光谱辐射度计实验指导
- 格式:pdf
- 大小:936.10 KB
- 文档页数:14
射度学与绝对辐射校准工位1.引言辐射度学是研究各种电磁辐射强弱的学科,是颜色科学、遥感等学科的基础。
辐射校准最终的目的是将所测量的物理量与国际标准单位中的物理量联系起来。
本实验将通过实际的辐射校准传递流程帮助学生理解辐射校准的意义、方法和流程,然后应用辐射校准的结果进行绝对辐射测量。
2.实验目的1、了解辐射校准的意义、方法和流程2、应用辐射校准的结果进行绝对辐射测量3.实验原理辐射度测量仪器的校准:在使用辐射度测量仪器时,数字仪器获得的原始数据往往是计数值,而模拟仪器获得的原始数据往往是电压,电流或者电阻。
当我们测量的辐射度量并非以电流、电压等作为单位时,这些数据是无意义的。
因此,辐射校准的最终目的,是通过一定的标准将所测量的物理量与使用的工程单位联系起来。
此外,辐射校准的另一个重要目的是估计测量数据的不确定度。
校准的传递流程:校准可以使测量环境不同的同一被测物理量单位统一、量值可靠。
而可靠的测量不可避免地与校准过程以及其中使用的标准有关。
标准往往是一个物体、仪器或是系统,它为所测量的物理量在某一单位下提供核对、参照。
在使用中,标准可以分为几种。
基准标准具有最高的测量质量,他可以通过人为规定、计算、或设计得到而无需通过其他测量。
例如,零度被定义为水的三相点。
基准标准也可以通过国际公认成为一个人为的标准,例如千克,是特定的储存在国际计量局的人造物质定义的。
而次级的标准则用于传播标准,它必须具有尽可能高的稳定性、可靠性和可重复性。
次级标准通过与基准标准对照校准获得。
再下一级的标准是工作标准,我们常用来校准平常使用的仪器。
通过不同标准之间进行校准,标准传递的过程形成了一条不间断的比较链。
需要注意的是,由于标准传递过程中存在不可避免的误差,标准系统距离基准越远,不确定度会随着不断累加而越大。
为了确保同一被测量结果的可比性、一致性,计量具有溯源性的特点。
溯源性是指通过一条具有规定的不确定度的连续比较链,使测量结果或测量标准的值,能够与规定的参考标准,通常是与国家测量标准(国家基准)或国标测量标准联系起来的特性。
高精度快速光谱辐射计haas-2000-ir1技术参数概述说明1. 引言1.1 概述本文将介绍Haas-2000-IR1高精度快速光谱辐射计的技术参数。
该仪器在测量光谱辐射方面具有高精度和快速反应的特点,广泛应用于工业、生物医学和环境监测等领域。
通过详细的技术说明和实际应用案例的介绍,读者能够全面了解这一先进仪器的性能和优势。
1.2 文章结构本文分为五个主要部分:引言、Haas-2000-IR1技术参数、Haas-2000-IR1技术详解、使用案例与应用场景以及结论与展望。
下面将对每个部分进行简要概述。
1.3 目的本文旨在介绍Haas-2000-IR1高精度快速光谱辐射计的技术参数,并深入解析其原理、设计结构和数据处理算法。
同时,通过实际应用案例的展示,探讨该仪器在工业、生物医学和环境监测等领域中的广泛应用。
最后,对未来技术发展方向提出建议,为相关领域后续研究提供参考。
通过本文的阅读,读者将获得关于Haas-2000-IR1技术参数的全面了解,并能够评估其在不同应用领域中的实际价值和潜力。
2. Haas-2000-IR1技术参数:2.1 简介:Haas-2000-IR1是一款高精度快速光谱辐射计,具有广泛的应用领域。
该设备通过准确测量目标物体辐射能量来分析其物理性质和化学成分,进而提供重要数据支持。
2.2 高精度特性:Haas-2000-IR1采用先进的光学传感器技术,能够以极高的精度测量和记录辐射能量。
其测量误差小于0.01%的高精度保证了数据的可靠性和准确性。
2.3 快速光谱辐射计功能:Haas-2000-IR1具有快速激发和响应的能力,可以实时获取并处理大量光谱数据。
它可以在红外区域范围内进行非接触式测量,并提供高分辨率、高灵敏度的光谱信息。
通过Haas-2000-IR1技术参数部分,读者可以了解到该设备具备高精度测量的能力,并且拥有快速激发和响应特性。
这些功能使得该仪器在工业、生物医学和环境监测等领域都有广泛的应用前景。
研究热辐射的热辐射系数测量实验引言:热辐射是一种重要的能量传递形式,它是物体由于温度差异而发出的电磁辐射。
了解热辐射的性质和行为对于各个领域的应用具有重要意义,如工业生产中的热能利用,能源的开发利用以及环境保护等。
本文将详细介绍研究热辐射的热辐射系数测量实验的定律、实验准备和过程,以及该实验的应用和其他专业性角度的讨论。
一、定律:在进行热辐射系数测量实验之前,我们首先需要了解一些相关的物理定律。
其中主要包括斯特藩-玻尔兹曼定律、普朗克定律和维恩位移定律。
1. 斯特藩-玻尔兹曼定律:斯特藩-玻尔兹曼定律描述了黑体辐射功率密度与其绝对温度之间的关系。
它可以用公式P = εσAT^4来表示,其中P是黑体的辐射功率密度,ε是黑体的发射率,σ是斯特藩-玻尔兹曼常数,A是黑体的表面积,T是黑体的绝对温度。
2. 普朗克定律:普朗克定律描述了黑体辐射的光谱能量密度分布与其频率之间的关系。
它可以用公式B(v,T) = (12πhv^3)/(c^2 (exp(hv/kT) - 1))来表示,其中B(v,T)是黑体的辐射能量密度,h是普朗克常数,v是辐射的频率,c是光速,k是玻尔兹曼常数,T是黑体的绝对温度。
3. 维恩位移定律:维恩位移定律描述了黑体辐射峰值波长与其绝对温度之间的关系。
它可以用公式λ_max = b/T来表示,其中λ_max是黑体辐射的峰值波长,b是维恩位移常数,T是黑体的绝对温度。
二、实验准备:在进行热辐射系数测量实验之前,我们需要准备一些实验设备和材料,如黑体辐射源、辐射计、温度计、光谱仪等。
具体的实验步骤如下:1. 准备黑体辐射源:选择一个具有较高辐射能力和辐射稳定性的黑体辐射源,如石英灯丝或红外辐射灯。
2. 准备辐射计:选择一个高灵敏度的辐射计,如热电堆或辐射导率计,以测量黑体辐射的功率密度。
3. 准备温度计:选择一个精确测量温度的温度计,如热电阻或热电偶,在实验过程中用于测量黑体的温度。
4. 准备光谱仪:选择一个高分辨率的光谱仪,如分光光度计或光电倍增管,用于测量黑体辐射的光谱能量密度分布。
光谱作业指导书一、引言光谱是研究物质结构和性质的重要手段之一,广泛应用于化学、物理、生物等领域。
本指导书旨在帮助学生理解光谱的基本原理、常见的光谱技术以及光谱数据的分析与解读方法,以提高学生在光谱实验中的实验操作能力和数据处理能力。
二、光谱的基本原理1.1 光谱的定义光谱是将物质辐射或吸收的电磁波按照波长或频率进行分解,得到一系列连续或离散的波长或频率的分布图谱。
1.2 光谱的分类光谱可分为连续光谱和离散光谱两种类型。
连续光谱是指物质发出或吸收的光在波长或频率上连续分布的光谱,如黑体辐射光谱。
离散光谱是指物质发出或吸收的光在波长或频率上呈现离散分布的光谱,如原子吸收光谱和分子振动光谱等。
1.3 光谱的测量方法常见的光谱测量方法包括吸收光谱、发射光谱和散射光谱。
吸收光谱是通过测量物质对入射光的吸收程度来获得的,常用的技术有紫外可见吸收光谱和红外吸收光谱等。
发射光谱是通过测量物质发出的光的强度和波长来获得的,常用的技术有荧光光谱和拉曼光谱等。
散射光谱是通过测量物质对入射光的散射程度来获得的,常用的技术有拉曼散射光谱和散射光谱等。
三、常见的光谱技术2.1 紫外可见吸收光谱紫外可见吸收光谱是通过测量物质对紫外可见光的吸收程度来获得的。
该技术可以用于定量分析和定性分析。
常用的仪器有分光光度计和紫外可见分光光度计等。
2.2 红外吸收光谱红外吸收光谱是通过测量物质对红外辐射的吸收程度来获得的。
该技术可以用于研究物质的结构和功能。
常用的仪器有红外光谱仪和傅里叶变换红外光谱仪等。
2.3 荧光光谱荧光光谱是通过测量物质在受激光照射下发出的荧光光的强度和波长来获得的。
该技术可以用于研究物质的结构和性质。
常用的仪器有荧光光谱仪和时间分辨荧光光谱仪等。
2.4 拉曼光谱拉曼光谱是通过测量物质对激光散射后的光的频率变化来获得的。
该技术可以用于研究物质的结构和振动信息。
常用的仪器有拉曼光谱仪和共聚焦拉曼光谱仪等。
四、光谱数据的分析与解读方法3.1 峰位和峰型分析在光谱中,峰位是指吸收、发射或散射峰的波长或频率位置,峰型是指峰的形状。
使用近红外光谱仪时的注意事项光谱仪操作规程红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器,通常由光源、单色器、探测器和计算机处理信息系统组成,广泛用于染织工业、环境科学、生物化学、材料科学、石油工业、医药学等研究领域。
注意事项:1、测定时实验室的温度应在15~30℃,相对湿度应在65%以下,所用电源应配备有稳压装置和接地线。
因要严格控制室内的相对湿度,因此红外实验室的面积不要太大,能放得下必须的仪器设备即可,但室内一定要有除湿装置。
2、如所用的是单光朿型傅里叶红外分光光度计(目前应用较多),实验室里的CO2含量不能太高,因此实验室里的人数应尽量少,无关人员尽量不要进入,还要注意适当通风换气。
3、如供试品为盐酸盐,因考虑到在压片过程中可能出现的离子交换现象,标准规定用氯化钾(也同溴化钾一样预处理后使用)代替溴化钾进行压片,但也可比较氯化钾压片和溴化钾压片后测得的光谱,如二者没有区别,则可使用溴化钾进行压片。
4、为防止仪器受潮而影响使用寿命,红外实验室应经常保持干燥,即使仪器不用,也应每周开机至少两次,每次半天,同时开除湿机除湿。
特别是霉雨季节,需要每天开除湿机。
5、红外光谱测定常用的试样制备方法是溴化钾(KBr)压片法(药典收载品种90%以上用此法),因此为减少对测定的影响,所用KBr 应为光学试剂级,至少也要分析纯级。
使用前应适当研细(200目以下),并在120℃以上烘4小时以上后置干燥器中备用。
如发现结块,则应重新干燥。
制备好的空KBr片应透明,与空气相比,透光率应在75%以上。
6、压片法时取用的供试品量一般为1~2mg,因不可能用天平称量后加入,并且每种样品的对红外光的吸收程度不一致,故常凭经验取用。
一般要求所没得的光谱图中绝大多数吸收峰处于10%~80%透光率范围在内。
强吸收峰的透光率如太大(如大于30%),则说明取样量太少;相反,如强吸收峰为接近透光率为0%,且为平头峰,则说明取样量太多,此时均应调整取样量后重新测定。
实验10紫外可见吸收光谱测试140604班 C组胡晓玲 3214001700【实验目的】本实验的目的是利用紫外光区和可见光区的光学特性的检测方法测试甲基橙的光学特性,同时培养分析和运用材料紫外光区和可见光区光谱特性的能力。
【仪器用具】UV-2550岛津紫外可见分光光度计【实验原理】研究甲基橙在紫外-可见光区的分子吸收光谱的。
其中所利用的紫外-可见分光光度法是利用某些物质的分子吸收200~900 nm光谱区的辐射来进行分析测定的方法,这种方法广泛用于无机和有机物质的定性和定量测定。
当光作用在物质上时,一部分被表面反射,一部分被物质吸收。
改变入射光的波长时,不同物质对每种波长的光都有对应的吸收程度(A)或透过程度(T),可以做出这种物质在实验波长范围内的吸收光谱曲线或透过光谱曲线。
用紫外-可见分光光度计可以作出材料在紫外光区和可见光区的对紫外光和可见光的吸收光谱曲线或透过光谱曲线。
利用的是朗伯-比尔定律:(10-1)A abcA为吸光度,a为吸光系数,b为光路长度,c为物质浓度。
通过吸收光谱曲线或透过光谱曲线可以判断材料在紫外光区和可见光区的光学特性,为材料的应用作指导。
例如,具有较高的紫外光吸收性能,可作为保温吸热等材料;如具有较高的紫外光反射特性,则可作为好的抗老化材料。
除此以外,紫外-可见吸收光谱还可用于物质的定量分析、定性分析、纯度鉴定和结构分析等。
【实验步骤与结果分析】1.实验步骤①以去离子水为测试参比溶液进行基线校正。
②以去离子水为参比液,不同浓度的甲基蓝溶液为测试样品,测试不同浓度的溶液的紫外可见吸收光谱图。
2.实验结果分析①掌握紫外可见吸收光谱分析的基本原理;②掌握利用紫外可见分光光度计测试液体溶液吸光度的方法,并绘制溶液的紫外可见吸收光谱图如下由图可知:其他条件一定的情况下,在紫外可见吸收区中,甲基橙的浓度越大,其吸收强度越明显。
【注意事项】1. 在光谱基线校正过程中光度计状态窗口的读书变化。
图1原子自发辐射发射光子光谱仪和光谱的观察光谱是光源所发射的辐射强度随波长(频率)的分布,它反映了光源的构成物质和其它的一些特性。
我们今天所掌握的有关原子和分子结构方面的知识绝大部分都来自光谱的研究。
在电磁辐射和物质相互作用时能观察到吸收或发射光谱,它们从多方面提供了原子和分子结构和它们与周围环境相互作用的信息。
因此,光谱的观察在科学研究和生产生活中有着十分重要的意义。
【实验目的】1. 掌握光栅光谱仪的工作原理和使用方法,学习识谱和谱线测量等基本技术。
2. 通过光谱测量了解一些常用光源的光谱特性。
3. 通过所测得的氢(氘)原子光谱在可见和近紫外区的波长验证巴尔莫公式并准确测出氢(氘)的里德堡常数。
4.*测出氢、氘同位素位移,求出质子与电子的质量比。
【原理】1.典型光源光谱发光原理(1)热辐射光源(白炽灯)这一类光源特点是物体在发射辐射过程中不改变内能,只要通过加热来维持它的温度,辐射就可继续不断地进行下去.这类光源包括我们常用的白炽灯、卤素灯、钨带灯和直流碳弧灯等一些常用光源。
它们光谱是覆盖了很大波长范围连续光谱,谱线的中心频率和形状与物体温度有关,而与物质特性无关,温度越高,辐射的频率也越高。
(2)发光二极管通过n 型半导体的电子和p 型半导体在结间的偶合发出光子,发光频率与电子跃迁能级有关。
如果,跃迁的上能级为E 2、下能级为E 1,则发出光子的频率v 满足其中h =6.626⨯10-34Js 为普朗克常数,发光二极管跃迁的上下能级都是范围较宽的能带结构,因此,其谱线宽度一般也较宽。
分子和晶体也有这种带状的能级结构,谱线也有一定的宽度。
(3)光谱灯光谱灯工作物质一般为气体或金属蒸汽,通过12E E hv -=电激发的形式,使低能态的原子激发到较高的能级(图1),处于高能级的原子是不稳定的,会以自发辐射的形式会到低能级,辐射的光子也满足E 2和E 1分别是原子自发辐射跃迁的上下能级,v 为辐射的光子频率。
光谱分析作业指导书一、实验目的光谱分析是一种重要的化学分析技术,通过对不同物质的吸收或发射光谱进行定性和定量分析。
本实验旨在通过光谱分析法对某种物质进行定性和定量分析,并培养学生的实验操作能力和数据处理能力。
二、实验仪器和试剂准备1. 实验仪器:- 可见-紫外分光光度计- 色散式光谱仪2. 试剂准备:- 待测物质溶液(浓度为0.1 mol/L):将待测物质按一定比例溶解在适量溶剂中制成溶液。
三、实验步骤1. 光谱扫描a) 使用色散式光谱仪,将试剂的溶液注入光谱仪样品池中。
b) 调节光谱仪的波长范围和光强度,确保测量时的准确性。
c) 开始光谱扫描,记录样品的吸收谱和发射谱数据。
2. 确定峰值波长a) 通过观察光谱图,确定峰值波长。
b) 根据峰值波长,选择合适的滤光片或单色仪,调节入射光的波长。
3. 定性分析a) 将待测物质溶液与不同参比物溶液进行比较。
b) 观察吸收或发射光谱的差异,根据光谱特征判断物质的成分。
4. 定量分析a) 构建标准曲线:用已知浓度的参比物溶液制备一系列不同浓度的标准溶液,测量它们的吸光度。
b) 测量待测物质溶液的吸光度,并使用标准曲线确定其浓度。
四、实验注意事项1. 实验操作时要小心轻放,防止试剂溅出。
2. 使用色散式光谱仪时,注意对光路进行调整,确保测量准确。
3. 小心避免将试剂溶液接触到皮肤或眼睛,如有误触,应立即用大量水冲洗。
4. 操作前检查仪器是否正常运行,如有故障应立即报告老师。
五、实验报告要求1. 实验目的:简要说明本次实验的目的。
2. 实验仪器和试剂:列出所使用的实验仪器和试剂。
3. 实验步骤:按照实际操作的顺序详细描述实验步骤。
4. 实验结果:记录实验中所观察到的数据和光谱图。
5. 结果分析:根据实验结果进行定性和定量分析,并给出相应的结论。
6. 思考题:根据实验所得结果提出一定数量的思考题,要求考虑实验中可能存在的误差及改进措施。
7. 参考文献:列出实验所参考的相关文献。
作业场所光环境测定与评价实验报告作业场所光环境测定与评价实验报告一、实验目的本实验旨在对作业场所的光环境进行测定和评价,以便了解其是否符合相关标准和规定,为改善工作环境提供参考。
二、实验仪器和材料1. 光度计:用于测量光照度和光密度;2. 光谱辐射计:用于测量辐射光谱;3. 人眼模拟器:用于模拟人眼接收光的特性;4. 计算机及相关软件:用于数据处理和分析。
三、实验过程1. 实验前准备:(1)确定测量位置和方向,保证测量结果准确可靠;(2)检查仪器是否正常工作,校准仪器并调整好参数;(3)确定测量时间和天气条件。
2. 测量过程:(1)使用光度计分别测量不同位置的照度值,并记录数据;(2)使用光谱辐射计分别测量不同位置的辐射光谱,并记录数据;(3)使用人眼模拟器模拟人眼接收到的光信号,并记录数据。
3. 数据处理与分析:(1)将测量得到的数据输入计算机,并使用相关软件进行处理和分析;(2)根据国家标准和相关规定,对测量结果进行评价和比较;(3)根据实验结果,提出改善光环境的建议和措施。
四、实验结果与分析经过实验测量和数据处理,得到如下结果:1. 照度值:在作业场所内,不同位置的照度值存在明显差异。
其中,办公室的照度值最高,达到了1000lx以上;而生产车间的照度值较低,仅有200lx左右。
此外,在同一位置不同时间的照度值也存在波动。
2. 辐射光谱:在作业场所内,不同位置的辐射光谱也存在差异。
其中,办公室的辐射光谱以红色和蓝色为主要成分;生产车间则以黄色为主要成分。
此外,在同一位置不同时间的辐射光谱也存在波动。
3. 人眼模拟信号:根据人眼模拟器模拟出来的信号显示,在作业场所内接收到的光信号中,蓝色成分占比最高;其次是红色和黄色成分。
这表明,在作业场所内,蓝光辐射对人眼的影响比较大。
综合上述结果分析,作业场所的光环境普遍存在问题。
一方面,照度值不够均匀,存在明显差异;另一方面,辐射光谱和人眼接收信号中蓝光成分过高,容易对人体健康产生负面影响。
热辐射的实验方法热辐射是物体由于温度而发出的电磁辐射能量,它是热力学的基本现象之一。
研究热辐射的实验方法对于理解热力学规律和应用热辐射在工程领域中具有重要意义的应用十分关键。
本文将介绍几种常用的实验方法,包括黑体辐射实验、光谱分析实验和辐射强度测量实验,以帮助读者更好地理解和应用热辐射。
一、黑体辐射实验黑体辐射实验是研究热辐射的基础实验之一。
黑体是指对所有辐射能量无损耗地吸收和辐射的物体。
黑体辐射实验需要使用一个能够模拟黑体特性的实验装置,一般包括一个高温物体和一个辐射探测器。
实验步骤如下:1. 准备一个容器,内部涂有黑色吸热材料,确保容器表面对辐射能量的吸收率接近100%。
2. 将一个高温物体放置在容器内,确保它能够达到一定的高温,例如1000℃。
3. 使用辐射探测器测量容器内的辐射能量,记录下相应的数据。
4. 对不同温度的高温物体进行实验,并分析辐射能量与温度的关系。
通过进行黑体辐射实验,可以得到一个物体辐射能量与温度之间的关系,这是热辐射理论的基础。
二、光谱分析实验光谱分析实验是研究热辐射中不同波长能量分布的实验方法之一。
通过光谱分析实验,可以了解热辐射的成分和能量分布规律。
实验步骤如下:1. 准备一个光谱仪,它可以将辐射能量按照波长分解成不同的光谱。
2. 将一个高温物体放置在光谱仪的前方,并将辐射能量导入光谱仪。
3. 观察光谱仪上的光谱图像,记录下不同波长的辐射强度数据。
4. 对不同波长的光谱进行分析,得到热辐射能量在不同波长范围内的分布情况。
通过进行光谱分析实验,可以获得热辐射的光谱分布特征,对于热辐射的研究和应用具有重要意义。
三、辐射强度测量实验辐射强度测量实验可以用来测量特定物体的热辐射强度,它可以被应用于各种工程领域中,如材料热辐射特性研究、太阳能电池效率测试等。
实验步骤如下:1. 准备一个辐射强度测量仪器,它能够测量特定物体放射的辐射强度。
2. 将要测量的物体放置在测量仪器前方,并确保测量仪器与物体之间不存在干扰。
光谱辐射度计实验辐射度学、光度学及色度学(以下简称“三度学”)是现代光电信息转换、传输、存储、显示、测量与计量技术的基础,正如“应用光学”和“波动光学”构成光学技术的基础那样,“三度学”已成为现代光学/光电信息工程的基础。
光谱辐射度计则是“三度学”中常用的一种检测仪器。
光谱辐射度计可以测定主动发光物体(光源)或被动发光物体(反射)的相对光谱能量分布(光的辐射强度与波长的关系曲线),以及“三度学”中的关有参数,如光谱辐射能量(或强度)、亮度、照度、色坐标、色温、主波长、色纯度、显色指数,……,等等。
因而被广泛应用于物质的成分分析、材料的结构研究、光电检测、照明工程、建筑、纺织、印染、造纸、印刷、化工、家电、食品等行业(领域)。
可以说,凡涉及到光与色的地方,都可能用到光谱辐射度计。
一、实验目的(1)掌握光谱辐射度计测量光谱参数的原理;(2)了解PR-655型光谱辐射度计的原理与使用。
二、实验原理PR‐655光谱辐射度计通过物镜或者其他光学配件有效收集光学辐射信号(光信号)。
光信号通过反射镜上的孔径光阑到达衍射光栅(参见图2)。
光栅把光按波长展开,就像棱镜把白色的光转换成彩虹一样。
一个宽带光,例如太阳光是由很多不同波长的光组成的。
当衍射光栅暴露在这种类型的光下,它将从多角度反射光线产生一个分散的光谱就像一道彩虹。
类似地,如果光栅接触了一种单一光源,比如一束激光,那么只有激光的特定波长的光会被反射。
图1 PR‐655简化方框图图2 PR‐655光谱辐射度计图3 PR‐655光谱测量范围PR‐655测量波长范围是380 nm~780nm(即电磁波的可见光谱段)(参见图3)。
衍射光谱到达CCD探测器。
PR—655探测器是由128个单元组成,每个探测器单元均代表不同的颜色。
测量时,辐射光通过自适应灵敏度算法在某个特定的时间内被取样测量。
自动适配感应器自动地根据光信号的强弱确定合适曝光时间。
光测量后,探测器用同样积分时间再次测量探测器的暗电流,然后从每个探测器单元的光测量结果中减去暗电流的光信号贡献值。
仪器出厂时已通过相应的校准系数校准光谱数据。
校正系数包括波长精确度修正、光谱分布修正和光度修正。
波长校准采用的是具有特征光谱的氦灯光源。
线光源提供了已知的光谱发射谱线通过光栅分光后投射到多探测器上再通过软件显示。
用于波长校准的氦谱线包括388.6nm,447.1 nm,471.3 nm,587.6 nm,667.8 nm,706.5 nm 和728.13 nm,接下来,可用光谱校准系数校准这些数据。
这些校准系数确保被测目标光谱能量分布(SPD)和由此计算出的数据(比如CIE 色度值)经过了正确的溯源。
最后,校准系数(光度系数)确保光度测试结果的准确性,如亮度或照度。
校正后的光谱数据用来计算光度和色度值包括亮度,CIE 1931 x,y 和1976 u’,v’的色坐标。
相关色温和主波长。
以下是一些基本的光度色度参数计算公式:(1)CIE XYZ 三刺激值和光度: 780380683()()()X S X λλλ=∆⎰ (1) 780380683()()()Y S Y λλλ=∆⎰ (2) 780380683()()()Z S Z λλλ=∆⎰ (3)式中,X 、Y 和Z 是CIE 的三刺激值。
X 表示红色,Y 是绿色,Z 是蓝色。
Y 还可表示光度值——在使用标准的MS-75 镜头时,Y 给出的是cd/m ²——国际亮度单位(英制亮度单位是Footlamberts ,简写为fc 。
1fc = 0.2919 cd/m ²)。
683是将流明(lm )转换成瓦(W )的一个常数。
对于亮场环境(白天),555nm 处683流明等同于1瓦的功率。
()S λ是校正的光谱数据,()X λ、()Y λ、()Z λ是 CIE 三刺激值函数(见图4),()λ∆ 是光谱增量 ,对于PR655的增量是4nm 。
图4 CIE 1931 三刺激值函数得出X 、Y 和Z 三个三刺激值后,有用的色度值,比如CIE 1931 x,y 和CIE 1976 u ’,v ’可以通过下面的公式计算:(2)CIE 1931 x, y : X x X Y Z=++ (4)Y y X Y Z=++ (5) (3)CIE 1976 u ’, v ’: 4/(153)u X X Y Z '=++ (6)9/(153)v Y X Y Z '=++ (7)三、实验装置本实验采用PR‐655型光谱辐射度计。
该仪器由美国Photo Research 公司生产,设计独特,使用方便,应用广泛。
这种独特的电池供电便携式仪器采用快速扫描光电传感器阵列,配置一个3.5'' 彩色触摸屏显示器,AutoSync 技术可以自动同步光源的刷新频率,从而最大程度上确保精确度。
其它特性还包括:预留的外部触发器端口可以允许用户通过一个按钮开关或外围设备就可实现远程激活测量,一个SD 卡可以实现测量数据的储存,以及超过12小时续航时间的可充电锂离子电池。
表1 PR-655主要技术指标PR-655通过2.253''''⨯高分辨率全彩触摸屏和5个方向键的键盘控制。
测量结束后,会在其液晶屏上显示数据、彩色光谱和CIE 图。
PR-655既可以单独使用,也可以利用著名的SpectraWin 操作软件通过USB 或蓝牙接口控制,或使用文本命令控制(远程模式)。
PR-655的独特设计使得很多工作变得容易而快捷:基于光谱的光度和色度测量,光源光谱功率分布,显色指数(CRI),主波长和相关色温。
而且通过增加两个扩展灵敏度模式及4种测量速度进一步增强了其灵活性。
PR-655可同时连接15个滤光片式远程探头同时进行照度和亮度测试:一种检测投影仪均匀性的理想工具(可选择亮度、照度或色度探头)。
PR-655还可配用专用的光学配件来进行许多特殊测试,如用于辐照度/照度测量的余弦接收器,用于按照CIE127标准检测LED的LR-127LED分析组件,用于无法直接观测区域亮度检测的光纤探测器,以及一系列用于小尺寸光斑检测的显微镜头。
表2 可测光斑尺寸表3 可测亮度范围仪器外观及说明见图5:图5 PR-655光谱辐射度计外观及说明四、实验操作与内容1. 实验操作图6 初始界面图7 系统菜单界面(1)开机:安装好仪器的电池和镜头。
打开仪器的电源开关,LCD亮起,显示开机界面,进行初始化。
初始化完成后,按显示屏左上角的“Menu”,显示主菜单(System Menu)。
(2)校准触摸显示屏:按菜单中的“Utilities”,显示Utilities菜单。
按“Calibrate Touch Screen”,显示校准窗口。
用尖头物轻点屏幕左上角的“×”形标记的中央。
然后,根据提示在其他位置重复轻点8次。
按“Back”2次,返回主菜单。
图8 校准触摸屏(3)参数设置:要访问参数选择菜单,可通过触摸菜单左上角的Menu,进入系统菜单(System Menu),或者点击左下角的Back 直到菜单出现。
进入主菜单,按“Setup”,显示Setup窗口;按“Instrument Setup”,显示Instrument Setup窗口,根据需要进行设置。
然后,按系统菜单中的“Preferences”,显示Preferences窗口,根据需要进行设置。
图9 仪器安装菜单图10 参数设置菜单(4)文件设置:进入主菜单,选择“File Settings”。
将“Auto Save”选项选设为“Auto Save ON”;对于“SD File”选项,选点“New Files”,然后输入原始测试数据文件名,此后的测试数据就会自动选择保存在该文件中;将“Save unsaved measurements to SD card on shutdown”选为“ENABLED”。
图11数字存储卡文件设置(5)调焦:调整目镜,使观察窗口中的黑圆点最为清晰。
将物镜对准被测物体,调整物镜焦距,使观察窗口中的被测物体最清晰。
调整测试仪与被测物体之间的距离,使黑圆点落在被测物体之内(占据其最小宽度的50% ~ 80%)。
图12 光阑对准(6)测试:对准目标,按仪器上的“MEASURE”按钮,即进行测试。
测试完成后,屏幕上显示结果。
然后,根据提示将结果保存到SD卡中(格式为“mea”文件)。
最后,关闭仪器的电源开关。
图13 测试结果显示(7)数据处理:小心地将仪器中的SD卡取出,用读卡器将其连接到PC。
双击PC屏幕上的“SpectraWin 2”图标,启动程序,点击程序主菜单中的“File”,选择File 菜单中的“Import”,弹出Import窗口;在Import窗口中选“PR-655/670/680:Open File”,点击“OK”,弹出Measurement Import 窗口,然后在该窗口中选择SD卡(或已拷贝到PC硬盘)中的数据文件(“mea”格式),点击“Import”,即可将测试数据导入SpectraWin 2 窗口。
这时,可根据需要对数据进行分析和处理(如保存为“Excel”、“txt”或“swb”文件等)。
图14 SpectraWin2 操作软件窗口2. 实验内容选择对日光灯管、显示屏、墙壁等主动发光或被动发光(反射)物体进行测试,利用SpectraWin 2操作软件绘制出光谱能量分布曲线,并求得有关光度学和色度学参数值(如亮度、色坐标CIE 1931 x,y及主波长等)。
五、注意事项(1)光学仪器,严防跌撞、受潮。
(2)装镜头时,不可用力过大。
(3)插拔SD卡时,必须先关仪器电源。
(4)不准触摸镜头等光学零件表面。
(5)不可用丙酮之类的有机溶剂插试镜头及仪器表面。
六、思考与练习题1. PR-655型光谱辐射度计有哪些用途?2.什么是光谱三刺激值?光谱三刺激值有什么意义?3.什么是颜色三刺激值?它与光谱三刺激值是什么关系?七、参考资料[1] 郁道银,谈恒英.工程光学.北京:机械工业出版社,2011[2] 金伟其等.辐射度光度与色度及其测量. 北京:北京理工大学出版社,2006[3] 安连生,李林,李全臣.应用光学.北京:北京理工大学出版社,2000附录:CIE1931-XYZ色度系统1. 标准色度观测者光谱三刺激值颜色感觉是由于光辐射源的或被物体反射的光辐射作用于人眼的结果。
因此,颜色不仅取决于光刺激,而且取决于人眼的视觉特性。
关于颜色的测量和标准应该符合人眼的观测结果。
但是,人眼的颜色特性对于不同的观测者或多或少会有差异,因此要求根据大量的观测者的颜色视觉实验,确定一组为匹配等能光谱色的三原色数据,称为“标准色度观测者光谱三刺激值”,以此代表人眼的平均颜色视觉特性,用于色度学的测量和计算。