随机数产生原理
- 格式:ppt
- 大小:1.16 MB
- 文档页数:101
随机数的产生原理随机数的产生原理是计算机科学领域中非常重要的一个概念。
在计算机程序开发、密码学、模拟实验等领域都广泛应用着随机数。
首先,我们需要明确随机数的概念。
所谓随机数是指其具有不可预测性和不相关性的数值序列。
也就是说,随机数的产生是不受特定规律、模式或者输入的影响。
在计算机中,由于计算机的运算是通过确定性算法进行的,所以计算机无法自主产生完全随机的数值序列,而只能通过一定的算法来模拟随机数的产生。
常见的随机数生成方法有伪随机数产生器和真随机数产生器。
其中,伪随机数产生器是利用已知的确定性算法生成的数字序列,这些数字序列在某种程度上具有类似随机的性质。
而真随机数产生器则利用物理现象来产生真正的随机数。
首先,我们来介绍一下伪随机数的产生方法。
伪随机数的产生是通过确定性的算法进行的,这个算法需要一个种子作为输入来产生一系列看似随机的数字。
在同一个种子的情况下,这个算法每次产生的数字都是相同的。
因此,为了产生不同的伪随机数序列,通常会使用系统时间等随机的种子。
常见的伪随机数产生算法有线性同余法、梅森旋转算法等。
线性同余法是最常见的伪随机数生成算法之一。
它的原理是通过不断迭代一个初始值(种子)来产生随机数序列。
具体的计算公式为:X(n+1) = (a * X(n) + c) mod m其中,X(n)表示第n个随机数,X(n+1)表示第n+1个随机数,a、c、m为一组给定的常数,mod表示取余操作。
在梅森旋转算法中,使用了一个非常大的2的幂次数作为种子,通过一系列的位操作或异或操作来产生伪随机数。
这种算法的优点是速度快且产生的随机数质量高。
然而,伪随机数产生器是基于已知的算法进行的,其产生的随机数序列是可预测和重现的。
因此,在某些应用场景(如密码学)中,需要使用更加安全和随机的随机数。
那么如何产生真随机数呢?真随机数的产生是利用物理现象的随机性来产生的。
常用的真随机数产生方法包括噪声源、热噪声和量子现象。
电子信息与通信工程学院实验报告实验名称随机数的产生课程名称随机信号分析姓名顾康学号U201413323 日期6月6日地点南一楼东204 成绩教师董燕以上为6种分布的实验结果1.均匀分布随机变量X~U(0,1)的一组样本值的模拟值一般采用某种数值计算方法产生随机数序列,在计算机上运算来得到,通常是利用递推公式:Xn=f(Xn-1,.....,Xn-k)1.1 同余法Xn+1 = λXn(mod M)Rn=Xn/MR1 R2...Rn即为(0,1)上均匀分布的随机数列。
而上述方法是伪随机的,{Rn}本质上是递推公式给定的周期序列,周期T可看做logλ(M)。
解决方法是:选择模拟参数并对序列进行统计检验。
1.2选择模拟参数1)周期长度取决于Xo,λ, M的选择2)通过选取适当的参数可以改善随机数的性质几组参考的取值Xo =1 , λ=7 , M=10^10Xo =1 , λ=5^13 , M=2 *10^10Xo =1 , λ=5^17 , M=10^121.3对数列进行统计检验对应序列能否看作X的独立同分布样本,须检验其独立性和均匀性for i=2:1:size %同余法均匀分布x(i)= mod ( v*x(i-1), M);y(i)=x(i)/M;endsubplot(2,3,1);hist(y,100)[ahat,bhat,ACI,BCI]=unifit(y)% 以0.95的置信度估计样本的参数首先我们的标准是U ~(0,1),而实验值,ACI表示ahat的范围[-0.0030,0], BCI表示bhat的范围[1.0000,1.0030]。
同时样本的均值和方差分别为0.4932和0.0830,结论与理论值很接近。
该样本以0.95的可信度服从(0,1)均匀分布。
2.伯努利分布2.1算法原理若随机变量R服从(0,1),P(X=Xi)=PiP(0)=0, P(n)=∑PiP{P(n-1)<R<=P(n)}=P(n)-P(n-1)=Pn令{P(n-1)<X<=P(n)}={X=Xn} 有P(X=Xn)=Pn从理论上讲,已经解决了产生具有任何离散型随机分布的问题。
1-0:Microsoft VC++产生随机数的原理:Srand ( )和Rand( )函数。
它本质上是利用线性同余法,y=ax+b(mod m)。
其中a,b,m都是常数。
因此rand的产生决定于x,x被称为Seed。
Seed需要程序中设定,一般情况下取系统时间作为种子。
它产生的随机数之间的相关性很小,取值范围是0—32767(int),即双字节(16位数),若用unsigned int 双字节是65535,四字节是4294967295,一般可以满足要求。
1-1:线性同余法:其中M是模数,A是乘数,C是增量,为初始值,当C=0时,称此算法为乘同余法;若C ≠0,则称算法为混合同余法,当C取不为零的适当数值时,有一些优点,但优点并不突出,故常取C=0。
模M大小是发生器周期长短的主要标志,常见有M为素数,取A为M的原根,则周期T=M-1。
例如:a=1220703125a=32719 (程序中用此组数)a=16807代码:void main( ){const int n=100;double a=32719,m=1,f[n+1],g[n],seed;m=pow(2,31);cout<<"设置m值为"<<m-1<<endl;cout<<"输入种子"<<endl; //输入种子cin>>seed;f[0]=seed;for(int i=1;i<=n;i++) //线性同余法生成随机数{f[i]=fmod((a*f[i-1]),(m-1));g[i-1]=f[i]/(m-1);cout.setf(ios::fixed);cout.precision(6); //设置输出精度cout<<i<<" "<<'\t'<<g[i-1]<<endl;}}结果分析:统计数据的平均值为:0.485653统计数据的方差为:0.3205761-2:人字映射递推公式就是有名的混沌映射中的“人字映射”或称“帐篷映射”,它的非周期轨道点的分布密度函数:人字映射与线性同余法结合,可产生统计性质优良的均匀随机数。
量子随机数生成的原理与应用量子随机数生成(Quantum Random Number Generation,简称QRNG)是一种基于量子力学原理的随机数生成方法。
与传统的伪随机数生成方式相比,量子随机数生成具有真正的随机性、不可预测性和不可重现性。
本文将介绍量子随机数生成的原理以及其在密码学、模拟实验和物理模型验证等领域的应用。
一、量子随机数生成的原理量子随机数生成的原理基于量子力学的随机性。
根据量子力学的表述,量子系统在测量之前会处于一个同时存在多个状态的叠加态中,只有进行测量后,才能得到确定的结果。
因此,通过测量量子系统的某些特性,可以获得真正的随机数。
量子随机数生成的原理可以分为两个步骤:量子态准备和测量。
首先,通过特定的方法制备一个量子系统,使其处于能够表现出随机性的叠加态。
然后,对该量子系统进行测量,得到的结果就是真正的随机数。
二、量子随机数生成的应用1. 密码学在密码学中,随机数被广泛应用于密钥的生成、加密算法的初始化、认证协议的建立等。
传统的伪随机数生成方法可能存在被猜测的风险,而量子随机数生成可以提供真正的随机数,增强了密码系统的安全性。
例如,在量子密钥分发(Quantum Key Distribution,简称QKD)中,随机数的生成和传输是确保密钥安全的关键步骤,量子随机数生成可以有效地保护密钥的不可预测性。
2. 模拟实验量子随机数生成在模拟实验中也有广泛的应用。
通过生成真正的随机数,可以模拟一些复杂系统的行为。
例如,天气预报的模拟、金融市场的波动模拟等。
量子随机数生成为这些实验提供了高质量的随机数据,使得模拟结果更加准确可信。
3. 物理模型验证在物理学研究中,验证物理模型的正确性需要进行随机性测试。
传统的伪随机数生成方法可能无法满足这一需求,而量子随机数生成可以提供真正的随机数,用于验证物理模型的随机性属性。
例如,在量子纠缠实验中,随机数的生成和使用是保证实验结果可信度的关键,量子随机数生成可以为该类实验提供所需的随机性。
Dor = Int((upperbound - lowerbound + 1) * Rnd + lowerbound)yes = 0For j = 1 To i - 1If r = random(j) Then yes = 1: Exit ForNextLoop While yes = 1random(i) = rDebug.Print r;NextDebug.PrintEnd Sub运行结果:199 174 147 126 120 190 192 146 122 111粗看起来,上面的程序似乎没有什么问题,在执行过程中程序也能够通过。
但,仔细分析我们就会发现问题出在一个新产生的随机数是否已经存在的判定上。
既然是随机数,那么从数学的角度来说在概率上,每次产生的随机数r就有可能相同,尽管这种可能性很小,但确是一个逻辑性与正确性的问题。
因此,每次产生的新的随机数r都有可能是数组random的前i-1个数中的某一个,也就是说程序在运行过程中由此可能会导致死循环,那么,能否找到一个不在数组random中的随机数r的工作就变得不确定了。
从算法的角度来讲,在理论上,程序失去了有穷性、有效性和确定性。
什么是算法?通常人们将算法定义为一个有穷的指令集,这些指令为解决某一特定任务规定了一个运算序列。
一个算法应当具有以下特征:5输入:一个算法必须有0个或多个输入。
它们是算法开始运算前给予算法的量。
这些输入取自于特定的对象的集合。
它们可以使用输入语句由外部提供,也可以使用置初值语句或赋值语句在算法内提供。
6输出:一个算法应有1个或多个输出,输出的量是算法计算的结果。
7确定性:算法的每一步都应确切地、无歧义地定义。
对于每一种情况,需要执行的动作都应严格地、清晰地规定。
8有穷性:一个算法无论在什么情况下,都应在执行有穷步后结束。
9有效性:算法中每一条运算都必须是足够基本的。
就是说,它们原则上都能精确地执行,甚至人们只用纸和笔做有限次运算就能完成。
实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。
2、实现随机序列的数字特征估计。
二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(mod ,110N ky y y n n -=N y x n n /=序列{}n x 为产生的(0,1)均匀分布随机数。
下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯; 3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列 函数:randn 用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。
量子随机数生成的原理和应用随机数是计算机科学中的重要概念,它不仅帮助我们保护数据的安全,还应用于密码学和模拟等方面。
然而,随机数的生成一直是一个挑战性的问题。
在传统的计算机系统中,生成随机数的方法多数都是伪随机数生成器,这种生成器虽然可以产生看起来随机的数字,但实际上是可以被重构和预测的。
与此相反,量子随机数生成器使用量子物理的基本原理,可以生成真正的随机数。
量子随机数生成的原理量子物理学中的一个重要原理是量子力学不确定性定理,在一个量子体系中,存在一些量是无法同时确定其具体值的,例如位置和动量。
由这个定理可以得到,以某种量子属性为基础的量子测量结果是随机和不可预测的。
因此,我们可以使用量子测量技术来实现随机数的生成。
量子随机数生成器基于单光子源、随机相位调制器和单光子探测器。
它通过利用光子的量子特性把光子的相位随机转换,并在探测器上进行测量,由此来生成随机数。
具体来说,量子随机数生成器可以分为两个基本模式:单光子计数模式和振幅调制模式。
在单光子计数模式下,光学器件会发射一个标准的、单光子的光子源,产生一个光子流。
在光路的某个位置,会使用一个随机相位调制器随机调整相位,产生不同的相位,这反映在光子的状态中,导致了随机的光子样品的流量。
最后,单光子探测器可以在每个样品上测量光子,输出一个二进制数:1表示测量到光子,0表示没有检测到光子。
在振幅调制模式下,光芯片会利用光的线性叠加性质,在不同的振幅上施加随机振幅,再使用单光子探测器检测信号,并通过信号的功率来确定随机数。
因此,量子随机数的生成遵循随机量子态的制备、测量和数据处理。
量子随机数的应用量子随机数可以用于许多领域,尤其在密码学中有着广泛的应用。
量子随机数的生成具有不可预测性、无可重构性和唯一性等特点,可以保护密码协议,避免信息泄漏和黑客攻击。
另外,量子随机数也可以应用于电子商务、模拟和随机数统计分布等领域。
在现代密码学中,随机数生成器必须是真正随机的,而且必须防止暴力猜测。
第一节 均匀随机数的产生及其应用§1.1 随机数的产生§1.1.1 均匀随机数的产生随机变量X 的抽样序列 ,,,,21n X X X 称为随机数列。
若随机变量X 是均匀分布的,则X 的抽样序列 ,,,,21n X X X 称为均匀随机数列;如果X 是正态分布的随机变量,则称其抽样序列为正态随机数列。
用数学方法产生随机数,就是利用计算机能直接进行算术运算或逻辑运算的特点,产生具有均匀总体、简单子样统计性质的随机数。
计算机利用数学方法产生随机数速度快,占用内存少,对模拟的问题可以进行复算检查,通常还具有较好的统计性质。
另外,计算机上用数学方法产生随机数,是根据确定的算法推算出来的,因此严格说来,用数学方法在计算机上产生的“随机数”不能说是真正的随机数,故一般称之为“伪随机数”。
不过对这些伪随机数,只要通过统计检验符合一些统计要求,如均匀性、随机性、独立性等,就可以作为真正的随机数来使用。
以后,我们统称这样产生的伪随机数为随机数。
首先给出产生均匀随机数的方法,这是产生具有其它分布随机数的基础,而后给出产生其它分布随机数的方法。
§1.1.1 均匀随机数的产生方法线性同余法简称为LCG 法(Linear Congruence Generator ),它是Lehmer 于1951年提出来的。
线性同余法利用数论中的同余运算原理产生随机数。
分为乘同余法、混合同余法等,线性同余法是目前发展迅速且使用普遍的方法之一。
线性同余法递推公式为)(m o d 1M c ax x n n +≡-,,2,1, ==n M x r n n其中0x 为初值,a 为乘子,c 为增量,M 为模,且c a x ,,0和M 皆为非负整数。
当0=c 时,上式称为乘同余法公式;当0>c 时,上式称为混合同余法公式。
如下例用乘同余法产生伪随机数:例1:1117(mod11)n n x x x +=⎧⎨≡⎩ 1234567891011121;7;5;2;3;10;4;6;9;8;1;7;......x x x x x x x x x x x x ============上述方法虽产生了随机数,但只产生1-10之间的数。
随机数产生的原理随机数产生的原理主要依赖于随机数生成器(Random Number Generator,简称RNG)的算法。
这个算法通常使用一个称为种子(seed)的输入值来初始化。
种子可以是任何数据,例如当前的系统时间或用户的输入。
然后,RNG算法使用这个种子来生成一系列看似随机的数值。
然而,由于计算机程序的本质是可计算的,所以生成的随机数实际上是伪随机数。
也就是说,通过固定的算法和种子,随机数序列是可重复的。
这是因为计算机程序总是按照一定的规则执行,因此可以预测出随机数序列的下一个数值。
为了增加生成的随机数的随机性,常常使用熵作为种子输入。
熵可以是来自外部环境的任意输入,例如硬盘读写的速度、网络传输的延迟等。
通过使用熵作为种子输入,RNG算法可以生成更为随机的序列。
在实际应用中,随机数被广泛用于模拟、加密、彩票系统等领域。
然而,需要注意的是伪随机数并不是真正的随机数,随机数生成算法的质量和种子输入的选择都会对随机数的质量产生影响。
因此,为了获得更为随机的序列,通常会使用真正的随机事件作为种子输入,如量子力学的随机性或者大型随机数生成器生成的值。
经典的随机数产生方法之一是线性同余法(Linear Congruence Generator,LCG)。
LCG使用不连续分段线性方程来计算产生伪随机数序列。
这种方法背后的理论比较容易理解,且易于实现。
在LCG中,随机数序列是由一个初始值(种子)、一个乘子、一个增量(也叫做偏移量)通过递归的方式产生的。
当生成器不断往复运行时,将会产生一序列的伪随机数。
如果参数选择得当,序列的最大周期将达到可能的最大值,这种情况下,序列中所有可能的整数都会在某点固定出现。
总的来说,随机数产生的原理主要是基于随机数生成器的算法和种子输入。
尽管计算机生成的随机数是伪随机数,但只要通过合适的统计检验并符合一些统计要求(如均匀性、随机性、独立性等),它们就可以作为真正的随机数来使用。