酶学分析技术2016
- 格式:pptx
- 大小:2.10 MB
- 文档页数:72
酶学分析技术范文酶学分析技术(Enzyme Assay Techniques)是一种用于测定生物样品中酶活性的方法。
酶是生物体内广泛存在的催化剂,可以加速化学反应的速率。
酶学分析技术在生物化学、医学、农业等领域都有重要的应用。
首先,酶学分析技术中最常用的方法之一是光度法。
光度法基于酶催化反应产生物质的颜色变化,并通过测量吸光度来确定酶活性的方法。
典型的酶学分析技术中,一种常用的测量指标是酶促反应后产生的NADH或NADPH的浓度。
通过比较反应前后的吸光度差异,可以计算出酶的催化速率。
其次,酶学分析技术中常用的另一种方法是荧光法。
荧光法基于酶催化反应后产生荧光分子的原理,通过测量荧光信号来确定酶活性的方法。
荧光法具有高灵敏度和高选择性的特点,适用于检测低浓度的酶活性。
常用的荧光剂包括荧光底物和荧光探针,可以通过酶催化反应后的荧光信号强度或颜色变化来确定酶活性。
此外,酶学分析技术中还有其他一些常用的方法,例如比色法、电化学法和质谱法等。
比色法通过测量反应物质的颜色变化来确定酶活性,常用的比色剂有碘化钠、邻联二硝基苯胺等。
电化学法基于酶催化反应过程中产生的电流变化来确定酶活性,常用的电极包括氧化还原电极、工作电极和对比电极等。
质谱法利用质谱仪分析酶催化反应产物的质荷比来确定酶活性,可以用于分析复杂的代谢途径和检测微量物质。
总的来说,酶学分析技术在生物科学研究和应用实验中有着广泛的应用。
通过研究酶的活性和底物/产物之间的关系,可以了解酶的催化机制和生理功能。
酶学分析技术不仅可以用于检测酶的活性、底物和产物的含量,还可以用于筛选和优化酶的性质,例如通过变异酶突变、构建重组酶等方法。
此外,酶学分析技术还可以用于药物研发、生物工程和环境监测等领域。
总结起来,酶学分析技术是一种用于测定生物样品中酶活性的重要方法。
其原理和实验步骤多种多样,常用的方法包括光度法、荧光法、比色法、电化学法和质谱法等。
酶学分析技术在生物科学研究和应用实验中具有广泛的应用,可以了解酶的催化机制、优化酶的性质,以及在药物研发、生物工程和环境监测等领域中的应用。
第五章酶学分析技术名词解释酶:由活细胞产生的具有特异性和高效催化率的一类蛋白质。
辅酶:与蛋白质结合疏松的结合酶。
多是维生素或维生素衍生物。
工具酶:作为试剂用于测定代谢物浓度或酶活性的酶。
酶活性:在规定条件下,单位时间内底物减少的量或产物生成的量。
即酶促反应的速度。
(线性期的酶促反应速度才能准确代表酶活性)酶活性单位:在一定条件下使酶促反应达到某一速度时所需的酶量。
一个人为规定的标准。
有惯用单位、国际单位和Katal单位三种。
国际单位:1IU指在规定条件下(25℃,最适pH,最适底物浓度),每分钟转化1μmol底物所需要的酶量。
常将IU简写成I。
K m:等于酶促反应速度达最大值一般时的底物浓度。
、K m越大,酶与底物亲合力越小K m越小,酶与底物亲合力越大米-曼氏方程:V = V max × S / S+K m。
可以导出K m =(V max - V)S / V定时法:又称终点法、两点发。
底物与酶作用一段时间后,加入强酸、强碱、蛋白沉淀剂等终止酶促反应,测定这段时间内底物的减少量或产物的生成量,计算酶促反应的平均速度。
反应时间是t1~t2。
操作简单但难以确定反应时间段酶促反应是否处于线性期。
速率法:在酶促反应期间每隔一段时间测定一次产物或底物变化量,根据变化量间接求出酶活性浓度。
连续观察反应进程,可在线性期测定酶活性,标本和试剂用量少,可在短时间内完成,但要求高,要精确控制温度、pH和底物浓度等。
指示酶:血浆特意酶:在血浆中发挥特定催化作用的酶。
问答题1、酶活性测定的速率法与终点法有何不同?答:①终点法是指测定反应开始后一段时间内(t1~t2)产物的生成量或底物的消耗量以测定的方法。
②速率法是指在酶促反应期间每隔一段时间测定一次产物或底物变化量,根据变化量间接求出酶活性浓度。
③速率法无需终止酶促反应,不需要添加其他显色试剂就可以测定反应物的变化,很容易观察反应整个过程,可在线性期测定酶活性,结果准确可靠,标本和试剂用量小。