子的百分比为1−40%=60%,超过50%,此选项正确;C.每天阅读1小时以上的居民家庭孩子占30%,此选项错误;D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是360°×(1−40%−10%−20%)=108°,此选项正确;故选C.小提示:本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.8、在频数分布直方图中,各小矩形的面积等于( ).A.相应各组的频数B.组数C.相应各组的频率D.组距答案:C解析:根据频数分布直方图的意义,可知小矩形的面积之和等于1,频率之和也为1,所以各小矩形的面积=相应各组的频率.故选C.填空题9、如图1表示去年某地12个月中每月的平到气温,图2表示该地一家庭去年12个月的用电量.请你根据统计图,描述该家庭用电量与气温的关系:_____________________.答案:当气温越高或越低时,用电量就越多解析:由折线统计图可以看出:1月份的气温最低,8月份的气温最高,由条形统计图可以看出:1月份和8月份的用电量最多,所以可得到信息:当气温最高或最低时,用电量最多.解:由折线统计图知,当气温越高或越低时,用电量就越多.所以答案是:当气温越高或越低时,用电量就越多.小提示:本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.10、某市为了解学生的心理健康情况,在20000名学生中随机抽查了500名学生进行问卷调查,则这次调查的样本容量是__________.答案:500解析:样本中包含的个体的数目叫样本容量,根据定义解答.解:在20000名学生中随机抽查了500名学生进行问卷调查,∴这次调查的样本容量是500,所以答案是:500.小提示:此题考查样本容量的定义,熟记定义是正确解答问题的关键.11、超市为了制定某个时间段收银台开放方案,统计了这个时间段顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间1-2分钟表示大于或等于1分钟而小于2分钟,其它类同),这个时间段内顾客等待时间不少于5分钟的人数为________.答案:16解析:根据题意和频数分布直方图可以得到这个时间段内顾客等待时间不少于5分钟的人数,找出等待5—6分钟,6—7分钟与7—8分钟的人数相加即可.解:由频数分布直方图可得,这个时间段内顾客等待时间不少于5分钟的人数为:9+5+2=16,所以答案是:16.小提示:本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答问题.12、如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有_____人.答案:280解析:=35%,然后用总体乘骑车上学的百分根据扇形统计图可得该校学生骑车上学的人数占总人数的百分比是126360比即可.=35%,解:根据扇形统计图可得:该校学生骑车上学的人数占总人数的百分比是126360∴估计该校学生上学步行的人数=700×(1-10%-15%-35%)=280人.小提示:考点:1.扇形统计图;2.样本估计总体.13、彭山的枇杷大又甜,在今年5月18日“彭山枇杷节”期间,从山上5棵枇杷树上采摘到了200千克枇杷,请估计彭山近600棵枇杷树今年一共收获了枇杷______千克.答案:24000.解析:试题解析:根据题意得:200÷5×600=24000(千克).故答案为24000.解答题14、垃圾分类是对垃圾收集处置传统方式的改革,是对垃圾进行有效处置的一种科学管理方法.垃圾分类管理,能最大限度地实现垃圾资源利用,减少垃圾处置的数量,改善生存环境状态.垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请在条形统计图中将“厨余垃圾B”的信息补充完整;(2)在扇形统计图样中,产生的有害垃圾C所对应的圆心角为度;(3)调查发现,在可回收物中塑料类垃圾占12%,每回收1吨塑料类垃圾可获得0.6吨二级原料.假设该城市每月产生的生活垃圾为2000吨,那么每月回收的塑料类垃圾可以获得多少吨二级原料?答案:(1)补全条形统计图见解析;(2)21.6;(3)每月回收的塑料类垃圾可以获得77.76吨二级原料.解析:(1)先根据已知条件算出其他三种垃圾的数量,即可得解;(2)算出有害垃圾C的概率再乘以360°即可;(3)根据已知的数据列式计算即可;(1)解:5÷10%=50(吨),50×54%=27(吨),50×30%=15(吨),50−27−5−15=3(吨),补全条形统计图如图所示:=21.6°,(2)360°×350所以答案是:21.6;(3)2000×54%×12%×0.6=77.76(吨),答:每月回收的塑料类垃圾可以获得77.76吨二级原料.小提示:本题主要考查了条形统计图、扇形统计图、全面调查和抽样调查,准确计算,从统计图形中获取关联信息是解题的关键.15、勤劳是中生民的传统美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的作息,解答下列问题:(1)本次共调查了________名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中m=________,类别D所对应的扇形圆心角α的度数是________度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年级有多少名学生寒假在家做家务的总时间不低于20小时?答案:(1)50;(2)见解析;(3)32,57.6;(4)224名解析:(1)根据A类的人数和所占的百分比,可以求得本次调查的人数;(2)根据统计图中的数据,可以得到B类和C类的人数,然后即可将频数分布直方图补充完整;(3)根据统计图中的数据,可以得到m和α的值;(4)根据统计图中的数据,可以计算出该校七年级有多少名学生寒假在家做家务的总时间不低于20小时.解:(1)本次共调查了10÷20%=50名学生,所以答案是:50;(2)B类学生有:50×24%=12(人),D类学生有:50−10−12−16−4=8(人),补全的条形统计图如下图所示:;(3)m%=16÷50×100%=32%,即m=32,=57.6°,类别D所对应的扇形圆心角α的度数是:360°×850所以答案是:32,57.6;=224(人),(4)400×16+8+450即该校七年级有224名学生寒假在家做家务的总时间不低于20小时.小提示:本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.。
人教版初一数学下册第十章数据的收集、整理与描述试题汇总测试1 统计调查(一)学习要求了解全面调查是一种收集数据的方法,会设计简单的调查问卷收集数据,会用统计表和扇形图描述数据;能根据问题查找有关资料,获得数据信息。
课堂学习检测一、填空题1.做统计调查时,通常先采用问卷调查的方法____________,为此要设计______;为了更清楚地了解数据所蕴含的规律,经常用表格______;为了更直观地看出表中的信息,还可以用统计图来____________.2.在调查中,考察全体对象的调查叫做_____________.3.某校组织学生开展“八荣八耻”宣传教育活动,其中有38%的同学走出校门进行宣讲,这部分学生在扇形统计图中应为____________部分(选择A,B,C,D填空).4.2008年4月16日至20日,在北京奥林匹克公园公共区举办了“好运北京”综合测试赛.测试期间,公共餐饮售卖点5日的营业额如图所示:测试赛公共区餐饮售卖点5日营业额条形图则营业额最高的是______日,它和营业额最低的那天相比,相差______元.二、选择题5.一般常用居民家庭恩格尔系数来衡量居民的生活质量(系数值越小代表生活质量越好).下列说法正确的是( ).(A)生活质量稳步提高(B)生活质量逐步下降(C)生活质量有升有降(D)生活质量稳定不变6.下列调查适合全面调查的是( ).(A)调查2009年6月份市场上某品牌饮料的质量(B)了解中央电视台直播北京奥运会开幕式的全国收视率情况(C)环保部门调查5月份黄河某段水域的水质情况(D)了解全班同学本周末参加社区活动的时间7.如图是某班学生最喜欢的球类活动人数统计图,则下列说法不正确...的是( ).(A)该班喜欢乒乓球的学生最多(B)该班喜欢排球与篮球的学生一样多(C)该班喜欢足球的人数是喜欢排球人数的1.25倍(D)该班喜欢其他球类活动的人数为5人三、解答题8.学校食堂的主食主要有:米饭、馒头、花卷、面条,你班的同学最喜欢哪种主食,请设计一个调查问卷.综合、运用、诊断9.下图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问题:(1)第一季度购买的“家电下乡”产品的总台数为______;(2)把两幅统计图补充完整.10.查阅动物百科全书,得到信息:丹顶鹤体长约140厘米,营巢于周围环水的浅滩或深草丛中,每次产卵2枚,为国家一级保护动物;绿孔雀体长100~230厘米,营巢于灌木丛、竹丛间的地面,每次产卵4~8枚,为国家一级保护动物;鸳鸯体长38~44厘米,营巢于树洞中,每次产卵7~12枚,为国家二级保护动物.请用一张统计表表示上述信息.11(1)先完成上面表格,然后根据数据画出扇形统计图;(2)根据扇形图分析学校图书馆的借书率高吗?(3)根据以上信息,请你向学校提出一条好的建议.12.小李通过对某地区1998年至2000年快餐公司发展情况的调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销量的平均数情况条形图,解答下列问题:(1)1999年该地区共销售盒饭__________万盒;(2)该地区盒饭销量最大的年份是______年,这一年的年销量是______万盒;(3)计算出这三年中该地区平均每家快餐公司的年销售盒饭数量(精确到0.01万).拓展、探究、思考13.阅读下面材料:中国人民银行资料显示,到2001年底,我国城乡居民银行存款数额为8.7万亿人民币.你想了解居民存款的目的是什么吗?下图是根据中国人民银行提供的资料制作的统计图,图中的百分比是受访者中选择不同存款的目的(每人只选一项)人数的百分比.(资料来源:中国人民银行2002年1月20日)观察上图后,研究下面问题:(1)选择人数最多的前四类的存款目的分别是______、______、______、______,这四类人数的百分比之和是______.(2)图中的各个百分比是如何得到的?所有百分比之和是多少?(3)(4)谈谈对上述数据调查、分析后的体会.测试2 统计调查(二)学习要求1.了解通过抽样调查收集处理数据的方法,明确用样本估计总体是统计的基本思想.2.通过实例理解总体、样本和样本容量的概念.3.会用折线图表示经过整理的数据,直观地反映数据规律.课堂学习检测一、填空题1.抽样调查是只从总体中抽取___________进行调查,然后根据___________推断全体对象的情况;要考察的全体对象称为___________,组成其的每一个考察对象称为______ _____,被抽取的那些___________组成一个___________.2.为了了解一批手表的防水性能,从中抽取10只手表进行防水性能测试,在这个问题中,总体是________________,个体是________________,抽取的样本是___________,样本容量是_________.3.抽样调查具有____________的优点,它的缺点是不如全面调查得到的结果___________,它得到的只是____________.比如为了解某牛奶公司生产的酸奶的质量情况作调查,这个调查适合作___________.4.下列调查的样本中不缺乏代表性的有哪几个___________.(填序号)①为了了解你校七年级学生期中考试数学成绩,抽取七1班50名学生的成绩进行分析;②为了了解我国18岁青年的身高,从不同的地区随机抽取1000名18岁青年的身高;③为了了解一批洗衣粉的质量情况,从中抽取50袋进行调查;④为了了解某公园的每天游园人数,从中抽查一年中每个星期天的游园人数.二、选择题5.为了了解某校九年级学生的视力,从中抽取60名学生进行视力检查,在这个问题中,总体是( ).(A)每名学生的视力(B)60名学生的视力(C)60名学生(D)该校九年级学生的双眼视力6.为了反映某地区的天气变化趋势,最好选择( ).(A)扇形统计图(B)条形统计图(C)折线统计图(D)以上三种都不行7.要调查某校七年级学生周日的睡眠时间,选取调查对象最合适的是( ).(A)选取一个班级的学生(B)选取50名男生(C)选取50名女生(D)随机选取50名七年级学生三、解答题8.某学校为丰富大课间自由活动的项目,随机选取本校100名学生进行调查,调查内容是“你最喜欢的自由活动项目是什么”,整理收集的数据,绘制成如图.(1)学校采用的调查方式是___________________________________________________.(2)选择喜欢“踢毽子”的学生有多少人,并在图中将“踢毽子”部分的图形补充完整.(3)该校共有800名学生,请通过计算估计出喜欢“跳绳”的学生人数.9.某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,让若干名学生从足球、乒乓球、篮球、排球四种球类运动中选择自己最喜欢的一种,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2,要求每位同学只能选择一种自己喜欢的球类运动;图中用乒乓球、足球、排球、篮球代表喜欢该项目的学生人数).图1 图2请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的扇形圆心角是多少度?(3)补全折线统计图.综合、运用、诊断一、填空题10.在抽取样本的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方法是一种__________抽样;通常样本容量越大,估计精度就会越______(填“高”或“低”).11.为了让大家感受丢弃塑料袋对环境的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31.如果该班有45位学生,那么根据提供的数据估计本周全班各家平均丢弃塑料袋数量约为______.12.甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图:甲公司乙公司从2003年到2007年,这两家公司中销售量增长较快的是____________.13.为了解09届本科生的就业情况,某网站对09届本科生的签约状况进行了网络调查,至3月底,参与网络调查的12000人中,只有4320人已与用人单位签约.在这个网络调查中,样本容量是______.二、选择题14.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为( ).(A)1万件(B)19万件(C)15万件(D)20万件15.如图为某产品产量增长情况统计图,下列说法正确的是( ).(A)产量持续增长(B)产量有增有减(C)开始产量不变(D)条件不足,无法判断三、解答题16.一面粉厂生产面粉,规定每袋标准质量为50kg.采用自动装袋工艺后,每袋面粉的实际质量和标准质量有一定的误差.任选50袋称质量结果如下:(单位:kg)48.5×1袋49.0×4袋49.5×10袋50.0×19袋50.5×9袋51.0×5袋51.5×2袋(1)计算每袋面粉的质量与标准质量的误差,对误差进行分类,统计各类误差的面粉袋数,并填写统计表:(2)画出条形统计图,表示出各类误差的面粉袋数,说一说误差的分布有什么特点.拓展、探究、思考17.为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,按照老年人、成年人、青少年各年龄段实际人口3∶5∶2的比例,随机抽取一定数量的观众进行调查,得到如下统计图:(1)上面所用的调查方法是______(填“全面调查”或“抽样调查”);(2)写出折线统计图中A 、B 所代表的值;A :_________B :__________(3)求该地区喜爱娱乐节目的成年人的人数.18.台州素有“七山一水两分田”之说,据此画成统计图1.图2是台州市2004~2008年的人口统计图(单位:万人).图1 图2资 料◆自1997年以来,台州市已连续12年实现耕地总面积基本不变.◆台州市2008年人均耕地面积0.4亩,不到全国人均耕地的31,相当于联合国粮农组 织确定的人均0.8亩耕地警戒线的21. (1)请你计算扇形统计图中表示“田”的扇形圆心角的度数;(2)请你指出台州市2004~2008年的人口变化趋势,并据此推断台州市2004~2008年人均耕地面积是不断增加还是不断减少?(人均耕地面积=耕地总面积÷人口)(3)结合统计图和资料的信息,计算台州市2008年耕地总面积约是多少万亩?测试3 直方图(一)学习要求1.初步认识直方图,能分析简单的频数分布情况.2.会制作频数分布直方图,并根据统计图作出分析和判断.课堂学习检测一、填空题1.分析数据的频数分布,首先计算出这组数据中__________的差,参照这个差值对数据进行__________,然后利用___________给出数据的分布情况,进而用___________来描述数据的分布情况.2.对某中学同年龄的70名女学生的身高进行测量,得到一组数据,其中最大值是170cm,最小值是147cm,对这组数据进行整理时,打算把它分成8组,则组距是_________.3.如图是某单位职工年龄(取正整数)的频数分布直方图(每组数据含最小值,不含最大值),根据图形直接回答下列问题:(1)该单位共有职工_________人;(2)______年龄段的职工人数最多,该年龄段职工人数占职工总人数的______%;年龄不小于38岁,但小于44岁的职工人数占职工总人数的______%;(结果均精确到0.1%)(3)如果42岁的职工有4人,则年龄在42岁以上的职工有_______人.4.如图是某班学生的一次考试成绩的频数分布直方图(每组数据含最小值,不含最大值),由图可知:(1)该班有______名学生;(2)该班不及格的学生共有________名,占全班人数的________%;(3)该班成绩优秀(分数在85分或85分以上)的学生最多________人,最少______人.二、解答题5.网瘾低龄化问题已引起社会各界的高度关注.有关部门在全国范围内对12~35岁(不含35岁)的网瘾人群进行了抽样调查.下图表示在调查的样本中不同年龄段的网瘾人数,其中30~35岁(不含35岁)的网瘾人数占样本总人数的20%(每组数据含最小值,不含最大值).(1)被抽样调查的样本总人数为______人.(2)请把统计图中缺失的数据、图形补充完整.(3)据报道,目前我国12~35岁(不含35岁)网瘾人数约为200万人,那么其中12~18岁(不含18岁)的网瘾人数约有多少人?综合、运用、诊断一、选择题6.一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成( ).(A)10组(B)9组(C)8组(D)7组7.某校对1200名学生的视力进行了检查,其值在5.0~5.1这一小组的百分比为25%,则该组的人数为( ).(A)150人(B)300人(C)600人(D)900人二、解答题8.为了了解中学生的身高情况,对某中学同年龄的若干名女生的身高进行了测量,整理数据后画出频数分布直方图(如图).(每组数据含最小值,不含最大值,且身高均为整数)(1)参加这次测试的学生人数是__________;(2)身高在__________范围内的学生人数最多,这一范围的学生占______%;(3)如果身高在155cm以上(含155cm)者为良好,试估计该校女学生身高的良好率是________.9.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为11月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了直方图如下(从左至右依次为第一组至第六组).已知从左至右各长方形的高度之比为2∶3∶4∶6∶4∶1,第三组的频数为12,请回答下列问题:(1)本次活动共有多少件作品参加评比?(2)第几组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组的获奖率较高?拓展、探究、思考10.某中学为了了解本校学生的身体发育情况,对同年龄的40名女学生的身高进行了测量,结果如下:(数据均近似为正整数,单位cm)167,154,159,166,169,159,156,162,158,159,160,164,160,157,161,158,153,158,164,158,163,158,x,157,162,159,165,157,151,146,151,160,165,158,163,162,154,149,168,164.根据以上信息回答下列问题:(1)频数分布表中的A=_________,B=_________;(2)原始数据中,x的值可能是__________________.测试4 直方图(二)学习要求会利用直方图描述数据,会根据频数分布直方图和频数分布表作出频数分布折线图.课堂学习检测一、填空题1.一组数据中最小值是154.5,最大值是183,选择组距为4,那么组数应该是______.二、解答题2.为了了解某中学九年级男同学的投掷标枪的成绩情况,从中抽测了20名男同学进行同学完成的一部分,表的划记栏中甲同学只统计了前3个同学的成绩,请你帮助他们3.某市教育部门对今年参加中考学生的视力进行了一次抽样调查,得到如图所示的频数分布直方图.(每组数据含最小值,不含最大值)(1)本次抽查的样本容量是______;(2)若视力在4.9以上(含4.9)均属正常,求视力正常的学生占被统计人数的百分比是多少?(3)根据图中提供的信息,谈谈你的感想.4.为了了解各校情况,县教委对其中40个学校九年级学生课外完成作业时间调研后进行了统计,并根据收集的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,解答下面的问题:(1)计算出学生课外完成作业时间在30~45分钟的学校对应的扇形圆心角;(2)将图中的直方图补充完整;(3)计算出学生课外完成作业时间在60~75分钟的学校占调研学校总数的百分比.综合、运用、诊断5.为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高进行调查,有以下三种调查方案:(A)测量体校中180名男子篮球队队员的身高;(B)查阅有关外地180名男生身高的统计资料;(C)在本市的市区和郊区各选一所完全中学、两所初级中学,在这六所学校有关年级的(1)班中,用抽签的办法分别选出10名男生,然后测量他们的身高.(1)为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?(2)下表中的数据是使用了某种调查方法获得的:(每组可含最低值,不含最高值)①根据表中的数据填写表中的空格;②根据填写的数据绘制频数分布直方图.拓展、探究、思考6(1)估计该地区6岁男女儿童各500人中,属第4组身高的男童比女童少多少人?(2)在男女儿童人数相同的情况下,大约2000名儿童中,身高在116.6cm~122.5cm的男童比女童多多少人?(3)身高在122.6cm以上(含122.6 cm)的人数中,男童、女童的人数之比是多少?(4)在男女儿童人数相同的情况下,第9组身高中有600名男童,则第9组有多少名女童?测试5 课题学习从数据谈节水学习要求综合利用所学知识和方法从事统计活动,经历收集、整理、描述和分析数据的基本过程.课堂学习检测一、判断题1.在设计调查问卷时,下面的提问是否合适?合适画“√”,不合适画“×”.(1)难道你不认为参加体育活动有益身心健康吗? ( )(2)你赞同对学生经常进行测验和加强体育锻炼吗? ( )(3)问一位老师“你对维持良好的课堂学习气氛感到困难吗?”( )(4)问一名学生“你是否遵守学校的各项纪律?”( )(5)在一年内,你做家务的次数大约是多少? ( )(6)问一名学生“周六你花多长时间做作业?”( )二、解答题2.某市开展了党员干部“一帮一扶贫”活动.为了解贫困群众对帮扶情况的满意程度,有关部门在该市所管辖的两个区内,分别随机抽取了若干名贫困群众进行问卷调查.根据收集的信息进行了统计,并绘制了下面尚不完整的统计图.已知在甲区所调查的贫困群众中,非常满意的人数占甲区所调查的总人数的35%.根据统计图所提供的信息解答下列问题:(1)甲区参加问卷调查的贫困群众有_______人;(2)请将统计图补充完整;(3)小红说:“因为甲区有30人不满意,乙区有40人不满意,所以甲区的不满意率比乙区低.”你认为这种说法正确吗?为什么?3.学习成绩是否理想除了个人的智力因素对于听课效率有一定的影响,还有相当一部分其他因素影响听课效率,比如听课时间、上课形式.现对100名七年级学生做调查结果如下:(1)学生对某一学科的学习兴趣与听课效率的关系.(表1)(2)上课形式与听课效率之间的关系.(表2)问题:(1)将表1中的数据制成条形图.(2)根据上面调查结果,建议老师应采取何种上课方式.(3)综合全部图表,你对提高听课效率的建议是什么?4.在日常的学习生活中,小明同学发现学校内存在着浪费纸张的现象,于是他想做一个调查,了解一下同学们是否意识到自己在浪费纸张.小明起草了一份调查问卷(如下).(1)由于第一次写调查问卷,问卷中有一些不完善的地方,请同学们找出其中的一处,帮他改正.调查问卷问卷编号年月日(3)描述和分析数据,写一份简单的调查报告.参考答案第十章 数据的收集、整理与描述测试11.收集数据,调查问卷;整理数据;描述数据.2.全面调查. 3.A . 4.18,11900. 5.A . 6.D . 7.D . 8.略. 9.(1)500; (2)101112.(1)118;(2)2000,120;(3)(1×50+2×59+1.5×80)÷(50+59+80)≈1.52(万盒). 13.(1)教育费、养老费、买房装修、预防意外,55.6%;(2)不同存款目的的人数占总人数的百分比,100%;测试21.一部分对象;调查数据;总体;个体;个体;样本.2.这批手表的防水性能;每只手表的防水性能;10只手表的防水性能;10. 3.花费少、省时;全面、准确;样本的情况;抽样调查. 4.②,③. 5.D . 6.C . 7.D . 8.(1)抽样调查;(2)25人,如图;(3)16010020800=⨯(人).9.(1)20÷20%=100(人);(2)36°;(3)喜欢篮球的有40人,喜欢排球的有10人.(图略)10.简单随机;高. 11.28个. 12.甲公司. 13.12000. 14.B . 15.A . 16(2)图略,质量误差较小的面粉袋数相对集中,误差较大的面粉袋数较少. 17.(1)抽样调查;(2)A =20,B =40;(3),1500002535300000=++⨯.45000%30150000%,30360108=⨯= 18.(1)360°×20%=72°;(2)台州市2004~2008年的人口不断增加,台州市2004~2008年的人均耕地面积不断 减少;(3)0.4×575=230(万亩).测试31.最大值与最小值,分组,频数分布表,频数分布直方图. 2.3. 3.(1)52;(2)40~42(不含42岁),23.1;61.5;(3)16. 4.(1)40;(2)4,10;(3)14,6. 5.(1)2400;(2)如图;(3)约62万.6.A . 7.B .8.(1)30人;(2)157.5~160.5厘米(不含160.5厘米),40;(3)80%. 9.(1)60件;(2)第四组,18件;(3)第四组作品18件,获奖率55.6%;第六组作品3件,获奖率66.7%,因此第六组高.10.A =6,B =12,x =150,151,152,153,154.测试41.8.2.如表,如图:3.(1)240;(2)37.5%;4.(1)360°×45%=162°; (2)40×30%=12,图略; (3)40-12-18-6=4,%.10%100404=⨯ 5.(1)方案(C)比较合理,更具有代表性;6.(1)15;(2)160;(3)4∶3;(4)400.测试51.(1)(2)(3)(4)不太合适,(5)(6)比较合适. 2.(1)1200;(2)图略(甲区满意人数有500人); (3)不正确.∴甲区的不满意率是%5.2120030=,乙区的不满意率是%24050076070040=+++,∴甲区的不满意率比乙区的不满意率高.3.(1)如图;(2)应该理论习题相结合;(3)学生要提高学习兴趣,老师注意上课方式.听课效率人数统计图4.(1)第7条问题带有本人的主观意愿,改正略;(2)和(3)略.七年级数学第十章数据的收集、整理与描述测试一、填空题1.某部门要了解一批药品的质量情况,应该采用的调查方式是_______调查.2.学校要了解初一年级学生吃早饭的情况,调查了一个班45名同学吃早饭的情况,在做这次统计调查中,样本是____________.3.某班女生人数与男生人数之比是7∶5,把男女学生人数分布情况制成扇形统计图,则表示女生人数的扇形圆心角的度数是__________°.4.已知数据总数是30,在样本频数分布直方图(如下图)中,各小长方形的高之比为AE∶BF∶CG∶DH=2∶4∶3∶1,第二小组的频数为_________.5.某图书室藏书15000册,各类书所占比例如图所示:册.6.某校为了举办“庆祝新中国成立60周年”的活动,调查了本校所有学生,调查的结果如图所示,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有______人.二、选择题7.调查下面的问题,应该进行全面调查的是( ).(A)市场上某种食品的色素是否符合国家标准(B)一个村子所有家庭的收入(C)一个城市的空气质量(D)某品牌电视机显像管的寿命8.想了解北京市初二学生的视力状况,想抽出2000名学生进行测试,应该( ).(A)从不戴眼镜的同学中抽取样本(B)抽取某个学校的初二学生(C)中午的时候,测试一些从事体育运动的初二学生(D)到几所中学,在学校放学后,对出校门的初二学生随机测试9.为了了解某市2007年中考6万余名考生的考试情况,从中抽取500名考生的成绩进行质量分析.在这个问题中,下列说法中正确的个数是( ).①500名考生是一个个体;②500名考生是样本容量;③6万余名考生的成绩是总体(A)3个(B)2个(C)1个(D)无10.如图是广州市某一天内的气温变化图,下列说法中错误..的是( ).(A)最高气温是24℃(B)最高气温与最低气温的差为16℃(C)2时至14时之间的气温在逐渐升高(D)只有14时至24时之间的气温在逐渐降低三、解答题11.某商场儿童玩具专柜“六·一”儿童节这天的营业额为3万元,商场就按这一天为样本算出儿童专柜每月应完成营业额90万元,你认为这样的估计合理吗?为什么?12.在“首届中国西部(银川)房·车生活文化节”期间,某经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其他型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.图1 图2(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?13.某中学为了解毕业年级800名学生每学期参加社会实践活动的时间,随机对该年级60名学生每学期参加社会实践活动的时间(单位:天)进行了统计(统计数据取整数),整理后分成5组,绘制成频数分布表和频数分布直方图(部分)如图.(1)补全频数分布表和频数分布直方图;(2)请你估算这所学校该年级的学生中,每学期参加社会实践活动的时间大于7天的约有多少人?14.2008年国际金融危机使我国的电子产品出口受到严重影响,在这种情况下有两个电子仪器厂仍然保持着良好的增长势头.(1)下面的两幅统计图,反映了一厂、二厂各类人员数量及工业产值情况,根据统计图填空.①一厂、二厂的技术员占厂内总人数的百分比分别是_______和_______;(结果精确到1%)②一厂、二厂2008年的产值比2007年的产值分别增长了_______万元和_______万元.(2)下面是一厂、二厂在2008年的销售产品数量占当年产品总数量的百分率统计表,根据此表,画出表示一厂销售情况的扇形统计图.。