尺规作图题(专题训练)
- 格式:doc
- 大小:78.50 KB
- 文档页数:2
中考数学专题训练之尺规作图测试卷(01)一.选择题(共10小题)1.如图,在△ABC中,作BC边上的高线,下列画法正确的是()A.B.C.D.2.数学课上,晓峰同学用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你说出他作图的依据是()A.SSS B.SAS C.ASA D.AAS3.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.SSS D.AAS4.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图,一把直尺压住射线OB,另一把直尺压住射线OA并且与“射线OP就是∠BOA的平分线.”他这样做的依据是()第一把直尺交于点P,小明说:A.角平分线上的点到这个角两边的距离相等B.角的内部到角的两边的距离相等的点在角的平分线上C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确5.利用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.6.如图,在∠MON的两边上分别截取OA,OB,使OA=OB;再分别以点A,B为圆心,OA长为半径作弧,两弧交于点C;再连接AC,BC,AB,OC.若AB=10,OA=13.则四边形AOCB的面积是()A.65B.120C.130D.2407.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A .SASB .ASAC .AASD .SSS8.如图,已知△ABC (AB <BC <AC ),用尺规在AC 上确定一点P ,使PB +PC =AC ,则下列选项中,一定符合要求的作图痕迹是( )A .B .C .D .9.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D ,若CD =5,AB =16,则△ABD 的面积是( )A .21B .80C .40D .4510.如图,在△ABC 中,∠B =30°,∠C =50°,请观察尺规作图的痕迹(D ,E ,F 分别是连线与△ABC 边的交点),则∠DAE 的度数是( )A .25°B .30°C .35°D .40°二.填空题(共10小题)11.如图,已知四边形ABCD 是长方形,依据尺规作图的痕迹,可知∠α= °.12.如图,矩形ABCD 中,连接BD ,按以下步骤作图:①分别以点B 和D 为圆心,以大于12BD 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 分别交边AB ,CD 于点E ,F ;③以点D 为圆心,以适当长为半径作弧,分别交边DA ,DB 于点P ,Q ;④分别以点P 和Q 为圆心,以大于12PQ 的长为半径作弧,两弧相交于点G ;⑤作射线DG 交边AB 于点E ,则∠ADB = .13.如图,在长方形ABCD 中,连接BD ,分别以B ,D 为圆心,大于12BD 长为半径画弧,两弧交于点E ,F ,作直线EF ,交AD 于点M .若AD =4,AB =2.则AM 的长为 .14.如图,在△ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M 、N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若AB =7,AC =12,BC =6,则△ABD 的周长为 .15.如图,在△ABC 中,∠B =45°.按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点D 和E ;②作直线DE 交边AB 于点F .若BF =4,AF =2,则AC 的长为 .16.如图,13个边长为1的小正方形,排列形式如图,把它们分割,使分割后能拼成一个大正方形.请在如图所示的网格中(网格的边长为1)中,用直尺作出这个大正方形,其边长为 .17.如图,在△ABC 中,∠A =32°,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧分别相交于点M 、N ,直线MN 与AC 相交于点E ,过点C 作CD ⊥AB ,垂足为点D ,CD 与BE 相交于点F ,若BD =CE ,则∠BFC 的度数为 .18.如图,在平行四边形ABCD 中,AB ⊥AC ,AB =6,AC =8,分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN 与BC 交于点E ,与AD 交于点F ,连接AE ,CF ,则四边形AECF 的周长为 .19.如图,在▱ABCD 中,以点C 为圆心,适当长度为半径作弧,分别交CB ,CD 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径作弧,两弧交于点P ,作射线CP 交DA 于点E ,连接BE ,若AE =3,BE =4,DE =5,则CE 的长为 .20.如图,用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A'O'B'=∠AOB 的依据是.三.解答题(共5小题)21.如图在5×5的网格中,△ABC的顶点都在格点上.仅用无刻度的直尺在给定的网格中分别按下列要求画图.(请保留画图痕迹,画图过程用虚线表示,画图结果用实线表示)(1)在图1中,画出△ABC的重心G;(2)在图2中,画线段CE,点E在AB上,使得S△ACE:S△BCE=3:4;(3)图3中,在,△ABC内寻找一格点N,使∠ANB=2∠C.并标注点N的位置.22.如图,已知∠AOB,C为射线OB上的一点,请用尺规作图法求作∠DCB,使得∠DCB =∠AOB.(作出一种即可)(保留作图痕迹,不写作法)23.图①,图②,图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段的端点均在格点上,在图①,图②,图③给定的网格中按要求画图.(1)在图①中,画出格点C,使AC=BC,用黑色实心圆点标出点C所有可能的位置.(2)在图②中,在线段AB上画出点M,使AM=3BM.(3)在图③中,在线段AB上画出点P,使AP=2BP.(保留作图痕迹)24.如图所示方格纸中,每个小正方形的边长均为1,点A、点B、点C在小正方形的顶点上.(1)画出△ABC中边BC上的高AD;(2)画出△ABC中边AB上的中线CE;(3)直接写出△ACE的面积为.25.如图①、图②均是4×2的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,△ABC的顶点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求画图:(1)在图①中画出线段CD,使得线段CD平分△ABC的面积;(2)在图②中画出线段CE,使得线段CE将△ABC分成两个直角三角形.。
尺规作图专题训练【复习回顾】A.SSSB.SASC.AASD. ASAA.20B.18C.16D.12A. ①②③B. ①②④C. ①③④D. ②③④4.到三角形三条边距离相等的点在( )的交点上. A.三条中点 B.三条角平分线 C.三条高线 D.三条垂直平分线第1题图目标一:根据题目的要求,尺规作图作垂线例1. 对于直线l ,点P 在直线外,点Q 在直线上,用尺规作图法分别过点P 、Q 作直线l 的垂线.(不写作图方法,保留作图痕迹)练习1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8.(1) 用尺规作图作出AB 边上的高线CD ,垂足为D.(2) 求CD 的长.目标二:根据题目要求,用尺规作图作角平分线例2. 如图,在∠ABC 内部,用尺规作图法找一条射线BP ,使得射线BP 上任意一点到BA 和BC 的距离都相等.(保留作图痕迹,不写作法)目标三:用尺规作图作出线段的垂直平分线练习3.(番禺执信段测题23)如图在△ABC 中,AB=AC ,∠DAC 是△ABC 的一个外角.根据要求作图,并在图中标明相应字母.(1)作∠DAC 的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE 、CF. 判断四边形AECF 的形状并加以证明.目标四:学会复制自己涂脏的图形有时候,解几何题过程中,我们把图形画脏,又或者题目图形不够标准,那么我们需要学会自己复制图形,重新画出来。
例4 如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB与点E,若AC=6,(1)求DE的长.(2)求△ADB的面积.练习4:请根据例4的题意,自己绘制题目中涂脏的图形,并将图形放大.。
中考专题复习《尺规作图》巩固练习(真题)含答案一、单选题1、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个300的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段2、下列画图语句中,正确的是()A、画射线OP=3cmB、连接A , B两点C、画出A , B两点的中点D、画出A , B两点的距离3、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个30°的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段4、下列关于几何画图的语句正确的是()A、延长射线AB到点C ,使BC=2ABB、点P在线段AB上,点Q在直线AB的反向延长线上C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D、已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b5、尺规作图是指()A、用量角器和刻度尺作图B、用圆规和有刻度的直尺作图C、用圆规和无刻度的直尺作图D、用量角器和无刻度的直尺作图6、下列有关作图的叙述中,正确的是()A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm7、按下列条件画三角形,能唯一确定三角形形状和大小的是()A、三角形的一个内角为60°,一条边长为3cmB、三角形的两个内角为30°和70°C、三角形的两条边长分别为3cm和5cmD、三角形的三条边长分别为4cm、5cm和8cm8、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个300的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段9、下列关于几何画图的语句正确的是()A、延长射线AB到点C ,使BC=2ABB、点P在线段AB上,点Q在直线AB的反向延长线上C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D、已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b10、尺规作图是指()A、用量角器和刻度尺作图B、用圆规和有刻度的直尺作图C、用圆规和无刻度的直尺作图D、用量角器和无刻度的直尺作图11、下列有关作图的叙述中,正确的是()A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm12、下列作图语句中,不准确的是()A、过点A、B作直线ABB、以O为圆心作弧C、在射线AM上截取AB=aD、延长线段AB到D ,使DB=AB二、填空题13、所谓尺规作图中的尺规是指:________.14、尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法________15、用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△DOC≌△D'O'C'的依据是________.16、如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N ,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P ,连接AP并延长交BC于点D ,则∠ADB=________°.17、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N ,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P ,连结AP并延长交BC于点D ,则下列说法①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;正确的个数是________个三、作图题18、已知:如图△ABC .求作:①AC边上的高BD;②△ABC的角平分线CE .19、如图所示,已知△ABC:①过A画出中线AD;②画出角平分线CE;③作AC边上的高BF20、(2016•兰州)如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)四、解答题21、已知直线l和l上一点P ,用尺规作l的垂线,使它经过点P .你能明白小明的作法吗?你是怎样作的?22、如图,已知△ABC和直线m ,画出与△ABC关于直线m对称的图形(不要求写出画法,但应保留作图痕迹)答案解析部分一、单选题1、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确.选D.【分析】根据尺规作图的定义分别分析2、【答案】B【考点】作图—尺规作图的定义【解析】【解答】A.射线没有长度,错误;B.连接A , B两点是作出线段AB ,正确;C.画出A , B两点的线段,量出中点,错误;D.量出A , B两点的距离,错误选B.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论3、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.【分析】根据尺规作图的定义分别分析4、【答案】C【考点】作图—尺规作图的定义【解析】【解答】A.延长射线AB到点C ,使BC=2AB ,说法错误,不能延长射线;B.点P在线段AB 上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b ,说法错误,AC也可能为2a+b选:C.【分析】根据射线、直线、以及角的定义可判断出正确答案5、【答案】C【考点】作图—尺规作图的定义【解析】【解答】尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C .【解析】【解答】A.直线本身是向两方无限延伸的,故不能延长直线AB ,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM ,可以反向延长,故此选项错误;C.延长线段AB到C ,使BC=AB ,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C【分析】根据直线、射线和线段的特点分别进行分析7、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.三角形的一个内角为60°,一条边长为3cm ,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;B.三角形的两个内角为30°和70°,能唯一确定三角形形状和但不能唯一确定大小,不符合题意;C.三角形的两条边长分别为3cm和5cm ,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;D.三角形的三条边长分别为4cm、5cm和8cm ,能唯一确定三角形形状和大小,符合题意选:D.【分析】根据基本作图的方法,及唯一确定三角形形状和大小的条件可知8、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.【分析】根据尺规作图的定义分别分析9、【答案】C【考点】作图—尺规作图的定义【解析】【解答】A.延长射线AB到点C ,使BC=2AB ,说法错误,不能延长射线;B.点P在线段AB 上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b ,说法错误,AC也可能为2a+b选:C.【分析】根据射线、直线、以及角的定义可判断出正确答案10、【答案】C【考点】作图—尺规作图的定义【解析】【解答】尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C .【解析】【解答】A.直线本身是向两方无限延伸的,故不能延长直线AB ,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM ,可以反向延长,故此选项错误;C.延长线段AB到C ,使BC=AB ,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C【分析】根据直线、射线和线段的特点分别进行分析12、【答案】B【考点】作图—尺规作图的定义【解析】【解答】A.根据直线的性质公理:两点确定一条直线,可知该选项正确;B.画弧既需要圆心,还需要半径,缺少半径长,故该选项错误;C.射线有一个端点,可以其端点截取任意线段,故选项正确;D.线段有具体的长度,可延长,正确选:B.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论二、填空题13、【答案】没有刻度的直尺和圆规【考点】作图—尺规作图的定义【解析】【解答】由尺规作图的概念可知:尺规作图中的尺规指的是没有刻度的直尺和圆规【分析】本题考的是尺规作图的基本概念14、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】在尺规作图中,作一个角等于已知角是通过构建三边对应相等的全等三角形来证,因此由作法知其判定依据是SSS ,即边边边公理【分析】通过对尺规作图过程的探究,找出三条对应相等的线段,判断三角形全等.因此判定三角形全等的依据是边边边公理15、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等【分析】①以O为圆心,任意长为半径用圆规画弧,分别交OA、OB于点C、D;②任意画一点O′,画射线O'A',以O'为圆心,OC长为半径画弧C'E ,交O'A'于点C';③以C'为圆心,CD长为半径画弧,交弧C'E于点D';④过点D'画射线O'B',∠A'O'B'就是与∠AOB相等的角.则通过作图我们可以得到OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等16、【答案】125【考点】作图—基本作图【解析】【解答】由题意可得:AD平分∠CAB ,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°-20°-35°=125°【分析】根据角平分线的作法可得AD平分∠CAB ,再根据三角形内角和定理可得∠ADB的度数17、【答案】3【考点】作图—基本作图【解析】【解答】①AD是∠BAC的平分线,说法正确;②∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB ,∴∠DAB=30°,∴∠ADC=30°+30°=60°,因此∠ADC=60°正确;③∵∠DAB=30°,∠B=30°,∴AD=BD【分析】根据角平分线的作法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确三、作图题18、【答案】解: 如图所示:【考点】作图—基本作图【解析】【分析】①以点B为圆心,较大的长为半径画弧,交直线AC于两点,分别以这两点为圆心,大于这两点的距离的一半为半径画弧,两弧相交于一点,过点B和这点作射线,交直线AC于点D , BD就是所求的AC边上的高;②以点C为圆心,任意长为半径画弧,交CA , CB于两点,分别以这两点为圆心,以大于这两点的距离的一半为半径画弧,两弧相交于一点,做过点C和这点的射线交AB于点E , CE即为所求的角平分线19、【答案】解答:如图所示:【考点】作图—复杂作图【解析】【分析】(1)首先找出BC的中点,然后画线段AD即可;(2)利用量角器量出∠BCA的度数,再除以2,算出度数,然后画出线段CE即可;(3)利用直角三角板,一个直角边与AC重合,令一条直角边过点B ,画线段BF即可20、【答案】解:如图所示,四边形ABCD即为所求:【考点】正多边形和圆,作图—复杂作图【解析】【分析】画圆的一条直径AC,作这条直径的中垂线交⊙O于点BD,连结ABCD就是圆内接正四边形ABCD.本题考查的是复杂作图和正多边形和圆的知识,掌握中心角相等且都相等90°的四边形是正四边形以及线段垂直平分线的作法是解题的关键.四、解答题21、【答案】解:明白.作法:①以点P为圆心,以任意长为半径画圆,与直线l相交于点A , B;②分别以AB为圆心,以任意长为半径画圆,两圆相交于点MN ,连接MN即可得出直线l的垂线【考点】作图—复杂作图【解析】【分析】根据线段垂直平分线的作法即可得出结论.22、【答案】【解答】如图所示,△A′B′C′即为△ABC关于直线m对称的图形.【考点】作图—尺规作图的定义,作图—基本作图,作图—复杂作图,轴对称图形【解析】【分析】找出点A、B、C关于直线m的对称点的位置,然后顺次连接即可.。
尺规作图专题复习1.下面是小东设计的“过圆外一点作这个圆的切线”的尺规作图过程.已知:⊙O 及⊙O 外一点P .求作:直线PA 和直线PB ,使PA 切⊙O 于点A ,PB 切⊙O 于点B .作法:如图,①作射线PO ,与⊙O 交于点M 和点N ;②以点P 为圆心,以PO 为半径作⊙P ;③以点O 为圆心,以⊙O 的直径MN 为半径作圆,与⊙P 交于点E 和点F,连接OE 和OF ,分别与⊙O 交于点A 和点B ;④作直线PA 和直线PB .所以直线PA 和PB 就是所求作的直线.(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:连接PE 和PF ,∵OE=MN ,OA=OM=12MN,∴点A 是OE 的中点.∵PO=PE,∴PA ⊥OA 于点A ()(填推理的依据).同理PB ⊥OB 于点B.∵OA ,OB 为⊙O 的半径,∴PA ,PB 是⊙O 的切线.()(填推理的依据).2.如图,A 是O 上一点,过点A 作O 的切线.(1)①连接OA 并延长,使AB=OA;②作线段OB 的垂直平分线;使用直尺和圆规,在图中作OB 的垂直平分线l(保留作图痕迹);(2)直线l 即为所求作的切线,完成如下证明.证明:在O 中,∵直线l 垂直平分OB ∴直线l 经过半径OA 的外端,且__________,∴直线l 是O 的切线()(填推理的依据).3.下面是小石设计的“过圆上一点作圆的切线”的尺规作图的过程.已知:如图1,⊙O 及⊙O 上一点P .求作:直线PQ ,使得PQ 与⊙O 相切.作法:如图2,①连接PO 并延长交⊙O 于点A ;②在⊙O 上任取一点B (点P ,A 除外),以点B 为圆心,BP 长为半径作⊙B ,与射线PO 的另一个交点为C ;③连接CB 并延长交⊙B 于点Q ;④作直线PQ .所以直线PQ 就是所求作的直线.根据小石设计的尺规作图的过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵CQ 是⊙B 的直径,∴CPQ ∠=°()(填推理的依据).∴OP PQ ⊥.又∵OP 是⊙O 的半径,∴PQ 是⊙O 的切线()(填推理的依据).4.已知:如图1,在△ABC 中,AB =AC .求作:⊙O ,使得⊙O 是△ABC 的外接圆.图1图2作法:①如图2,作∠BAC 的平分线交BC 于D ;②作线段AB 的垂直平分线EF ;③EF 与AD 交于点O ;④以点O 为圆心,以OB 为半径作圆.∴⊙O 就是所求作的△ABC 的外接圆.根据上述尺规作图的过程,回答以下问题:(1)使用直尺和圆规,依作法补全图2(保留作图痕迹);(2)完成下面的证明.图2图1证明:∵AB =AC ,∠BAD =∠DAC ,∴.∵AB 的垂直平分线EF 与AD 交于点O ,∴OA =OB ,OB =OC .()(填推理的依据)∴OA =OB =OC .∴⊙O 就是△ABC 的外接圆.()(填推理的依据)5.下面是小石设计的“过三角形一个顶点作其对边的平行线”的尺规作图过程.已知:如图1,ABC △.求作:直线BD ,使得BD ∥AC .作法:如图2,①分别作线段AC ,BC 的垂直平分线1l ,2l ,两直线交于点O ;②以点O 为圆心,OA 长为半径作圆;③以点A 为圆心,BC 长为半径作弧,交 AB 于点D ;④作直线BD .所以直线BD 就是所求作的直线.根据小石设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接AD ,∵点A ,B ,C ,D 在⊙O 上,AD BC =,∴ AD =.∴DBA CAB ∠=∠()(填推理的依据).∴BD AC ∥.6.《元史·天文志》中记载了元朝著名天文学家郭守敬主持的一次大规模观测,称为“四海测验”.这次观测主要使用了“立杆测影”的方法,在二十七个观测点测量出的各地的“北极出地”与现在人们所说的“北纬”完全吻合.利用类似的原理,我们也可以测量出所在地的纬度.如图1所示.①春分时,太阳光直射赤道.此时在M 地直立一根杆子MN,在太阳光照射下,杆子MN 会在地面上形成影子.通过测量杆子与它的影子的长度,可以计算出太阳光与杆子MN 所成的夹角α;②由于同一时刻的太阳光线可以近似看成是平行的,所以根据太阳光与杆子MN 所成的夹角α可以推算得到M 地的纬度,即MOB ∠的大小.图2(1)图2是①中在M 地测算太阳光与杆子MN 所成夹角α的示意图.过点M 作MN 的垂线与直线CD 交于点Q,则线段MQ 可以看成是杆子MN 在地面上形成的影子.使用直尺和圆规,在图2中作出影子MQ(保留作图痕迹);(2)依据图1完成如下证明.证明:∵AB CD ∥,∴MOB ∠=_________α=(___________________________)(填推理的依据)∴M 地的纬度为α.7.下面是小玟同学设计的“作一个角等于已知角”的尺规作图过程.已知:在△ABC 中,AB=BC ,BD 平分∠ABC 交AC 于点D .求作:∠BPC ,使∠BPC=∠BAC .作法:①分别以点B 和点C 为圆心,大于的长为半径作弧,两弧交于点E 和点F ,连接EF 交BD 于点O ;②以点O 为圆心,OB 的长为半径作⊙O ;③在劣弧AB 上任取一点P (不与点A 、B 重合),连接BP 和CP .所以∠BPC=∠BAC .根据小玟设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OA、OC .∵AB=BC ,BD 平分∠ABC ,∴BD ⊥AC 且AD=CD .∴OA=OC .∵EF 是线段BC 的垂直平分线,∴OB=.∴OB=OA .()12BC∴⊙O为△ABC的外接圆.∵点P在⊙O上,∴∠BPC=∠BAC()(填推理的依据).8.(2020•北京)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=12∠BAC.作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP=.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=12∠BAC()(填推理的依据).∴∠ABP=12∠BAC.9.问题:如图,AB是⊙O的直径,点C在⊙O内,请仅用无刻度的直尺,作出△ABC中AB边上的高.小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.作法:如图,①延长AC交⊙O于点D,延长BC交⊙O于点E;②分别连接AE,BD并延长相交于点F;③连接FC并延长交AB于点H.所以线段CH即为△ABC中AB边上的高.(1)根据小芸的作法,补全图形;(2)完成下面的证明.证明:∵AB是⊙O的直径,点D,E在⊙O上,∴∠ADB=∠AEB=________°.()(填推理的依据)∴AE⊥BE,BD⊥AD.∴AE,________是△ABC的两条高线.∵AE,BD所在直线交于点F,FK∴直线FC 也是△ABC 的高所在直线.∴CH 是△ABC 中AB 边上的高.10.在数学课上,老师布置了一项作图任务,如下:已知:如图18-1,在△ABC 中,AC AB =,请在图中的△ABC 内(含边),画出使45APB ∠=︒的一个点P (保留作图痕迹),小红经过思考后,利用如下的步骤找到了点P :(1)以AB 为直径,做⊙M ,如图18-2;(2)过点M 作AB 的垂线,交⊙M 于点N ;(3)以点N 为圆心,NA 为半径作⊙N ,分别交CA、CB 边于F、K ,在劣弧上任取一点P 即为所求点,如图18-3.问题:在(2)的操作中,可以得到∠ANB=_______°(依据:)在(3)的操作中,可以得到∠APB =_______°(依据:)11.已知:A ,B 是直线l 上的两点.求作:△ABC ,使得点C 在直线l 上方,且AC =BC ,30ACB ∠=︒.作法:1分别以A ,B 为圆心,AB 长为半径画弧,在直线l 上方交于点O ,在直线l 下方交于点E ;2以点O 为圆心,OA 长为半径画圆;3作直线OE 与直线l 上方的⊙O 交于点C ;4连接AC ,BC .△ABC 就是所求作的三角形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OA ,OB .∵OA =OB =AB ,18-118-218-3∴△OAB 是等边三角形.∴60AOB ∠=︒.∵A ,B ,C 在⊙O 上,∴∠ACB =12∠AOB;(___________________________________________________)(填推理的依据).∴30ACB ∠=︒.由作图可知直线OE 是线段AB 的垂直平分线,∴AC =BC (____________________________________________________)(填推理的依据).∴△ABC 就是所求作的三角形.12.(2021中考)《淮南子・天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点处立一根杆,在地面上沿着杆的影子的方向取一点,使两点间的距离为10步(步是古代的一种长度单位),在点处立一根杆;日落时,在地面上沿着点处的杆的影子的方向取一点,使两点间的距离为10步,在点处立一根杆.取的中点,那么直线表示的方向为东西方向.(1)上述方法中,杆在地面上的影子所在直线及点的位置如图所示.使用直尺和圆规,在图中作的中点(保留作图痕迹);(2)在如图中,确定了直线表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线表示的方向为南北方向,完成如下证明.证明:在中,,是的中点,(填推理的依据).∵直线表示的方向为东西方向,∴直线表示的方向为南北方向.13.如图1是博物馆展出的古代车轮实物,《周礼·考工记》记载:“……故兵车之轮六尺有六寸,田车之轮六尺有三寸……”据此,我们可以通过计算车轮的半径来验证车轮类型,请将以下推理过程补充完整.图1图2如图2所示,在车轮上取A 、B 两点,设 AB 所在圆的圆心为O ,半径为r cm.作弦AB 的垂线OC ,D 为垂足,则D 是AB 的中点.其推理的依据是:.经测量,AB =90cm,CD =15cm,则AD =cm;用含r 的代数式表示OD ,OD =cm.在Rt△OAD 中,由勾股定理可列出关于r 的方程:2r =,解得r =75.通过单位换算,得到车轮直径约为六尺六寸,可验证此车轮为兵车之轮.14.“化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的.如果借用一个圆形纸片,我们就可以化圆为方,方法如下:已知:⊙O (纸片),其半径为r .求作:一个正方形,使其面积等于⊙O 的面积.作法:①如图1,取⊙O 的直径AB ,作射线BA ,过点A 作AB 的垂线l ;②如图2,以点A 为圆心,OA 为半径画弧交直线l 于点C ;③将纸片⊙O 沿着直线l 向右无滑动地滚动半周,使点A ,B 分别落在对应的A ',B '处;④取CB '的中点M ,以点M 为圆心,MC 为半径画半圆,交射线BA 于点E ;⑤以AE 为边作正方形AEFG .正方形AEFG 即为所求.图1图2根据上述作图步骤,完成下列填空:(1)由①可知,直线l 为⊙O 的切线,其依据是________________________________.(2)由②③可知,AC r =,AB r π'=,则MC =_____________,MA =____________(用含r 的代数式表示).(3)连接ME ,在Rt △AME 中,根据222AM AE EM +=,可计算得2AE =_________(用含r 的代数式表示).由此可得正方形o AEFG S S = .。
专题复习 尺规作图1.(2013四川乐山,18,9分)如图,已知线段AB 。
(1)用尺规作图的方法作出线段AB 的垂直平分线l (保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线l 上任意取两点M 、N (线段AB 的上方),连接AM 、AN 。
BM 、BN 。
求证:∠MAN =∠MBN 。
2 (2013浙江杭州,18,6)四条线段a ,b ,c ,d 如图,a :b :c :d =1:2:3:4.(1)选择其中的三条线段为边作一个三角形(尺规作图,要求保留作图痕迹,不必写出作法);(2)任取三条线段,求以它们为边能作出三角形的概率.3.(2013四川遂宁,10,4分)如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3.4(2013福建福州,8,4分)如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( ) A .2.5cm B .3.0cm C .3.5cm D .4.0cm5.(2013兰州,22,8分)如图,两条公路OA 和OB 相交于O 点,在∠AOB 的内部有工厂C 和D ,现要修建一个货站P ,使货站P 到两条公路OA 、OB 的距离相等,且到两工厂C 、D 的距离相等,用尺规作出货站P 的位置.(要求:不写作法,保留作图痕迹,写出结论)6.(2013·鞍山,21,6分)如图,已知线段a 及∠O ,只用直尺和圆规,求做△ABC ,使BC =a ,∠B =∠O ,∠C =2∠B (在指定作图区域作图,保留作图痕迹,不写作法)7. (2013重庆市潼南,19,6分)画△ABC,使其两边为已知线段a 、b ,夹角为β.(要求:用尺规作图,写出已知、求作;保留作图痕迹;不在已知的线、角上作图;不写作法). AB19题图abβ8. 2013•嘉兴12分)小明在做课本“目标与评定”中的一道题:如图1,直线a ,b 所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC ∥a ,量出直线b 与PC 的夹角度数,即直线a ,b 所成角的度数.(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P 为圆心,任意长为半径画圆弧,分别交直线b ,PC 于点A ,D ;②连结AD 并延长交直线a 于点B ,请写出图3中所有与∠PAB 相等的角,并说明理由;(3)请在图3画板内作出“直线a ,b 所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.9(2013山西,21,8分) 如图,在△ABC 中,AB =AC ,D 是BA 延长线上的一点,点E 是AC 的中点。
2023年九年级数学中考专题:尺规作图类训练题一、单选题1.如图,Rt ABC △中,由90ACB ∠=︒,30B ∠=︒,要求用圆规和直尺作图,分成两个三角形,其中至少有一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .2.如图,在ABC 中,已知45B ∠=︒,30C ∠=︒,分别以点A 、C 为圆心,大于12AC长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若3DE =,则AB 的长为( )A .B .5C .6D .3.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N ,作直线MN ,交AC 于点D ,交BC 于点E ,连接BD ,则ABD △的周长为( )A .AB BC + B .BC AC + C .+AB ACD .AB AC BC ++4.请仔细观察用直尺和圆规作一个角等于已知角的示意图如图所示,请你根据所学的三角形全等有关的知识,说明画出D O C DOC '''∠=∠的依据是( )A .SASB .AASC .SSSD .SSA5.如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧①,分别交OA ,OB 于点 E ,F , 再以点 E 为圆心,以EF 长为半径画弧,交弧①于点 D ,画射线OD .若28AOB ∠︒=,则BOD ∠的补角的度数为( )A .124︒B .39︒C .56︒D .144︒6.王师傅用角尺平分一个角,如图①,学生小顾用三角尺平分一个角,如图①,他们都在AOB ∠两边上分别取OM ON =,前者使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;后者分别过M ,N 作OA ,OB 的垂线,交点为P ,则射线OP 平分AOB ∠,均可由OMP ONP ≌△△得知,其依据分别是( )A .SSS ;SASB .SAS ;SSSC .SSS ;HLD .SAS ;HL7.如图,在Rt ABC △中,90B ,分别以A 、C 为圆心,大于AC 长的一半为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别相交于点D 、E ,连接AE ,当3AB =,5AC =时,ABE 周长为( )A .7B .8C .9D .108.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .①分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .①连接OE 交CD 于点M .下列结论中不正确的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形二、填空题9.如图,在ABC 中,AC BC =,以点A 为圆心,AB 长为半径作弧交BC 于点D ,交AC 于点E ,再分别以点C ,D 为圆心,大于CD 的长为半径作弧,两弧相交于F ,G两点,作直线FG .若直线FG 经过点E ,则C ∠的度数为______︒,AEG ∠的度数为______︒.10.如图,Rt ABC △中,90C ∠=︒,13AB =,5BC =,利用尺规在AC ,AB 上分别截取AD ,AE ,使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP的最小值为______.11.如图,在ABC 中,90C ∠=︒.按以下步骤作图:①以点A 为圆心,适当长为半径作圆弧,分别交边AB 、AC 于点M 、N ;①分别以点M 和点N 为圆心、大于MN 一半的长为半径作圆弧,在BAC ∠内,两弧交于点P ;①作射线AP 交边BC 于点D .若DAC ABC ∽△△,则B ∠的大小为______度.12.如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,BC 长为半径画弧,交AB 于点D ,再分别以点C ,D 为圆心,大于12CD 长为半径画弧,两弧交于点E ,作射线BE交AC 于点F .若12BC =,15AB =,若BCF △的面积为24,则ABC 的面积为__________.13.如图,在四边形ABCD 中,30A ∠=︒,AB AD =,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则EBD ∠的度数为______.14.如图,在t R ABC 中,90C ∠=︒,以点B 为圆心,以任意长为半径作弧,分别交,AB BC于点M ,N ;①分别以M ,N 为圆心12MN 的长为半径作弧,两弧在ABC ∠内交于点P ,交AC 于点D .若16,8ABDSAB ==,则线段CD 的长为 ___________.15.如图,在ABCD 中,以A 为圆心,AB 长为半径画弧交AD 于F ,分别以F 、B 为圆心,大于12BF 长为半径画弧,两弧交于点G ,作射线AG 交BC 于点E ,6BF =,5AB =,则AE 的长为 ___________.16.如图,四边形ABCD 是平行四边形,以点B 为圆心,BC 的长为半径作弧交AD 于点E ,分别以点C ,E 为圆心、大于12CE 的长为半径作弧,两弧交于点P ,作射线BP交AD 的延长线于点F ,60CBE ∠=︒,6BC =,则BF =___________.三、解答题17.如图,在ABC 中,50A ∠=︒,30C ∠=,请用尺规作图法,在AC 上求作一点D ,使得BDC ABC ∽.(保留作图痕迹,不写作法)18.(1)操作实践:ABC 中,90A ∠=︒,22.5B ∠=︒,请画出一条直线把ABC 分割成两个等腰三角形,并标出分割成两个等腰三角形底角的度数;(要求画出一种分割方法即可)(2)分类探究:ABC 中,最小内角24B ∠=︒,若ABC 被一直线分割成两个等腰三角形,请画出相应示意图并写出ABC 最大内角的所有可能值;(3)猜想发现:若一个三角形能被一直线分割成两个等腰三角形,需满足什么条件?(请你至少写出两个条件,无需证明)19.如图,在ABC 中,点P ,Q 分别在边BC 及CB 的延长线上,且BQ CP =.(1)实践与探索:利用尺规按下列要求作图(不写作法,保留作图痕迹). ①作PQM CBA ∠=∠,且点M 在QC 的上方; ①在QM 上截取QR BA =; ①连接PR .(2)猜想与验证:试猜想线段AC 和RP 的数量关系,并证明你的猜想.20.如图,点D 是等边ABC 内部一点,且DB DC =,请仅用无刻度的直尺......,分别按下列要求画图.(1)在图①中BC 上找一点E ,使12BE BC =; (2)若2BDC A ∠=∠,在图①中AB AC 、边上分别找点M 、N ,使12MN BC =.参考答案:1.B2.A3.C4.C5.A6.C7.A8.C9.3612610.12 511.30 12.54 13.45︒14.4 15.816.18.(2)ABC的最大内角可能值是117︒或108︒或90︒或84︒;19.(2)RP AC=,答案第1页,共1页。
专题27 尺规作图及证明(专题测试-基础)一、作图题(共14题;共133分)1.如图,AD是△ABC的角平分线(1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE、DF,四边形AEDF是________形.(直接写出答案)2.如图,中,,,.(1)用直尺和圆规作的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交于点,求的长.3.如图,已知等腰△ABC顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.4.如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.5.在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).6.如图,在中,,,,D、E分别是斜边AB、直角边BC上的点,把沿着直线DE折叠.(1)如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE;不写作法和证明,保留作图痕迹(2)如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.7.如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.8.如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.9.如图,在中,.(1)作的平分线交边于点,再以点为圆心,的长为半径作;(要求:不写作法,保留作图痕迹)(2)判断(1)中与的位置关系,直接写出结果.10.如图,在中.①利用尺规作图,在BC边上求作一点P,使得点P到AB的距离的长等于PC的长;②利用尺规作图,作出(1)中的线段PD.要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑11.如图,在△ABC中(1)作图,作BC边的垂直平分线分别交于AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)条件下,连接BD,若BD=9,BC=12,求∠C的余弦值.12.如图,点D在△ABC的AB边上,且∠ACD=∠A。
中考数学专题训练-尺规作图(1)一:作已知角的平分线(1)以O为圆心,任意长为半径作弧,分别交OA,OB于点M,N;(2)分别以点M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;(3)作射线OP,OP即为所作的角平分线. 二:作已知线段的垂直平分线(1)分别以M、N为圆心,大于12MN的相同线段为半径画弧,两弧相交于P,Q;(2)连接PQ,交MN于O.则PQ就是所求作的MN的垂直平分线.1.如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD 的长为()A.22B.4 C.3 D.102.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交PQ于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD3.如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.则下列说法中不正确的是()A.BP是∠ABC的平分线B.AD=BDC.S△CBD∶S△ABD=1∶3 D.CD=12 BD4.如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若ADDB=2,求AEEC的值.5.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.6.在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使EF∥BC;(2)在图2中以BC为边作一个45°的圆周角.1.如图,已知矩形AOBC 的三个顶点的坐标分别为O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交OC,OB 于点D,E;②分别以点D,E 为圆心,大于12DE 的长为半径作弧,两弧在∠BOC 内交于点F;③作射线OF,交边BC于点G,则点G 的坐标为( )A. (4,43) B. (43,4) C. (53,4) D. (4,53)2.在数学课上,老师提出如下问题:尺规作图:确定图1中CD所在圆的圆心.已知:CD.求作:CD所在圆的圆心O.曈曈的作法如下:如图2,(1)在CD上任意取一点M,分别连接CM,DM;(2)分别作弦CM,DM的垂直平分线,两条垂直平分线交于点O.点O就是CD所在圆的圆心.老师说:“曈曈的作法正确.”请你回答:曈曈的作图依据是_____.3.如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于12CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,则BE的值为()A. 77774.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A. ∠CAD =40°B. ∠ACD =70°C. 点D 为△ABC 的外心D. ∠ACB =90° 5.如图,直线443y x =-+与x 轴、y 轴的交点为A ,B ,按以下步骤作图:①以点A 为圆心,适当长度为半径作弧,分别交AB ,x 轴于点C ,D ;②分别以点C ,D 为圆心,大于12CD 的长为半径作弧,两弧在∠OAB 内交于点M ;③作射线AM ,交y 轴于点E ,则点E 的坐标为( )A. (0,2)B. (0,3)C. (0,32)D. (0,43) 6.如图,在△ABC 中,AB =AC .(1)用尺规作图法在AC 边上找一点D ,使得BD =BC (保留作图痕迹,不要求写作法):(2)若∠A =30°,求∠ABD 的大小.7.如图,在Rt ABC 中,C 90∠=,B 30∠=.()1用直尺和圆规作O ,使圆心O 在BC 边,且O 经过A ,B 两点上(不写作法,保留作图痕迹); ()2连接AO ,求证:AO 平分CAB ∠.8.如图,在Rt△ABC中,∠C=90°,∠A=28°.(1)作AC边上的垂直平分线DE,交AC于点D,交AB于点E(用直尺和圆规作图,不写作法,但要保留作图痕迹);(2)连接CE,求∠BCE的度数.9.如图,▱ABCD中,(1)作边AB的中点E,连接DE并延长,交CB的延长线于点F;(用尺规作图,保留作图痕迹,不要求写作法):(2)已知▱ABCD的面积为8,求四边形EBCD的面积.中考数学专题训练-尺规作图 (2)一.选择题1.如图,矩形ABCD 中60BAC ∠=︒,以点A 为圆心,以任意长为半径作弧分别交AB ,AC 于点M ,N两点,再分别以点M ,N 为圆心,以大于12MN 的长为半径作弧交于点P ,作射线AP 交BC 于点E ,若2BE cm =,则CE 的长为( )A .6cmB .63cmC .4cmD .43cm2.如图,60AOB ∠=︒,以点O 为圆心,以任意长为半径作弧交OA ,OB 于C ,D 两点;分别以C ,D为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ;以O 为端点作射线OP ,在射线OP 上截取线段4OM =,则M 点到OB 的距离为( )A .4B .3C .2D .233.如图,Rt OAB ∆的直角边OA 在x 轴上,OB 在y 轴的正半轴上,且(3,0)A ,4sin 5OAB ∠=.按以下步骤作图:①以点A 为圆心,适当长度为半径作弧,分别交OA ,AB 于点C ,D ;②分别以C ,D 为圆心,大于12CD 的长为半径作弧,两弧在OAB ∠内交于点M ;③作射线AM ,交y 轴于点E .则点E 的坐标为( )A .4(0,)3B .3(0,)2C .(0,3)D .(0,2)4.如图所示,在Rt ABC ∆中,90C ∠=︒,按以下步骤作图:①以点A 为圆心,以小于AC 的长为半径作弧,分别交AC 、AB 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点O ; ③作射线OA ,交BC 于点E ,若6CE =,10BE =.则AB 的长为( )A .11B .12C .18D .205.如图,ABCD 中,4CD =,6BC =,按以下步骤作图:①以点C 为圆心,适当长度为半径作弧,分别交BC ,CD 于M ,N 两点:②分别以点M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在ABCD 的内部交于点P ;③连接CP 并延长交AD 于点E ,交BA 的延长线于点F ,则AF 的长为( )A .1B .2C .2.5D .36.在ABC ∆中,5BC =,12AC =,90C ∠=︒,以点B 为圆心,BC 为半径作圆弧,与AB 交于D ,再分别以A ,D 为圆心,大于12AD 的长为半径作圆弧交于点M ,N ,作直线MN ,交AC 于E ,则AE 的长度为( )A .42B .4C .133D .57.如图,在菱形ABCD 中,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 的同样的长为半径作弧,两弧交于M ,N 两点; ②作直线MN ,交CD 于点E ,连接BE .若直线MN 恰好经过点A ,则下列说法错误的是( )A .60ABC ∠=︒B .2ABE ADE S S ∆∆=C .若4AB =,则47BE =D .3tan 5CBE ∠= 8.如图,Rt ABC ∆中,90ACB ∠=︒.(1)以点C 为圆心,以CB 的长为半径画弧,交AB 于点G ,分别以点G ,B 为圆心,以大于12GB 的长为半径画弧,两弧交于点K ,作射线CK ;(2)以点B 为圆心,以适当的长为半径画弧,交BC 于点M ,交AB 的延长线于点N ,分别以点M ,N为圆心,以大于12MN 的长为半径画弧,两弧交于点P ,作直线BP 交AC 的延长线于点D ,交射线CK 于点E ;(3)过点D 作DF AB ⊥交AB 的延长线于点F ,连接CF .根据以上操作过程及所作图形,有如下结论:①CE CD =;②BC BE BF ==;③12CDFB S CF BD =⋅四边形; ④BCF BCE ∠=∠.所有正确结论的序号为( )A .①②③B .①③C .②④D .③④二.填空题9.如图,在ABC ∆中,按以下步骤作图: ①分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于点M 和N ; ②作直线MN ,分别交边AB ,BC 于点D 和E ,连接CD .若90BCA ∠=︒,8AB =,则CD 的长为 .10.如图,BD 是矩形ABCD 的对角线,在BA 和BD 上分别截取BE ,BF ,使BE BF =,分别以E ,F为圆心,以大于12EF 的长为半径作弧,两弧在ABD ∠内交于点G ,作射线BG 交AD 于点P ,若5AP =,则点P 到BD 的距离为 .11.如图,四边形ABCD 中,//AD BC ,90D ∠=︒,4AD =,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,射线BE 交AD 于点F ,交AC 于点O .若点O 恰好是AC 的中点,则CD 的长为 .12.如图,在ABC ∆中,90B ∠=︒,以点A 为圆心,适当长为半径画弧,分别交AB ,AC 于点D ,E ,再分别以D ,E 点为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若1BG =,4AC =,则ACG ∆的面积为 .13.如图,在Rt ABC ∆中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,12AB =,则ABD ∆的面积是 .14.如图,在菱形ABCD 中,按以下步骤作图:①分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点E 、F ;②作直线EF 交BC 于点G ,连接AG ;若AG BC ⊥,3CG =,则AD 的长为 .三.解答题15.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l 及直线l 外一点P .求作:直线PQ ,使得//PQ l .作法:如图,①任意取一点K ,使点K 和点P 在直线l 的两旁;②以P 为圆心,PK 长为半径画弧,交l 于点A ,B ,连接AP ;③分别以点P ,B 为圆心,以AB ,PA 长为半径画弧,两弧相交于点Q (点Q 和点A 在直线PB 的两旁);④作直线PQ .所以直线PQ 就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接BQ ,PQ = ,BQ = ,∴四边形PABQ 是平行四边形( )(填推理依据).//PQ l ∴.16.下面是小元设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:如图,直线l 和直线外一点P .求作:过点P 作直线l 的平行线.作法:如图,①在直线l 上任取点O ;②作直线PO ;③以点O 为圆心OP 长为半径画圆,交直线PO 于点A ,交直线l 于点B ;④连接AB,以点B为圆心,BA长为半径画弧,交O于点C(点A与点C不重合);⑤作直线CP;则直线CP即为所求.根据小元设计的尺规作图过程,完成以下任务.(1)补全图形;(2)完成下面的证明:证明:连接BP、BC,=,AB BC∴AB BC=,∴∠=∠,=,又OB OP∴∠=∠,∴∠=∠,CPB OBP∴)(填推理的依据).CP l//(17.下面是小明设计的“在已知三角形的一边上取一点,使得这点到这个三角形的另外两边的距离相等”的尺规作图过程:∆.已知:ABC求作:点D,使得点D在BC边上,且到AB,AC边的距离相等.作法:如图,∠的平分线,交BC于点D.作BAC则点D即为所求.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.⊥于点F,证明:作DE AB⊥于点E,作DF AC∠,AD平分BAC∴=()(括号里填推理的依据).18.如图,在O 中,点A 为弧CD 的中点过点B 作O 的切线BF ,交弦CD 的延长线于点F . (Ⅰ)如图①,连接AB ,若50F ∠=︒,求ABF ∠的大小;(Ⅱ)如图②,连接CB ,若35F ∠=︒,//AC BF ,求CBF ∠的度数.19.如图,已知MON ∠,A ,B 分别是射线OM ,ON 上的点.(1)尺规作图:在MON ∠的内部确定一点C ,使得//BC OA 且12BC OA =;(保留作图痕迹,不写作法) (2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得2OD CD =,并证明2OD CD =.20.【概念认识】若以三角形某边上任意一点为圆心,所作的半圆上的所有点都在该三角形的内部或边上,则将符合条件且半径最大的半圆称为该边关联的极限内半圆.如图①,点P 是锐角ABC ∆的边BC 上一点,以P 为圆心的半圆上的所有点都在ABC ∆的内部或边上.当半径最大时,半圆P 为边BC 关联的极限内半圆.【初步思考】若等边ABC ∆的边长为1,则边BC 关联的极限内半圆的半径长为 .如图②,在钝角ABC ∆中,用直尺和圆规作出边BC 关联的极限内半圆(保留作图痕迹,不写作法).【深入研究】如图③,30AOB ∠=︒,点C 在射线OB 上,6OC =,点Q 是射线OA 上一动点.在QOC ∆中,若边OC 关联的极限内半圆的半径为r ,当1≤r ≤2时,求OQ 的长的取值范围.21.如图,已知线段AB . (1)仅用没有刻度的直尺和圆规作一个以AB 为腰、底角等于30︒的等腰ABC ∆.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若2AB cm =,则等腰ABC ∆的外接圆的半径为 cm .22.人们在长期的数学实践中总结了许多解决数学问题的方法,形成了许多光辉的数学思想,其中转化思想是中学数学中最活跃,最实用,也是最重要的数学思想,例如将不规则图形转化为规则图形就是研究图形问题比较常用的一种方法.51013的三角形的面积.问题解决:在解答这个问题时,先建立一个正方形网格(每个小正方形的边长为1)5、1013的格点三角形ABC ∆(如图1).5AB =是直角边分别为1和2的直角三角形的斜边,10BC =1和3的直角三角形的斜边,13AC =2和3的直角三角形的斜边,用一个大长方形的面积减去三个直角三角形的面积,这样不需求ABC ∆的高,而借用网格就能计算出它的面积.(1)请直接写出图1中ABC ∆的面积为 .(2)类比迁移:求出边长分别为5、22、17的三角形的面积(请利用图2的正方形网格画出相应的ABC ∆,并求出它的面积).23.如图,已知ABC ∆,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作ABC ∆的外接圆;(2)若ABC ∆所在平面内有一点D ,满足CAB CDB ∠=∠,BC BD =,求作点D .中考数学专题训练-尺规作图(3)1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。
专题练习尺规作图一、选择题1.如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于AB的长为半径画弧,两弧相交于点M、N;②作直线MN交AC于点D,连接BD.若CD=CB,∠A=35°,则∠C等于()A. 40°B. 50°C. 60°D. 70°2.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为()A. 90°B. 95°C. 100°D. 105°3.按下列条件画三角形,能唯一确定三角形形状和大小的是()A. 三角形的一个内角为60°,一条边长为3cmB. 三角形的两个内角为30°和70°C. 三角形的两条边长分别为3cm和5cmD. 三角形的三条边长分别为4cm、5cm和8cm4.下列画图语句中正确的是()A. 画射线OP=5cmB. 画射线OA的反向延长线C. 画出A、B两点的中点D. 画出A、B两点的距离5.图中的尺规作图是作()A. 线段的垂直平分线B. 一条线段等于已知线段C. 一个角等于已知角D. 角的平分线6.已知线段a,b和m,求作△ABC,使BC=a,AC=b,BC边上的中线AD=m,作法合理的顺序依次为()①延长CD到B,使BD=CD;②连接AB;③作△ADC,使DC=a,AC=b,AD=m.A. ③①②B. ①②③C. ②③①D. ③②①7.在一次数学活动课上小芳,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=8,AB=30,请你帮助她算一下△ABD的面积是()A. 150B. 130C. 240D. 1208.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是()A. 边边边B. 边角边C. 角边角D. 角角边9.下列作图语句正确的是()A. 作线段AB,使α=ABB. 延长线段AB到C,使AC=BCC. 作∠AOB,使∠AOB=∠αD. 以O为圆心作弧10.下列画图语句中,正确的是()A. 画射线OP=3cmB. 连接A,B两点C. 画出A,B两点的中点D. 画出A,B两点的距离二、填空题11.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出 ________个.12.如图,在平行四边形ABCD中,连接AC,按一下步骤作图,分别以点A,点C为圆心,以大于AC的长为半径画弧,两弧分别相交于点M、N,作直线MN交CD于点E,交AB于点F,若AB=5,BC=3,则△ADE的周长为________.13.如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F,为圆心,大于长为半径作圆弧,两弧交于点G,作射线BG交CD于点H。
尺规作图班级姓名得分一、选择题1.如图,已知线段AB,分别以A、B为圆心,大于1AB为半径作弧,连接弧的交点得2到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A. B. C. D.2.尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A. B.C. D.3.用直尺和圆规画出一个角等于已知角,是运用全等三角形来解决的,其中判定全等的方法是()A. SSSB. SASC. ASAD. HL4.下列作图属于尺规作图的是()A. 用量角器画出∠AOB的平分线OCB. 借助直尺和圆规作∠AOB,使∠AOB=2∠αC. 画线段AB=3cmD. 用三角尺过点P作AB的垂线5.下列尺规作图的语句正确的是()A. 延长射线AB到DB. 以点D为圆心,任意长为半径画弧C. 作直线AB=3cmD. 延长线段AB至C,使AC=BC6.下列尺规作图,能判断AD是△ABC边上的高是()A. B.C. D.7.已知:直线AB和AB外一点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK长为半径作弧,交AB于点D和E.DE的长为半径作弧,(3)分别以D和E为圆心,大于12两弧交于点F.(4)作直线CF,直线CF就是所求的垂线.这个作图是()A. 平分已知角B. 作一个角等于已知角C. 过直线上一点作此直线的垂线D. 过直线外一点作此直线的垂线二、填空题8.如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE=______cm.9.如图,以A点为圆心,以相同的长为半径作弧,分别与射线AM,AN交于B,C两点,连接BC,再分别以B,C为圆心,BC)为半径作弧,两弧相交于点D,连接以相同长(大于12AD,BD,CD.若∠MBD=40°,则∠NCD的度数为______.10.小为同学和小辰同学研究一个数学问题:尺规作图:作三角形的高线.已知:△ABC.尺规作图:作BC边上的高AD.他们的作法如下:BE长为半径画弧,两弧交于点F.①分别以B,E为圆心,大于12②连接AF,与BC交于点D,则线段AD即为所求.③以A为圈心,AB为半径画弧,与BC交于点E.老师说:“你们的作法思路正确,但作图顺序不对.”请回答:其中顺序正确的作图步骤是(填写序号)______.判断线段AD为BC边上的高的作图依据是______.11.如图,以点O为圆心,任意长为半径画弧,与射线OP交于点A,再以点A为圆心,OA长为半径画弧,两弧交于点B,画射线OB,则∠AOB=_________°.12.如图,在△ABC中,∠C=90°,分别以点A,B为圆心,大于1AB长为半径作弧,两2弧分别交于M,N两点,过M,N两点的直线交BC于点D,若AC=2,∠B=15°,则BD的长______.13.如图,用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上,分别取______,再分别过点M,N作OA、OB的垂线,交点为P,画射线OP,可利用______(填写判定方法)证明△POM≌△PON,然后根据______得∠POM=∠PON,则OP平分∠AOB.14.如图,画线段PQ的垂直平分线.PQ长为半径画弧,两弧分解:(1)分别以点_________和点_________为圆心,大于12别交于点________和点________;(2)过点________和点________作直线,则直线________就是线段PQ的垂直平分线.15.如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:①以点A为圆心,小于AC的长为半径.画弧,分别交AB、AC于点E、F;EF的长为半径画弧,两②分别以点E、F为圆心,大于12弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为______.三、解答题16.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.17.如图,已知∠AOB及点C、D,求作一点P,使PC=PD,并且使点P到OA、OB的距离相等.(尺规作图)18.如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB.19.如图,已知在△ABC中,BC=4,AC=8.(1)作边AB的垂直平分线MN,交AC于点D,连接BD(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,求△BCD的周长.20.如图,在△ABC中,AB=AC,∠BAC=120°.(1)尺规作图:作线段AB的垂直平分线DE,交BC于点D,交AB于点E(保留作图痕迹,不写作法);DC.(2)求证:BD=1221.如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法);(2)连接CE,如果△ABC的周长为27,DC的长为5,求△BCE的周长.答案和解析1.【答案】B【解析】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选:B.根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.2.【答案】B【解析】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.DE的长为半径作弧,两(3)分别以D和E为圆心,大于12弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.根据过直线外一点向直线作垂线即可.此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.3.【答案】A【解析】解:用直尺和圆规画出一个角等于已知角,是运用了SSS定理来判定全等的,故选:A.根据作一个角等于已知角的做法可得答案.此题主要考查了全等三角形的判定,以及作一个角等于已知角的做法,关键是熟练掌握作一个角等于已知角的做法.4.【答案】B【解析】解:根据尺规作图的定义可知:助直尺和圆规作∠AOB,使∠AOB=2∠α属于尺规作图,故选:B.根据尺规作图的定义即可判定.本题考查尺规作图的定义,解题的关键是理解尺规作图的定义,属于中考基础题.5.【答案】B【解析】解:A.根据射线AB是从A向B无限延伸,故延长射线AB到D是错误的;B.根据圆心和半径长即可确定弧线的形状,故以点D为圆心,任意长为半径画弧是正确的;C.根据直线的长度无法测量,故作直线AB=3cm是错误的;D.延长线段AB至C,则AC>BC,故使AC=BC是错误的;故选:B.根据线段、射线以及直线的概念,利用尺规作图的方法进行判断即可得出正确的结论.本题主要考查了尺规作图的定义的运用,解题时注意:尺规作图是指用没有刻度的直尺和圆规作图,只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.6.【答案】B【解析】解:过点A作BC的垂线,垂足为D,故选:B.过点A作BC的垂线,垂足为D,则AD即为所求.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图7.【答案】D【解析】解:利用作法得CF⊥AB,所以这个作图为过直线外一点作此直线的垂线.故选:D.利用基本作图(过一点作直线的垂线)进行判断.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.8.【答案】5【解析】【分析】此题主要考查了基本作图以及线段垂直平分线的性质,三角形的中位线的性质,正确得出DE是△ABC的中位线是解题关键.直接利用线段垂直平分线的性质得出DE是△ABC的中位线,进而得出答案.【解答】解:∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=1BC=5cm.2故答案为5.9.【答案】40°【解析】解:∵AB=AC,DB=DC,∴∠ABC=∠ACB,∠DBC=∠DCB,∴∠ABD=∠ACD,∴∠MBD=∠NCD=40°,故答案为:40°根据等腰三角形的性质得到∠ABC=∠ACB,∠DBC=∠DCB,则∠ABD=∠ACD,然后根据邻补角得出∠MBD=∠NCD.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).10.【答案】③①②到线段两点的距离相等的点在线段的垂直平分线上【解析】解:作法如下:先以A为圈心,AB为半径画弧,与BC交于点E,再分别以B,BE长为半径画弧,两弧交于点F,然后连接AF,与BC交于点D,因E为圆心,大于12为根据到线段两点的距离相等的点在线段的垂直平分线上,所以线段AD⊥BC,即AD 为高.故答案为③①②;到线段两点的距离相等的点在线段的垂直平分线上.利用基本作图(作已知线段的垂直平分线)可得到正确的作图步骤,然后根据线段垂直平分线的性质定理的逆定理可判断AD⊥BC.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).11.【答案】60【解析】【分析】本题考查了尺规作图和等边三角的判断,解题的关键是能根据尺规作图得到相等的线段.由尺规作图可知AO=BO=AB,由此可得△AOB是等边三角形,得出∠AOB的度数.【解答】解:由作图可得:AO=BO=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为60.12.【答案】4【解析】解:连接AD,如图,由作法得MN垂直平分AB,则DA=DB,∴∠B=∠BAD=15°,∴∠ADC=∠B+∠BAD=30°,在Rt△ADC中,AD=2AC=4,∴BD=DA=4.故答案为4.连接AD,如图,由作法得MN垂直平分AB,则DA=DB,根据等腰三角形性质和三角形外角性质得到∠ADC=30°,所以AD=2AC=4,从而得到BD的长.本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.13.【答案】OM=ON;HL;全等三角形的对应角相等【解析】解:在已知的∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA、OB的垂线,交点为P,画射线OP,可利用HL(填写判定方法)证明△POM≌△PON,然后根据全等三角形的对应角相等得∠POM=∠PON,则OP平分∠AOB.故答案为:OM=ON,HL,全等三角形的对应角相等.根据作图的作法得到OM=ON,根据全等三角形的判定定理得到HL,根据全等三角形的性质得到结论.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定方法.14.【答案】(1)P;Q;M;N;(2)M;N;MN.【解析】【分析】本题主要考查线段的垂直平分线的画法,需熟练掌握作图语言才能解决问题.通过观察可发现是作线段PQ的垂直平分线.【解答】解:通过观察可发现是作线段PQ的垂直平分线,根据线段的垂直平分线的画法,PQ的长为半径作弧,两弧分别交于点M和点所以分别以点P和点Q为圆心,以大于12N,再过点M和点N作直线,则直线MN就是线段PQ的垂直平分线.故答案为(1)P;Q;M;N;(2)M;N;MN.15.【答案】65°【解析】解:解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;EF的长为半径画弧,两弧相交于点G;又∵分别以点E、F为圆心,大于12∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠ABC=40°∴∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.本题综合考查了作图--复杂作图,直角三角形的性质.根据作图过程推知AG是∠CAB 平分线是解答此题的关键.16.【答案】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.【解析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.本题考查了作图-基本作图,线段垂直平分线的性质,三角形的外角的性质,等腰三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.17.【答案】解:(1)以O为圆心,以任意长为半径画弧,交OA、OB于M、N两点,MN长为半径画弧,两弧交于K点,(2)再以M、N为圆心,大于12(3)作射线OK,(4)分别以C、D为圆心画弧,两弧分别交于H、T两点,连接HT,(5)CD的垂直平分线与∠AOB的角平分线交点即为P点【解析】本题考查了尺规作图的一般作法.解答本题的关键在于知道怎么作出线段CD的垂直平分线及∠AOB的角平分线,通过两条直线的交点即为我们所要求的P点.18.【答案】(1)解:射线BD即为所求;(2)∵∠A=90°,∠C=30°,∴∠ABC=90°-30°=60°,∵BD平分∠ABC,∠ABC=30°,∴∠CBD=12∴∠C=∠CBD=30°,∴DC=DB.【解析】(1)根据角平分线的作法求出角平分线BD;(2)想办法证明∠C=∠CBD即可;本题考查作图-基本作图,等腰三角形的判断等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.19.【答案】解:(1)(2):∵MN 是AB 的垂直平分线.∴AD =BD∴△BCD 的周长=BD +CD +BC=AD +CD +BC=AC +BC =8+4=12【解析】此题主要考查了基本作图,关键是掌握线段垂直平分线的作法和性质.垂直平分线上任意一点,到线段两端点的距离相等.(1)根据线段垂直平分线的作法作图即可;(2)根据线段垂直平分线的性质可得“DB =DC ,进而得到AD +DC =AD +BD =5cm ,然后可得周长.20.【答案】(1)解:如图,DE 为所作;(2)证明:连接AD ,如图,∵AB =AC ,∴∠B =∠C =12(180°-∠BAC )=12(180°-120°)=30°, ∵DE 垂直平分AB ,∴DA =DB ,∴∠DAB =∠B =30°,∴∠CAD =120°-30°=90°,在Rt △ADC 中,AD =12CD ,∴BD =12CD .【解析】(1)利用基本作图(作已知线段的垂直平分线)作出DE 垂直平分AB ; (2)连接AD ,如图,先利用等腰三角形的性质和三角形内角和计算出∠B =∠C =30°,再根据线段垂直平分线的性质得DA =DB ,则∠DAB =∠B =30°,接着计算出∠CAD =90°,利用含30度的直角三角形三边的关系得到AD =12CD ,从而得到结论.∴BD =12CD .本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).21.【答案】解:(1)如图,DE为所作;(2)∵DE垂直平分AC,∴EA=EC,AD=CD=5,∴AC=10,∵△ABC的周长=AB+BC+AC=27,∴AB+BC=27-10=17,∴△AEC的周长=BE+EC+BC=BE+AE+BC=AB+BC=17.【解析】(1)利用基本作图作DE垂直平分AC;(2)根据线段垂直平分线的性质得到EA=EC,AD=CD=5,则利用△ABC的周长得到AB+BC=17,然后根据等线段代换可求出△AEC的周长.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).。
专题:尺规作图检测题 一 、基本作图:
在几何里把限定用无刻度的直尺和无刻度的圆规来画图,称为尺规作图。
1.画一条线段等于已知线段
A B
2.画一个角等于已知角
3.画一个角的平分线
4.画线段的垂直平分线
-
《 5.过一点(线上、线外)画已知直线的垂线
/
二、2012年中考题展 练一练:1、(2012贵州铜仁,19(2),5分)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M 的位置,(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)
O B
A
B
A
a
P
b
P
2、(2012山东德州中考,19,8,)有公路1l 同侧、2l
异侧的两个城镇A ,B ,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A ,B 的距离必须相等,到两条公路1l ,2l
的距离也必须相等,发射塔C 应修建在什么位置请用尺规作图找出所有符合条件的点,注明点C 的位置.
6、(2012北海,21,8分)已知:如图,在△ABC 中,∠A =30°,∠B =60°。
(1)作∠B 的平分线BD ,交AC 于点D ;作AB 的中点E (要求:尺规作图,保留作图痕迹)
—
(2)连接DE ,求证:△ADE ≌△BDE 。
2
l
}
1
A
B
A
C
B。