实验11Lingo中数据的导入与导出课案
- 格式:doc
- 大小:143.50 KB
- 文档页数:9
Lingo程序设计实验报告
Lingo程序是一款用于文本编辑和处理的工具程序,它基于Microsoft .NET Framework 开发,支持多种主流的文本编辑操作,例如查找替换、剪切复制、格式调整等,同时还拥
有强大的字符串处理功能,使得用户能够对文本进行更加灵活、便捷的处理。
在Lingo程序设计实验中,我们主要学习了程序的架构、模块设计和代码实现等方面。
首先,我们对程序进行了整体的设计和规划,确定了程序的基本结构和功能模块,并定义
了程序的核心数据结构和算法。
接着,我们使用面向对象的方式,将程序划分为多个不同
的类和对象,为不同的功能模块分别实现了相应的方法和函数。
通过这样的模块化设计,
我们能够更好地管理程序的开发和维护过程,同时也方便了代码的重用和扩展。
在Lingo程序的代码实现过程中,我们首先编写了程序的主体框架和基本输入输出功能,然后分别实现了不同的功能模块,包括字符串查找替换、字符串分割、字符串格式化等。
通过不断的调试和测试,我们最终完成了一个稳定、高效、功能完备的Lingo程序,
它能够满足大多数文本编辑和处理的需求,且易于扩展和修改。
总之,在Lingo程序设计实验中,我们获得了许多宝贵的经验和技能,包括程序分析、设计、编码、测试和调试等方面。
这些经验将有助于我们今后在编写复杂程序时更加自信
和高效,提高我们的专业能力和软件开发水平。
第Ⅱ部分运筹学实验§1 LINGO快速入门一、LINDO/LINGO软件简介LINDO和LINGO是美国LINDO系统公司开发的一套专门用于求解最优化问题的软件,这源于芝加哥大学的Linus Schrage教授于1980年前后开发的一套专门用于求解最优化问题的软件包.LINDO用于求解线性规划和二次规划.目前LINGO除了具有LINDO的全部功能外,还可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解以及代数方程求根等.LINDO和LINGO软件的最大特色是可以求解决策变量为整数的优化问题,而且执行速度很快. LINGO实际上是一种最优化问题的建模语言,简单易学、包括许多常用的函数可调用,并提供与其它数据文件的接口,易于输入、求解和分析大规模最优化问题. 由于这些特点,LINDO和LINGO软件在教学、科研、工业、商业和服务等领域得到广泛应用.本章着重在Microsoft Windows系统下,介绍lingo9.0在运筹学中的使用和课本中相关问题求解的LINGO实现.二、LINGO软件的安装LINGO软件的安装非常简单,在Windows系统下双击运行安装光盘(或其它源)中的安装程序setup.exe,接受安装协议,选择安装目录,选择默认的LINGO 语法(recommended),最后完成(finish)安装.安装完成后,第一次运行LINGO软件,这时提示要输入密码,输入正版的密码输入,即可以使用LINGO软件;当然可以选择测试/试用(demo)版本,这时求解变量不能超过300个.运行成功后得到如下窗口:图1.1图1.1中:File(文件)、Edit(编辑)、LINGO、Window(窗口)和Help为下拉菜单项,下面一行为菜单项中的一些快捷工具按钮.主窗口LINGO Model为输入模型的窗口,在没有命名保存(save)模型时,LINGO自动命名为LINGO1,LINGO2等.点击help菜单的About LINGO 可以获得版本的相关信息,如约束(constrain)、变量(variable)、整数变量(integer variable)、非线性变量(nonlinear variable)的限定个数,可用内存(generator memory)使用等.§2求解规划问题一、LINGO 求解LP 问题下面就用简单的例子来说明LINGO 中线性规划问题的求解. 例2.1求如下线性规划问题:2132min x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≥≥+0,600210035026..2121121x x x x x x x t s 在LINGO 模型窗口中图2.1输入:图2.1学习要点:(1) 输入max ,min 后LINGO 就会识别优化类型;数学运算符“乘号,除号,乘方”分别输入“*,/,^”; 关系运算符“≥,≤”分别输入“>=,<=” 来表示; 每行命令结束用“;”来表示.(2)算术运算符按优先级从高到低排序为:-(负号);^;*,/;+,-(减号) (3)关系运算符按优先级从高到低排序为:<,=,>. 输入完毕后,点击求解按钮(或依次点击菜单LINGO/Solve ,或按Ctrl+S),求解状态窗口(LINGO Solve Status )被激活,如图2.2:图2.2此窗口显示:当前的求解状态,包括模型的类型(Model ),解的状态类型(State ),目标值(objective )等,如果模型由于陷入循环等一时无法得到解,可以点击中断求解按钮(Interrupt Solver ).学习要点:(1)LINGO 默认所有变量非负.(2)LINGO 关于求解的种类一般有如下几种(在asibility 处显示):0 全局最优(Global Optimum ) 1 不可行(Infeasible ) 2 无界(Unbounded )3 不确定(Undetermined )4 可行(Feasible )5 可行或者无界(Infeasible or Unbounded )6 局部最优(Local Optimum )7 局部不可行(Locally Infeasible ) 8 目标函数的截断值被达到(Cutoff ) 9 算术运算错误而停止(Numeric Error )当关闭(Close )求解状态窗口时,求解报告窗口(Solution Report )被激活,如图2.3:图2.3求解报告显示:求解所需的迭代次数(iteration )(线性规划默认单纯形法);变量的值(value );及变量变化一个单位时,目标值发生的变化量(Reduced Cost );以及松弛或剩余变量(Slack or Surplus ,按模型输入行的顺序显示)的值和对偶价格(Dual Price ).二、LINGO 求解ILP 问题例2.2 求如下整数规划问题:2123max x x z +=⎪⎩⎪⎨⎧≥≤+≤+且为整数0,14325.45.0..212121x x x x x x t s 在LINGO 模型窗口中按如图2.4输入:图2.4点击求解按钮,就会得到:求解状态窗口显示为纯整数规划(PILP ),全局最优解得到.求解报告窗口显示最优解为x1=4,x2=1,最优值为14. 学习要点:(1)“!”后面可添加为注释语句(注释以英文标识下“;” 结束); “title ” 命令可以添加文档的标题和注释,在解的报告里会显示; LINGO 只有在“!”和“title ” 命令后才可以使用中文字符. (2)LINGO 不区分大小写;(3)LINGO 模型的目标、约束和约束之间的顺序可以颠倒; (4)变量界定函数:@gin(x) :限制x 为整数. @bin(x) : 限制x 为0或1; @bnd(L,x,U) : 限制L ≤ x ≤ U ;@free(x) : 取消对变量x 的默认下界为0的限制,即x 可以为任意 实数;其中符号“@”表示调用函数;三、LINGO 求解非线性规划(NLP)问题例2.3 求如下非线性规划问题:322312119210max x x x x x z -+-+= ⎩⎨⎧≥≤+0,5..2121x x x x t s在模型窗口中输入:max=10*x1+2*x1^2-*x1^3+9*x2-x2^3;x1+x2<=5;运行结果为:x1=2.61,x2=1.73,z=32.33.§3 灵敏度分析对模型的目标函数的系数,约束右端项进行灵敏度分析,首先要激活灵敏度分析.依次点击菜单LINGO|Option|General Solver Tab ,在Dual Computations 列表框中,选择Prices and Ranges 选项.当求解模型时,也作出了灵敏度分析,可以点击菜单LINGO 中的Range (Ctrl+R )来查看.例2.4 对例1.1的线性规划模型,按照上述步骤作灵敏度分析,打开灵敏度分析报告(Range Report )显示如图3.1:图3.1灵敏度分析报告中显示,当前模型中的目标系数(Current Coefficient),约束右端项( Current RHS), 对应参数在其它条件不变的情况下,可允许的增加量和减少量(Allowable Increase, Allowable Decrease),INFINITY 表示无穷.本例显示在其它参数不变的情况下,参数在下列变化范围内,最优基保持不变:目标函数中1x 的系数为2,其允许变化范围为)0,()22,(-∞=--∞,2x 的系数为3,其允许变化范围为)0,()33,(-∞=--∞;第一个约束右端项为350,其允许变化范围为)600,()250350,(-∞=+-∞,第二个右端项为100,其可变化范围为)300,3333.58()200100,6667.41100(=+-,第三个右端项600,其可变化范围为),200(),400600(+∞=+∞-.§4 LINGO中集合的定义与操作当模型的变量、数据较多时,按照前面按照模型逐个输入的办法,就显得力不从心了.LINGO是一种建模语言,使用LINGO语言可以通过输入简单的文字而代替大规模变量和约束,处理大型问题就得心应手.理解LINGO语言,最重要的是理解集合(sets)和属性(atrribute)的概念.下面我们从简单例子出发来说明这些问题.一、定义一个基本集(原始集)基本集的格式为:集合名/成员1,成员2,…/:属性1,属性2,…;例 4.1 产生表示价格的向量x=[35 26 45 78 69 66]:在模型窗口中输入如图4.1:图4.1运行得到:Variable ValueX(1) 35.00000X(2) 26.00000X(3) 45.00000X(4) 78.00000X(5) 69.00000X(6) 66.00000例 4.2 定义一个名为产品的的基本集(可记为products),包括三种产品A,B和C(即它具有成员A,B和C),现在想研究它们对应的单位价格120、100和80以及对应的质量等级1、2和3(即属性可以记为price, quality)在模型窗口中输入如图4.2:图4.2运行结果为:Variable ValuePRICE(A) 120.0000PRICE(B) 100.0000 PRICE(C) 80.00000 QUALITY(A) 1.000000 QUALITY(B) 2.000000 QUALITY(C) 3.000000学习要点:(1)定义一个基本集:集合名/集合的成员/:属性,属性,…,属性; (2)集合要夹在sets 和endsets 之间;(3)连续可编号的n 个成员可以使用1..n 或用带字母的编号表示如w1..wn 来输入,也可以直接以逗号间隔,将n 个成员输入为w1,…,wn ;(4)数据部分要夹在data 和enddata 之间; (5)成员可以当作数据输入.二、定义一个派生集派生集的基本格式:派生集名(基本集1,基本集2,…):属性1,属性2,…;例4.3 导入矩阵⎥⎦⎤⎢⎣⎡=645241A . 在模型窗口中输入如图4.3:图4.3运行结果为:Variable Value A(1,1) 1.000000 A(1,2) 2.000000 A(1,3) 4.000000 A(2,1) 4.000000 A(2,2) 5.000000 A(2,3) 6.000000例4.4 产生矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=314022221221B ,其中“-”表示对应位置没有数据. 在模型窗口中输入如图4.4:图4.4运行结果为:Variable ValueB(1,1) 21.00000B(1,3) 40.00000B(2,1) 12.00000B(2,2) 22.00000B(3,2) 22.00000B(3,3) 31.00000例4.5 在模型窗口中输入:sets:product/1..2/;quality/1..2/;cost/1..2/;links(product,quality,cost):x;endsets运行后会发现:派生集合links产生八个成员:(1,1,1), (1,1,2),(1,2,1),(1,2,2) ,(2,1,1),(2,1,2),(2,2,1),(2,2,2).学习要点:(1)派生集的基本格式为:派生集名(基本集1,基本集2):属性1,属性2,…,属性n;利用派生集可以产生多维数组,它是基本集合成员的所有可能组合;(2)对于派生集,可以定义其具体的成员,其格式与基本集的格式类似:派生集名(基本集1,基本集2)/成员/:属性1,属性2,…,属性n;(3)在例4.4中只取了派生集links中的一些元素,也称为稀疏集.三、集循环函数集循环函数是指对集合的元素进行循环操作的函数,其格式为:@函数名(集合(指标)|过滤条件:表达式)函数有for,max,min,prod,sum五种,分别表示对集合满足过滤条件的每一元素:独立生成表达式,求最大元素,求最小元素,计算乘积,求和.下面以简单例子来介绍@for和@sum函数的使用:1、@for例4.6 产生序列{4 9 16 25 36 49}.在模型窗口中输入:model:sets:number/1..7/:x;endsets@for(number(i)|i#ge#2:x(i)=i^2);end运行结果为:X(2) 4.000000X(3) 9.000000X(4) 16.00000X(5) 25.00000X(6) 36.00000X(7) 49.000002)@sum 求和例4.7 对数列1 2 5 4 6求和.在模型窗口中输入:model:sets:number/1..5/:x;endsetsS=@sum(number(I):x(I));data:x=1 2 5 4 6 ;enddataend运行结果为:Variable ValueS 18.00000X(1) 1.000000X(2) 2.000000X(3) 5.000000X(4) 4.000000X(5) 6.000000学习要点:(1)一个模型可写在model和end之间,这是为了表示一个完整的模型,不至于与模型窗口中的其它模型混淆;(2)集合中使用符号“|”表示其后为过滤条件,只有集合中满足条件的指标才执行其后的表达式;(3)如使用循环函数时,其中number(i) 表示集合number中的第i个元素,循环函数就会遍历number中满足条件的每个元素,执行其后所有表达式;(4)“ge”为逻辑符号,表示“大于等于”,逻辑运算符使用时要夹在“#”之间;所有逻辑运算符按优先级顺序由高到低排序为:not(非);eq(等于),ne(不等于),gt(大于),lt(小于);ge(大于等于),le(小于等于);and(与),or(或).§5 求解运输问题学习了LINGO的集合操作之后,运输问题就可以编写成简单的LINGO程序来求解.例5.1计算有5个产地A1—A5,8个销地B1-B8的运输问题的最优调运方案.分析:六个产地的总产量和为160,8个销售地的销量和为264,故产销不平衡,销大于产.定义集合workshop为有六个成员的产地,shop为有八个成员的销地,a为产量,b为销量,c为单位运价,x为待求调运量,编写程序如图5.1:图5.1运行部分结果为:Objective value: 272.0000X(W1,V1) 0.000000X(W1,V2) 0.000000X(W1,V3) 8.000000X(W1,V4) 0.000000X(W1,V5) 12.00000. . . . . . . .X(W5,V5) 0.000000X(W5,V6) 0.000000X(W5,V7) 0.000000X(W5,V8) 0.000000学习要点:(1)当销大于产时,对任意的销地j,从各个产地调往j的调运量之和不大于b(j),即有需求约束中为小于等于号;若产大于销,则产量约束中为小于等于号;(2)目标函数可以进一步简化为:min=@sum(links: c*x)不影响结果.§6求解网络问题一、最短路问题例6.1 用LINGO 求解图论中§6.3中例6.3.1所示的图6.3.1中从始点1到终点8的最短路问题的求解.分析:图中有8个顶点,需求出从结点1到结点8的最短路;设决策变量⎩⎨⎧=其它,的最短路上到于结点)(当081位,弧,1j i x ij 可把最短问题转化成一个规划问题,∑∈=Ej i ijijxw z ),(min⎪⎪⎩⎪⎪⎨⎧∈≥⎪⎩⎪⎨⎧-=-∑∑∈=∈=E j i x i ,i ,i ,x x ijEi j j ji Ej i j ij ),(,008111s.t.8),(18),(1为中间点为终点为始点 其中ij w 为弧),(j i 上的权(即结点i 与结点j 之间的距离) 在模型窗口中编写程序如图6.1:图6.1运行后部分结果为:Objective value: 12.00000Variable ValueX(1,6) 1.000000 X(5,8) 1.000000 X(6,7) 1.000000 X(7,5) 1.000000这表明路线85761→→→→为从始点1到终点8的最短路,长度为12.学习要点:(1)对无向图要把始点出发的弧和到达终点的弧当作单向弧,其余的等价为双向弧;(2)终点约束与其余约束线性相关可以省略;二、最大流问题例6.2下面介绍运用LINGO 求解§6.4中例6.4.1中图6.4.1所示的从始点s 到终点t 的最大流问题的求解.分析:根据最大流问题的要求和平衡条件,用flow 表示可行流量,可以把它转化成一个规划问题,flow max⎪⎪⎩⎪⎪⎨⎧∈≤≤⎪⎩⎪⎨⎧-=-∑∑∈∈∈∈Aj i c f i ,ti flow ,s i flow ,f f ij ij Ai j V i ji Aj i V j ij ),(,00s.t.),(),(为中间点为终点为始点 在模型窗口中编写程序如图6.2:图6.2运行得到一种最大流方案为:FLOW 22.00000F(S,4) 8.000000 F(2,3) 4.000000F(2,5) 10.00000 F(3,T) 4.000000 F(4,5) 8.000000 F(5,3) 0.000000 F(5,T) 18.00000三、最小费用最大流问题例6.3用LINGO 求解书中§6.5中图6.5.1所示的从始点s 到终点t 的最小费用最大流问题的求解.分析:根据最大流问题的要求和平衡条件,用F 表最大流量,可以把它转化成一个规划问题,∑∈Aj i ij ijf b),(min⎪⎪⎩⎪⎪⎨⎧∈≤≤⎪⎩⎪⎨⎧-=-∑∑∈∈∈∈Aj i c f i ,ti F ,s i F ,f f ij ij Ai j V i ji A j i V j ij ),(,00s.t.),(),(为中间点为终点为始点 根据最大流的求法可求得此网络的最大流量Q=15,编写程序如图6.3:图6.3运行得到一种最小费用最大流方案为:Objective value: 69.00000 F(S,2) 8.000000 F(S,3) 7.000000 F(2,3) 0.000000F(3,4) 7.000000F(4,2) 1.000000F(4,T) 6.000000这与增广链和最短路标号法求得的结果一致.§7 LINGO中外部数据文件的调用一、LINGO中调用文本文件数据调用文本数据函数@file(‘filename’)用于将文本文件中的数据调入LINGO 模型中,可以写相对和绝对路径,文件中的每组数据之间用符号“~”间隔,LINGO 将按照此函数在模型中出现的顺序依次读取每组数据.下面以简例说明之.例7.1 对x=[2 5 8]求和,对y=[3 6 1 4]取其最小元.按如图7.1在模型窗口中编写程序:图7.1其中data1.txt文件与此模型放在同一目录下,内容编写如图7.2:图7.2运行结果可得:S 15.00000,P 1.000000二、LINGO中调用excel数据电子表格数据调用函数@ole(‘filename’)用于将excel表中的数据导入LINGO,文件路径设置与@file函数一致,例7.2 对例7.1,可编程如图7.3:图7.3其中data2.xls文件与模型放在同一目录,编辑如图7.4:图7.4其中要定义单元格A3:A5为集合的名称price,B3:B5定义为x,C3:C6定义为y.定义单元格名称的方法是:选定要定义的单元格,依次打开菜单插入|名称|定义,输入想要定义的名称即可.学习要点:(1)@file和@ole函数可以在模型的集合段,数据段和开始段使用,其他段落不能使用.(2)@ole函数的完整格式为:@ole(‘filename.xls’,[rangelist]),其中rangelist为包含数据的单元范围(与excel表格中的记法一致)(3)这两个函数在集合段可以直接采用@file(‘filename’)和@ole(‘filename’)的形式,而在数据段要采用x=@file(‘filename’)或@ole(‘filename’)格式.。
lingo实验报告《lingo 实验报告》一、实验目的本次 lingo 实验旨在深入了解和掌握 Lingo 软件在优化问题求解中的应用,通过实际操作和案例分析,提高对数学建模和优化算法的理解与运用能力。
二、实验环境本次实验使用的计算机配置为:处理器_____,内存_____,操作系统_____。
Lingo 软件版本为_____。
三、实验内容(一)线性规划问题1、问题描述考虑一个生产计划问题,某工厂生产两种产品 A 和 B,生产 A 产品每个需要消耗 2 个单位的原材料和 3 个单位的工时,生产 B 产品每个需要消耗 3 个单位的原材料和 2 个单位的工时。
工厂现有原材料 100 个单位,工时 80 个单位。
A 产品的单位利润为 5 元,B 产品的单位利润为 4 元。
求如何安排生产计划,使得总利润最大。
2、数学模型设生产 A 产品 x 个,生产 B 产品 y 个,则目标函数为:Max Z =5x + 4y约束条件为:2x + 3y <= 1003x + 2y <= 80x >= 0y >= 03、 Lingo 代码及求解结果```lingomodel:max = 5x + 4y;2x + 3y <= 100;3x + 2y <= 80;x >= 0;y >= 0;end```求解结果为:x = 20,y = 20,最大利润为 180 元。
(二)整数规划问题1、问题描述某物流公司需要安排车辆运输货物,有两种车型可供选择,大型车每辆可载货10 吨,小型车每辆可载货5 吨。
共有货物80 吨需要运输,且大型车的数量不能超过 8 辆,小型车的数量不能超过 12 辆。
大型车每辆的运输成本为 100 元,小型车每辆的运输成本为 60 元。
求如何安排车辆,使得运输成本最低。
2、数学模型设安排大型车 x 辆,小型车 y 辆,则目标函数为:Min C = 100x +60y约束条件为:10x + 5y >= 80x <= 8y <= 12x >= 0 且为整数y >= 0 且为整数3、 Lingo 代码及求解结果```lingomodel:min = 100x + 60y;10x + 5y >= 80;x <= 8;y <= 12;@gin(x);@gin(y);end```求解结果为:x = 6,y = 4,最低运输成本为 840 元。
lingo上机实验报告重庆交通大学学生实验报告实验课程名称专业综合实验Ⅰ开课实验室交通运输工程实验教学中心学院交通运输年级二年级专业班交通运输1班学生姓名学号631205020开课时间2013 至2014 学年第 2 学期总评成绩教师签名实验名称运筹学上机实验(一)实验类型上机实验实验时间2014.5.9—6.16 实验地点BO1机房实验目的:了解LINGO软件的基本入门知识,学习使用LINGO软件对线性规划问题进行灵敏度分析。
仪器、设备名称:LINGO9.0软件实验要求及注意事项:1.写出数学模型;2.在Lingo中输入求解的程序;3.求解得到解报告;4.写出最优解和最优值。
实验内容、操作步骤:一、数学模型:求解线性规划问题max=5*x1+4*x2+3*x3x1+x2+2*x3<=452*x1+x2+x3<=80 S.tx1+3*x2+x3<=90x1,x2,x3>=0并进行灵敏度分析。
二、模型求解:1、在lingo中输入模型如下:2、得出求解报告:(4)选择Dual Computation: Prices & Range;(5)点击OK退出;(6)在键盘上按下ctrl + R。
如图所示:2、灵敏度分析结果如下:Current coefficient—目标函数中变量系数Allowable Increase—允许增加量Allowable Decrease—允许减少量Current RHS—对偶问题系数实验结果分析(含数据、图表整理):结论:(1)该线性规划问题的最优解为:X*=(35,10,0),最优值为Z*=215.(2) c1=5c1在(4,8)内原最优解不变,但最优值是要变的c2=4c2在(2.7,5)内原最优解不变,但最优值是要变的c3=3c3在(-∞,7)内原最优解,最优值都是不变的b1=45b1在(45,50)内原最优基不变,但最优解和最优值是要变的b2=80b2在(67.5,90)内原最优基不变,但最优解和最优值是要变的b3=90b3在(65,∞)内原最优基不变,但最优解和最优值是要变的实验收获、心得及建议:通过对lingo软件的学习和使用,使我初步掌握了用lingo求解最优问题和灵敏度分析的基本方法。
lingo总结集(set)定义原始集的语法规则:集的名字[/集的成员/][:集成员的属性];注意:用“[]”表示该部分内容可选。
显式的:1.sets:students(集的名字)/John ,Jill,Rose ,Mike(集的成员)/:sex,age(集成员的属性);(成员也可以用空格隔开)Endsets (记得这儿是不用分号的)2.集成员不放在集定义中,而在随后的数据部分来定义:sets:students:sex,age;endsetsdata:students,sex,age= John 1 16Jill 0 14Rose 0 17Mike 1 13;enddata隐式sets:students(集的名字)/1..19(集的成员)/:sex,age(集成员的属性);(成员也可以用空格隔开)Endsets(不用一一列出所有的成员)注释是以!开头,以;结束。
有时在定义集时,不写成员,成员在后面再列明。
for example:max z=3*x1+5*x2s.t. x1<42*x2<123*x1+2*x2<=18一维:c1*x1+c2*x2+..+cN*xNsets:decision/1..n/:c,x;endsets@sum(decision(j):c(j)*x(j))多维:a11*x1+a12*x2+...+a1n*xn<=b1 ..am1*x1+am2*x2+...+amn*xn<=bm decision/1..n/:C,x;constraint/1..m/:B;matrix(constraint,decision):A;C=3 5;B=4 12 18;A=1 00 23 2;lingo是不区分大小写的数据的定义:sets:decision/1 2/:C,X;constraint/1..3/:B;Matrix (constraint,decision):A; endsets;max=@sum(decision(i):c(i)*x(i));@for(constraint(i):@sum(decision(j)):a(i,j)*x(j))<b(i));< p="">Data:c=3,5;B=4 12 18;A=1 00 23 2;注意项:(1)将目标函数的表示方式从“min”变成了“min=”(2)“ST”在LINGO 模型中不再需要,所以被删除了(3)每个系数与变量间增加了运算符“*”(即乘号不能省略)(4)每行(目标、约束和说明语句)后面均增加了一个分号“;”(5)模型结束标志“END”也被删除了(LINGO 中只有当模型以“MODEL:”开始时才能以“END”结束)。
运筹学lingo实验报告
运筹学lingo实验报告
一、引言
实验目的
本次实验旨在探索运筹学lingo在解决实际问题中的应用,了解lingo的基本使用方法和解题思路。
实验背景
运筹学是一门研究决策和规划的学科,其能够帮助我们优化资源分配、解决最优化问题等。
lingo是一种常用的运筹学工具,具有强大的求解能力和用户友好的界面,被广泛应用于各个领域。
二、实验步骤
准备工作
•安装lingo软件并激活
•熟悉lingo界面和基本功能
确定问题
•选择一个运筹学问题作为实验对象,例如线性规划、整数规划、网络流等问题
•根据实际问题,使用lingo的建模语言描述问题,并设置变量、约束条件和目标函数
运行模型
•利用lingo的求解器,运行模型得到结果
结果分析
•分析模型求解结果的合理性和优劣,对于不符合要求的结果进行调整和优化
结论
•根据实验结果,总结lingo在解决该问题中的应用效果和局限性,对于其他类似问题的解决提出建议和改进方案
三、实验总结
实验收获
•通过本次实验,我熟悉了lingo软件的基本使用方法和建模语言,增加了运筹学领域的知识和实践经验。
实验不足
•由于时间和条件的限制,本次实验仅涉及了基本的lingo应用,对于一些复杂问题的解决还需要进一步学习和实践。
•在以后的学习中,我将继续深入研究lingo的高级功能和应用场景,以提升运筹学问题的求解能力。
以上就是本次实验的相关报告内容,通过实验的实践和总结,我对lingo在运筹学中的应用有了更深入的理解,为今后的学习和研究奠定了基础。
课程设计lingo11一、教学目标本课程的教学目标是使学生掌握Lingo11的基本概念和语法,能够熟练运用Lingo11进行简单的程序设计。
具体目标如下:1.理解Lingo11的基本语法和数据类型。
2.掌握Lingo11的条件语句和循环语句。
3.了解Lingo11的函数和数组。
4.能够使用Lingo11编写简单的程序。
5.能够阅读和理解Lingo11程序。
6.能够调试和修改Lingo11程序。
情感态度价值观目标:1.培养学生的编程兴趣和自信心。
2.培养学生的问题解决能力和创新精神。
二、教学内容根据课程目标,本课程的教学内容主要包括Lingo11的基本语法、数据类型、条件语句、循环语句、函数和数组。
具体安排如下:1.第一章:Lingo11的基本语法和数据类型。
2.第二章:Lingo11的条件语句和循环语句。
3.第三章:Lingo11的函数和数组。
每个章节都会有相应的课堂讲解和编程练习,以确保学生能够掌握相关知识。
三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法。
1.讲授法:通过讲解Lingo11的基本语法、数据类型、条件语句、循环语句、函数和数组,使学生掌握相关知识。
2.讨论法:通过分组讨论和课堂提问,促进学生之间的交流和思考,提高学生的理解能力。
3.案例分析法:通过分析具体的编程案例,使学生能够将理论知识应用到实际问题中。
4.实验法:通过编写和调试Lingo11程序,培养学生的编程能力和问题解决能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:Lingo11编程教程。
2.参考书:Lingo11编程思想。
3.多媒体资料:Lingo11编程教学视频。
4.实验设备:计算机和网络设备。
以上教学资源将帮助学生更好地理解和掌握Lingo11编程知识,提高学生的编程能力。
五、教学评估本课程的教学评估将采用多种方式,以全面、客观地评估学生的学习成果。
幼儿园lingo课程教案一、方案介绍幼儿园lingo课程教案,是一套为幼儿园实施外语教育的全套课程体系,该方案将语言学习融入到游戏、音乐、故事等多种形式的互动中,以达到寓教于乐,轻松愉悦地学习外语的目的,全面提高幼儿的外语水平。
二、教案设计1.教学目标本教案的教学目标是:让幼儿能够听懂、说出简单的英语单词和句子,并能够正确使用这些单词和句子,增强听说能力和语言表达能力。
2.教学内容本教案的教学内容主要包括以下方面:(1)英语语音、字母的学习;(2)英语词汇的学习,包括常用名词、动词、形容词、副词等;(3)英语日常用语的学习,包括问候语、感谢语、请求语等;(4)英语歌曲、儿歌、故事的学习。
3.教学方法本教案的教学方法主要采用互动式教学,包括以下方面:(1)游戏教学:通过游戏的形式,激发幼儿的兴趣,并帮助他们逐步掌握听、说、读、写的能力,如连连看、找同音词、画画添色等;(2)音乐教学:通过唱歌、跳舞的形式,帮助幼儿掌握英语单词、短语和句子,促进他们的语言发展;(3)故事教学:通过阅读故事,培养幼儿的阅读能力和理解能力,同时掌握常用的英语词汇和表达方式。
4.教学步骤本教案的教学步骤分为以下几个方面:(1)引入:通过互动的方式,引导幼儿进入英语学习的状态;(2)语音、字母学习:帮助幼儿掌握英语的基本语音、字母;(3)词汇学习:通过图片、动作、情景等方式,让幼儿掌握英语单词及其用法,并需要配合语音、口型练习;(4)日常用语学习:采用情境教学的方式,让幼儿在实际场景中学习、使用并提升其实际运用能力;(5)歌曲、儿歌、故事学习:通过唱歌、听故事的形式,让幼儿自然而然地接触英语,从而提高其语言水平。
5.教学评估本教案的教学评估主要分为以下几个方面:(1)口语表达能力:通过观察幼儿的口语表达以及听力反馈等方式,初步判断其英语口语的掌握程度;(2)听说配合程度:观察幼儿在讲话的同时是否能够配合语调、表情等进行整体表达,从而判断其听说配合的水平;(3)词汇掌握能力:通过幼儿对单词的理解和应用程度,初步判断其词汇掌握能力的高低;(4)故事阅读理解:通过对于幼儿对于英语故事的理解程度的观察,初步评估幼儿的阅读、理解水平。
lingo数据导入教程里面的自己看看应该就会了@file 函数该函数用从外部文件中输入数据,可以放在模型中任何地方。
该函数的语法格式为@file(’filename’)。
这里filename 是文件名,可以采用相对路径和绝对路径两种表示方式。
@file 函数对同一文件的两种表示方式的处理和对两个不同的文件处理是一样的,这一点必须注意。
例 4.14 以例1.2 来讲解@file 函数的用法。
注意到在例1.2 的编码中有两处涉及到数据。
第一个地方是集部分的6 个warehouses 集成员和8 个vendors 集成员;第二个地方是数据部分的capacity,demand 和cost 数据。
为了使数据和我们的模型完全分开,我们把它们移到外部的文本文件中。
修改模型代码以便于用@file 函数把数据从文本文件中拖到模型中来。
修改后(修改处代码黑体加粗)的模型代码如下:model:!6发点8收点运输问题;sets:warehouses/ @file('1_2.txt') /: capacity;vendors/ @file('1_2.txt') /: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J)); !产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I)); !这里是数据;data:capacity = @file('1_2.txt') ;demand = @file('1_2.txt') ;cost = @file('1_2.txt') ;enddataend模型的所有数据来自于1_2.txt 文件。
LINGO11教程LINGO 是用来求解线性和非线性优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。
§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model –LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码:min =2*x1+3*x2; x1+x2>=350; x1>=100; 2*x1+x2<=600;然后点击工具条上的按钮即可。
例使用LINGO 软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如下表。
model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume; endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J)); !产量约束; @for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I)); !这里是数据; data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。