方格图中不规则图形的面积计算
- 格式:doc
- 大小:28.00 KB
- 文档页数:3
五年级数学网格纸中求面积作文五年级数学网格纸中求面积作文数格子算面积的方法_一篇文章让孩子轻松掌握,不规则图形面积数格子的技巧...小学五年级中,不规则图形计算面积分两种情况——一种情况是:孩子遇到的不规则图形可以切割或拼凑成规则图形,那么可以利用现有的规则图形求面积的公式计算。
另一种情况是:孩子遇到的图形比较复杂(如一片树叶、一个假山图像),无法通过切割或拼凑转化为规则图形进行计算。
那么,这种情况下家长该怎么教孩子计算呢?接下来,本文将跟大家一起讨论不规则图形面积“数格子”的技巧。
1、数格子的前提(1)看清格子的单位家长在教孩子不规则图形数格子的方法之前,一定要让孩子明确“格子”的面积单位,是平方厘米、平方分米、还是平方米,以免孩子出现“数格子”结果是对的,单位却标注出错的现象。
(2)明确数格子的方法不规则图形数格子有(“满一格的按一格计算,不满一格按半格计算”、“满半格按一格计算,不满半格按0计算”)两种常用方法,家长辅导孩子时,可以按照题意或学校要求的规则进行选择。
例如:图中每个小方格的面积是1cm,估算这片叶子的面积。
解析:(1)满格共用18格,这片叶子的面积>18cm。
(2)非满格18格,这片叶子的面积<36cm。
(3)这片叶子的大概面积在18cm到36cm之间。
(4)“满一格的按一格计算,不满一格按半格计算”,这片叶子的面积为18+18/2=27cm(5)“满半格按一格计算,不满半格按0计算”,这片叶子的面积为18+11=29cm2、利用方格纸数格子方格纸有透明和不透明两种,标准的度量单位为1cm一格。
(1)所求面积的不规则图形不可移动时(试卷或书上的直接提供的不规则图形),家长可以让孩子选择透明方格纸附在图案上,再用“数格子”法计算面积。
(2)所求面积的不规则图形可移动时(如一片树叶),家长可以教孩子将不规则图形的影像轮廓,描绘到不透明的方格纸上,再用“数格子”法计算面积。
五年级上册数学教案——方格图中不规则图形的面积计算教材版本:人民教育出版社2014年秋季新课标版教学目标:1. 理解不规则图形的面积概念,掌握计算不规则图形面积的方法。
2. 培养学生的观察能力、空间想象能力和逻辑思维能力。
3. 培养学生运用数学知识解决实际问题的能力。
教学内容:1. 不规则图形的面积概念。
2. 计算不规则图形面积的方法。
3. 实际应用:解决生活中的面积问题。
教学重点与难点:重点:掌握计算不规则图形面积的方法。
难点:正确划分不规则图形,准确计算面积。
教学过程:一、导入1. 复习回顾:引导学生回顾之前学过的平面图形的面积计算方法,为新课的学习做好铺垫。
2. 提出问题:如何计算不规则图形的面积?二、新课讲解1. 讲解不规则图形的面积概念:不规则图形的面积是指图形所占据平面的大小。
2. 讲解计算不规则图形面积的方法:a. 划分法:将不规则图形划分成若干个已知图形,分别计算面积,然后求和。
b. 数格法:在方格纸上,计算不规则图形所覆盖的整格数量,不满一格的按照一定比例估算。
3. 举例讲解:通过具体例子,演示划分法和数格法的应用。
三、课堂练习1. 让学生独立完成教材上的练习题,巩固所学知识。
2. 老师巡回指导,解答学生的疑问。
四、课堂小结1. 让学生总结本节课所学的不规则图形面积计算方法。
2. 强调正确划分不规则图形和准确计算面积的重要性。
五、课后作业1. 完成教材上的课后习题。
2. 观察生活中哪些地方可以运用到不规则图形的面积计算,记录下来并与同学分享。
教学反思:本节课通过讲解、举例、练习等多种教学手段,使学生掌握了计算不规则图形面积的方法。
在教学过程中,要注意引导学生观察、思考,培养学生的空间想象能力和逻辑思维能力。
同时,要关注学生的学习反馈,及时解答学生的疑问,确保教学效果。
备注:本教案仅供参考,具体教学过程可根据实际情况进行调整。
重点关注的细节:划分法与数格法在计算不规则图形面积时的应用。
不规则图形面积的估算知识精讲1.认识不规则图形像树叶、手掌等形状的图形,既不是长方形、正方形、三角形、平行四边形等基本图形,也不能通过分割、添补成基本图形,就叫作不规则图形。
2.不规则图形面积的估算方法不规则图形的面积无法直接利用面积公式计算,也难以直接运用计算组合图形面积的方法计算,一般通过一些特殊的方法估算。
方法1:利用数方格法估算。
将需要估算面积的图形放在方格纸中,将图形所占所有方格代表的面积相加,大约就是不规则图形的面积。
数方格时,占满1格记1格,占半格记作0.5格;对于大于半格和小于半格的部分,可以有不同的计数方法,如可以将大于半格和小于半格的合在一起,记作1格,也可以简化处理,将大于半格的记作1格,不满半格的记作0。
如估算下面树叶的面积,可以先数出占满格的有18个,超过半格的有11个,不满半格的有7个,所以这片树叶的面积大约是29平方厘米。
方法2:看作基本图形估算。
根据图形的特点,把不规则图形看作一个或几个基本图形,利用面积公式估算其面积。
仍以上面的树叶为例,也可以将其近似看作一个平行四边形,底是5个小方格的边长,高是6个小方格的边长,根据平行四边形的面积公式,可知该树叶的面积大约是5×6=30(cm2)。
名师点睛数方格估算面积时,方格分割越细越精确用数方格法估算不规则图形的面积时,方格分割越细,分的格子就越多,无法准确计算的图形面积就越少,因此估算出的面积就越准确。
典型例题例1:下图中每个小方格的面积都是1dm2,请你估算图中阴影部分的面积。
解析:可以利用数方格法估计。
满格的有10格,超过半格的有4格,不满半格的有1格,所以阴影部分的面积大约为14dm2。
答案:14dm2。
例2:下图中每个小方格的面积是1cm²,阴影部分的面积大约是多少平方厘米?解析:可以把阴影部分近似看成一个长方形(如下图),长是8cm,宽是4cm,因此阴影部分的面积大约是8×4=32(cm²)。
求不规则面积的数学方法一、分割法。
1.1 原理阐述。
求不规则面积的时候啊,分割法是个挺不错的法子。
就是把那个不规则的图形啊,分割成咱们熟悉的图形,像三角形、长方形、正方形啥的。
这就好比把一个大难题啊,拆成一个个小问题,各个击破嘛。
就拿一块奇形怪状的地来说,咱们可以想象着用几条线把它切成几块规整的形状,就像切蛋糕似的。
1.2 实际例子。
比如说有个不规则的多边形,看着乱得很。
咱们仔细瞅瞅,从几个合适的点连线,把它分成了三个三角形和一个长方形。
三角形的面积公式咱都知道,底乘高除以二嘛,长方形面积就是长乘宽。
把这几个小图形的面积都算出来,然后一加,这个不规则多边形的面积就出来了。
这就像是把一群散兵游勇,按照不同的队伍编排好,再把每个队伍的人数一加,总数就清楚了。
二、填补法。
2.1 原理剖析。
填补法呢,和分割法有点相反。
要是遇到个不规则的图形,咱就想办法给它补上一块或者几块,让它变成一个咱们能轻松算面积的规则图形。
这就好比一个人衣服破了个洞,咱们补上一块布,让它完整起来。
等算出这个完整的规则图形的面积之后呢,再把咱们补上的那部分面积减掉,剩下的就是原来不规则图形的面积了。
2.2 举例说明。
就像有个图形,缺了一角,看着像个残缺不全的正方形。
咱们就给它补上那缺的一角,让它变成一个完整的正方形。
先算出这个正方形的面积,然后再算出补上的小三角形的面积。
正方形面积减去三角形面积,得嘞,原来那个不规则图形的面积就到手了。
这就像先把一个不完整的东西补全,再把多出来的部分去掉,就得到原本的东西了。
三、方格纸估算。
3.1 操作方法。
方格纸估算这个方法也很实用。
把这个不规则的图形画在方格纸上,每个方格的大小是一样的。
然后咱们就数这个图形占了多少个方格。
对于那些不满一格的,咱们就大概估算一下,是半格呢还是三分之一格之类的。
这就有点像咱们过日子,有时候大概估摸一下东西的数量。
3.2 实际操作。
比如说有个不规则的树叶形状的图形画在方格纸上。
人教版五年级上册《方格图中不规则图形的面积计算》数学教案_教学设计
人教版五年级上册《方格图中不规则图形的面积计算》数学教案
教学内容:教材P100例五及练习二十二第7~11题。
教学目标:
知识与技能:初步掌握通过将不规则图形近似地看作可求面积的多边形来求图形的面积。
过程与方法:用数格子方法和近似图形求积法估测不规则图形的面积。
情感、态度与价值观:培养学生的语言表达能力和合作探究精神,发展学生思维的灵活性。
教学重点:将规则的简单图形和形似的不规则图形建立联系。
教学难点:掌握估算的习惯和方法的选择。
教学方法:迁移式、尝试、扶放式教学法。
教学准备:师:多媒体、树叶、透明方格纸。
生:树叶若干片、方格纸一张。
教学过程
一、知识铺垫
平行四边形、三角形、梯形、组合图形等规则图形的面积我们都会计算了,那么像树叶、手掌等不规则图形的面积你们会计算吗?有什么办法,说说你的想法?
二、自主探究
1.探究活动一:用数方格的方法计算不规则图形的面积。
(1)数方格。
这片叶子的形状不规则,怎么计算面积呢?可以通过数一数的方法来解决。
(2)在树叶上摆放透明的每格1平方厘米方格纸。
树叶有的在透明的厘米方格纸中,出现了满格、半格,还出现了大于半格和小于半格的情况。
(说明:一个方格表示1㎡,不满一格的都按半格计算)
(3)为了计算方便,要先在方格纸上描出叶子的轮廓图。
(4)小组交流讨论,汇报。
方格图中不规则图形的面积计算
教学内容:教材P100例五及练习二十二第7~11题。
教学目标:
知识与技能:初步掌握“通过将不规则图形近似地看作可求面积的多边形来求图形的面积”。
过程与方法:用数格子方法和近似图形求积法估测不规则图形的面积。
情感、态度与价值观:培养学生的语言表达能力和合作探究精神,发展学生思维的灵活性。
教学重点:将规则的简单图形和形似的不规则图形建立联系。
教学难点:掌握估算的习惯和方法的选择。
教学方法:迁移式、尝试、扶放式教学法。
教学准备:师:多媒体、树叶、透明方格纸。
生:树叶若干片、方格纸一张。
教学过程
一、情境导入
出示图片:秋天的图片。
并谈话导人:秋天一到,到处都是飘落的树叶,老师想把这美丽的树叶带入数学课里来研究,我们可以研究它的什么呢?
学生回答,并根据学生的回答板书课题:树叶的面积。
出示一片树叶,先让学生指一指树叶的面积是哪一部分?指名几名学生上台指一指。
引导学生思考:它是一个不规则的图形,那么面积如何计算呢?
学生通过交流,会想到用方格数出来,如果想不到教师可以提醒学生。
二、互动新授
1.出示教材第100页情境图中的树叶。
引导思考:这片叶子的形状不规则,怎么计算面积呢?
让学生思考,并在小组内交流。
学生可能会想到:可以将树叶放在透明方格纸上来计数。
对学生的回答要给予肯定,并强调还是要用一个统一的标准的方格进行计数。
演示教材第100页情境全图:在树叶上摆放透明的每格1平方厘米方格纸。
引导学生观察情境图,说一说发现了一些什么情况?
学生可能会看出:树叶有的在透明的厘米方格纸中,出现了满格、半格,还出现了大于半格和小于半格的情况。
2.自主探索树叶的面积。
明确:为了计算方便,要先在方格纸上描出叶子的轮廓图。
先让学生估一估,这片叶子的面积大约是多少平方厘米。
让学生自主猜测。
再让学生数一下整格的:一共有18格。
引导思考:余下方格的怎么办?
小组交流讨论,汇报。
通过讨论,学生可能会想到:可以把少的与多的拼在一起算一格;也可以把大于等于半格的算一格,小于半格的可以舍去不算。
提示:如果把不满一格的都按半格计算,这片叶子的面积大约是多少平方厘米?
学生通过数方格可以得出:这片叶子的面积大约是27cm2。
质疑:为什么这里要说树叶的面积是“大约”?
学生自主回答:因为有的多算,有的不算,算出的面积不是准确数。
3.让学生拿出树叶及小方格纸,以小组为单位研究树叶面积的计算。
小组合作进行测量、计算,并汇报本组测量的树叶的面积大约是多少。
4.引导:你还能用其他方法来计算叶子的面积吗?
小组讨论、交流。
学生有了前面学习的经验后,会想到可以把叶子的图形转化成学过的平面图形来估算。
让学生观察叶子的形状近似于我们学过的哪种图形。
(平行四边形)
思考:你能将叶子的图形近似转化成平行四边形吗?
学生回答,师根据学生的回答多媒体出示将叶子转化成平行四边形的过程(即教材第100页第三幅情境图)。
再让学生数一数这个平行四边形的底与高分别是多少,再尝试计算。
(平行四边形的底是5厘米,高6厘米。
)
学生自主解答,并汇报。
根据学生汇报板书计算过程:
S=ah
=5×6
=30(cm2)
5.让学生再说一说,你是怎样估算树叶的面积?
学生可能会回答:先通过数方格确定面积的范围,再把不规则图形转化为学过的图形来估算。
三、巩固拓展
1.完成教材第102页“练习二十二”第8题。
先让学生数一数阴影部分的面积大约是多少。
汇报时让学生说一说是怎么数的。
学生可能数的是阴影部分;也有的把阴影部分填补成学过的图形,算出图形的面积再减去填补的图形的面积。
让学生对这两种方法进行比较,从中选出较简单的方法计算。
提示:第一幅图还可以把图形添上一个三角形填补成一个梯形,算出梯形的面积再减去三角形的面积,从而求出准确值。
2.完成教材第102页“练习二十二”第9题。
通过上一题对计算方法的选择,师引导学生先把这个图形转化成学过的近似图形,再估算。
3.完成教材第102页“练习二十二”第10题。
先让学生运用自己喜欢的方法估计一下图上手掌的面积,再估一估自己手掌的面积大约是多少。
四、课堂小结
师:这节课你学会了什么?有哪些收获?
引导总结:
1.求不规则图形的面积时,先通过数方格确定面积的范围,再把不规则图形转化为学过的图形来估算。
2.不规则图形的面积都不是准确值,而是一个近似数。
作业:教材第102页练习二十二第7、11题。
板书设计:
方格图中不规则图形的面积计算
先通过数方格确定面积的范围,
再把不规则图形转化为学过的图形来估算。
S=ah
=5×6
=30(cm2)。