不锈钢的切削加工总结
- 格式:doc
- 大小:2.12 MB
- 文档页数:7
分析不锈钢的机械加工方法不锈钢是一种耐腐蚀的金属材料,广泛应用于制造行业中。
机械加工是对不锈钢进行形状加工和表面处理的重要方法之一,本文将分析常用的不锈钢机械加工方法。
1.铣削加工:铣削是将刀具在工件上旋转切削的一种加工方法。
不锈钢的硬度相对较高,因此在铣削过程中需要选用高硬度的刀具,并采用适当的切削速度和进给速度。
对于精密加工,还可采用数控铣床进行精确控制。
2.车削加工:车削是通过旋转车刀将工件宽度修整到设计尺寸的加工方法。
不锈钢的硬度高,具有很高的切削难度。
为了保证加工质量,需要选用刀具的刀片材料具有良好的切削性能,经常更换刀片,并且适当选择进给速度和切削速度。
3.钻削加工:钻削是通过旋转刀具在工件上切削孔洞的加工方法。
在不锈钢的钻削中,由于工件硬度高,钻头容易损坏。
因此,应选择硬质合金钻头,采用较低的切削转速,并进行冷却润滑剂的切削润滑。
4.磨削加工:磨削是通过磨料颗粒对工件进行磨削的一种加工方法。
不锈钢硬度高,适合采用砂轮进行磨削。
在磨削过程中,应选用适当的磨具和磨削磨粒,并保证切削液的良好冷却和润滑。
5.锻造加工:锻造是通过对不锈钢材料施加压力,使其发生塑性变形并改变形状的一种加工方法。
不锈钢具有较好的锻造性能,适合进行锻造加工。
通过锻造可以获得高强度和良好的耐腐蚀性能的零件。
6.激光切割:激光切割是通过高能激光束对不锈钢表面进行烧蚀,达到切割的目的。
激光切割具有高精度、高速度的特点,可用于制造复杂形状的零件。
7.电火花加工:电火花加工是通过电脉冲在工件表面产生高能量火花,使工件表面产生微小的氧化腐蚀,从而实现对不锈钢进行精细加工和切割的一种方法。
以上是常见的不锈钢机械加工方法,每种方法都具有适用的情况和要求。
在实际应用中,需要根据具体的加工需求和工件材料特性进行选择,以获得最佳的加工效果。
不锈钢的切削加工特点及方法作者:林法振来源:《中国新技术新产品》2013年第10期摘要:不锈钢在切削加工中具有塑性变形大、热强度高、与刀具亲和性强、易与刀具粘结等特点,其切削加工性能比一般中碳钢差的多,如不采用合理的切削方法,将很难达到理想的加工质量,而且还会额外损伤刀具。
本文从刀具、切削方法、冷却液等方面叙述了不锈钢在切削加工中应采取的措施。
关键词:不锈钢;切削加工;刀具;切削液中图分类号:TF76 文献标识码:A1 不锈钢的切削加工特点经实践总结,不锈钢在切削加工中有如下特点:1.1 切削温度高:不锈钢在切削时会产生较大塑性变形与刀具摩擦,产生大量的切削热,而不锈钢导热性较差,使热量集中在切削区难以散发,使得切削温度升高。
1.2 加工硬化严重:不锈钢在切削时表面会产生强烈的塑性变形,使表面强度和硬度均有很大提高,从而导致严重加工硬化。
其中奥氏体不锈钢和奥氏体+铁素体不锈钢的加工硬化最为突出,主要因为奥氏体不够稳定,部分奥氏体在切削力作用下会转变为马氏体。
1.3 切削力大:不锈钢切削时的较大塑性变形使刀具切削力增大。
而不锈钢切削的加工硬化严重、热强度高等特点也是使切削力增大的重要因素。
1.4 切屑不易折断:不锈钢的塑性大、韧性大使得切削加工时切屑连绵不断,不仅影响操作的顺利进行,切屑还会挤伤已加工表面。
1.5 切屑易粘结、刀具易磨损:不锈钢在高温、高压下与其他金属的亲和性强,而使刀-屑间产生粘结、扩散,从而使刀具产生粘结磨损、扩散磨损,并导致加工表面恶化。
1.6 线膨胀系数大:不锈钢的线膨胀系数约为碳素钢的1.5倍,切削过程中容易产生热变形,尺寸精度较难控制。
2 主要技术措施2.1 刀具材料的选择根据不锈钢的切削加工特点,要求刀具切削部分材料应具有较高的耐磨性、红硬性及与不锈钢亲和作用小等特点。
2.1.1 推荐使用YG类硬质合金(即WC-CO类硬质合金),其除具备以上特点外,还具备较好的韧性和导热性。
304 不锈钢车削加工特点及加工工艺304 不锈钢广泛应用与各行各业,你确定对其车削加工特点及相关的加工工艺很感兴趣。
下面就由我为你带来 304 不锈钢车削加工特点及加工工艺,期望你宠爱。
304 不锈钢车削加工特点(1)切削力大AISI 304 奥氏体不锈钢的硬度不高(硬度≤187HBS),由于其含大量的 Cr、Ni、Mn 等元素,塑性较好(断后伸长率δ5≥40%,断面收缩率ψ≥60%)。
切削加工时塑性变形大,尤其在较高温度时仍可保持较高的强度(一般钢在切削温度上升时强度下降明显),导致 AISI304 奥氏体不锈钢的切削力较大。
常规切削条件下,AISI 304 不锈钢的单位切削力达 2450MPa,比 45 钢高 25%以上。
(2)加工硬化严峻AISI 304 不锈钢在切削加工时伴有较为明显的塑性变形,材料晶格会产生严峻的歪扭;同时,由于奥氏体组织在稳定性方面的缺陷,一小局部奥氏体在此过程中变成了马氏体;此外,奥氏体中存在的杂质化合物会随着切削过程的进展因受热而分解,弥散分布的杂质在外表产生了硬化层,使加工硬化现象格外明显,硬化后的强度σb达1500MPa 以上,硬化层深度 0.1-0.3mm。
(3)切削区局部温度高由于AISI304 不锈钢所需切削力大,且切屑不易切离,使得分别切屑所消耗的功也较大。
常规条件下切削AISI 304 不锈钢比低碳钢高约50%,产生的切削热多。
奥氏体不锈钢的导热性差,AISI304 不锈钢的热导率为 16.3-21.5W/m·K,仅为 45 钢热导率的三分之一,因而使得切削区域的温度较高(通常切削加工时切屑所带走的热量应占切削热量的70%以上),大量切削热集中在切削区和“刀—屑”接触面上,传入刀具中的热量达20%(切削一般碳素钢时该数值仅为9%),使得在同等切削条件下,AISI304 不锈钢切削温度比 45 钢高约 200-300℃。
(4)刀具易产生粘附磨损由于奥氏体不锈钢的高温强度高,加工硬化倾向大,因此,切削负荷重,奥氏体不锈钢与刀具和切屑之间会由于切削过程中其与刀具之间的亲合趋势显著增加,从而不行避开地产生粘结、集中等现象,并生成“切屑瘤”,造成刀具粘附磨损。
不锈钢的车削技巧主要包括以下几个方面:1.刀具选择:选择适合不锈钢车削的刀具非常重要。
通常,选择具有较高耐热性、耐磨性和与不锈钢亲和作用小的刀具材料,如高碳、高钒或钼系的高速钢。
此外,刀具的几何形状和角度也需要根据具体加工要求进行选择。
2.切削用量选择:切削用量包括切削速度、进给量和切削深度。
对于不锈钢的车削,切削速度通常较低,一般为普通碳钢切削速度的40%~60%。
进给量和切削深度也需要根据具体情况进行选择,以避免刀具过度磨损和工件表面质量下降。
3.冷却液选择:使用合适的冷却液可以有效降低切削温度,减少刀具磨损和提高工件表面质量。
对于不锈钢的车削,通常选择具有较好冷却和润滑性能的冷却液。
4.操作技巧:在车削不锈钢时,需要注意以下几点操作技巧:首先,保持刀具的锋利,及时更换磨损的刀具;其次,避免使用过大的切削用量,以减少刀具的受力;最后,注意工件的装夹方式和切削力的方向,以避免工件变形或振动。
此外,还需要注意以下几点:1.由于不锈钢的塑性大、韧性高,车削时容易产生积屑瘤和鳞刺,这不仅影响工件的表面粗糙度,还会使刀具的磨损加快。
因此,需要选择合适的刀具材料和几何角度,以及合理的切削用量来避免这些问题的产生。
2.不锈钢的导热性差,导致切削热无法及时散出,使刀具的刃口温度升高,加剧刀具磨损。
为了降低切削温度,可以采用浇注冷却液的方法。
3.在车削过程中,应随时注意观察切削情况,如发现异常现象(如振动、噪声、温度升高等),应及时采取措施进行调整。
4.对于不同种类和规格的不锈钢材料,其车削性能也会有所不同。
因此,在实际加工前,最好先进行一些试验性切削,以确定最佳的切削参数和工艺方案。
总之,掌握不锈钢的车削技巧需要综合考虑多个因素,包括刀具选择、切削用量、冷却液和操作技巧等。
通过合理的选择和调整这些参数,可以提高加工效率、降低生产成本并获得高质量的工件。
不锈钢的切削加工
由于不锈钢所具有耐蚀能力,并在较高温度(>450℃)下具有较高的强度特性,越来越广泛地应用于航空、航太、化工、石油、建筑和食品等工业部门及日常生活中。
所含的合金元素对切削加工性影响很大,有的甚至很难切削。
不锈钢切削加工特性:加工硬化严重切削力大切削温度高切屑不易折断丶易粘结刀具易磨损线膨胀系数大。
不锈钢加工原则:选用合理的刀具材料改善切削条件选择合理的切削用量合理设计刀具结构及刀具几何参数选用适当的切削液和供液方法。
各加工方式加工应对:。
不锈钢切削工作总结
不锈钢由于其自身特性,在切削加工过程中难度较大,容易产生磨损。
经过这次切削工作,我总结几点经验:
1. 使用正确的工具材料。
不锈钢最好使用陶瓷或超级陶瓷的刀具,降低磨损。
使用碳钢或高速钢的刀具在切削不锈钢时寿命较短。
2. 选择合适的切削参数。
切削速度和进给率不能太大,否则容易造成刀具断裂。
速度一般控制在100-150/之间,进给率控制在0.1-0.2/转之间。
3. 减小切屑厚度。
一次切除厚度控制在0.2以下,多次切削完成整个形状,减轻单次切削的负担。
4. 切削材料预热。
将不锈钢材料预热到150-200°,可以减少切削时的力量和延展冷缩应力,有利于延长刀具使用寿命。
5. 增大切削液流量。
合理使用切削液冷却和清洗作用,有效减少风化和磨损。
通过这次总结,下次切削不锈钢时能选择更合适的工具和参数,操作过程更顺利,也为日后不锈钢加工积累经验。
不锈钢材料的车削加工摘要:随着现代工业的日益发达,不锈钢材质也在生产加工中被广泛应用,因此合理选用不锈钢材质加工刀具,是确保正确高效切割不锈钢的关键条件。
针对不锈钢切削特点,一般要求刀具材质应具备耐热性好、耐磨性高、与不锈钢材质的亲和性影响小等优点。
关键词:不锈钢材料车削加工不锈钢,是在空气中或化学腐蚀介质中都可以抗侵蚀的一类高温合金钢,不锈钢是指拥有漂亮的表层和耐腐蚀性能良好,而且无须经过镀色等表层处理过程,而发挥了不锈钢所存在的表层特点,应用在多种多样的钢材的一类,也常简称为不锈耐酸钢材。
一:不锈钢车削加工的弊端1、加工硬化严重。
2、塑性变形大,热硬度高,切削抗力大,刀具卷曲折断难。
3、由于切屑和工作物之间的磨擦大,所形成的剪切热较多。
4、切削刀具表面容易粘附,易生成积屑瘤,使切削刀具表面出现粘附、扩大损坏,造成前刃面出现月牙洼,切削后刃生成较小的剥落和缺陷;不锈耐酸钢的碳化物微粒硬度很高,在切割时会直接和菜刀接触,从而损坏菜刀,使菜刀的磨损程度加大。
不锈耐酸钢材质的加热强度高、加工韧性大对数控车高速切削并不适用,相较而言,不锈钢材质在高温下的加工硬度下降较小,但实践已证明,在相同切削高温的作用下,不锈钢车削用量远较于一般的碳素钢更难以加工,其中加热强度高是个至关重要的原因。
加工质量硬化趋势强,对数控车削用量影响大在数字控制高速切削的过程中,由于刃刃对工件材料挤出的效果使车削用量区的金属材料形成了变化,晶内出现滑移,晶体畸变,组织致密,加工力学性能也随之改变,而一般的车削用量硬度也可提高2~3倍。
数控切割后的机械加工生硬层深入可能从数十微米至数百微米之间,所以前一次性走刀所形成的机械加工生硬状态,也阻碍了下一次性走刀时的切割,同时加工生硬层的高硬度也使得刀具非常易于损坏,而且岩屑的粘着性强、导热差对数控技术切割也有一定危害。
此外,刀由于受剥肋断面宽度形状的影响,再加上本身硬度不够,加工中易形成振动,刃刃也易在切削过程中因为内部温度过高而烧坏或由于其震动太大而崩裂。
不锈钢切削加工随着机械制造业的发展,不锈钢材料逐渐成为越来越多机械零件和设备的重要材料,其同时也成为用于制造高品质产品所必备的材料之一。
在不锈钢材料的加工和加工过程中,切削加工起着不可忽略的作用。
因此,本文将探讨一下不锈钢切削加工的相关知识。
一、切削加工的优势对于不锈钢材料来说,切削加工具有相对较高的加工效率、加工精度高、表面质量好、加工形状、尺寸复杂的特点等优势,因此在不锈钢材料加工过程中,切削加工比较普遍且广泛应用。
二、切削加工的基本要素1. 刀具的选择不同的不锈钢材质加工时,其硬度、韧性等性质不同,需要使用不同的刀具,包括切削刀具、钻头、车刀、铣刀等。
刀具选择好后,必须注意保证其使用寿命和切削质量,可以将不同的刀具进行组合使用,提高效率和加工质量。
2. 加工参数的设置加工参数包括进给量、转速、切削深度等,需要根据不锈钢材料性质及刀具特性合理地进行设置,以保证加工质量与效率。
3. 切削液的选择切削液在切削加工中具有降温、润滑、清洗等作用,能够对加工效果产生重要的影响。
不锈钢材料的加工,常常需要选择含氯切削液,以提高切削质量和加工效率。
三、切削加工的注意事项1. 切削过程中注意安全在切削加工中,必须严格遵守安全操作规程。
包括建立安全的切削区域,确保刀具和加工件固定牢固,减少刀具摆动及切割弯曲,选用适当的防护设备等。
2. 防止振动不锈钢材料硬度大,加工难度较大,若刀具加工时受到振动,会影响加工质量,降低刀具寿命,甚至对机床和设备的稳定性受到影响。
因此,需要采用合适的切削刀具,避免刀具的摆动和震动。
3. 避免高温不锈钢材料的加工需要保证较低的加工温度,以避免影响材料的机械性能、耐腐蚀性能和表面质量等。
因此,应在加工的同时采用切削液进行切削以降低温度,也可以使用定制的切削液等方式避免切削过程中的过热现象。
总之,不锈钢材料的切削加工需要考虑多种因素,包括材料特性、加工工艺、工具选择、加工参数等等,并且需要遵守各种安全操作规程,加强创新,探索适合于不锈钢材料切削加工的新工艺和新技术,以提高加工效率和加工质量,满足不同行业对于不锈钢材料机械零件和设备的需求,为推动国内机械制造业的发展做出贡献。
不锈钢的切削加工
在不锈钢的切削加工中,首先要对被加工件的被切削性能有所了解,不锈钢在切削过程中有如下几方面特点:
1. 加工硬化严重:在不锈钢中,以奥氏体和奥氏体+铁素体不锈钢的加工硬化现象最为突出。
因为不锈钢的塑性大,塑性变形时晶格歪扭,强化系数很大;且奥氏体不够稳定,在切削应力的作用下,部分奥氏体会转变为马氏体;再加上化合物杂质在切削热的作用下,易于分解呈弥散分布,使切削加工时产生硬化层。
2. 切削力大:不锈钢在切削过程中塑性变形大,尤其是奥氏体不锈钢(其伸长率超过45号钢的1.5倍以上),使切削力增加。
同时,不锈钢的加工硬化严重,热强度高,进一步增大了切削抗力,切屑的卷曲折断也比较困难。
3. 切削温度高:切削时塑性变形及与刀具间的摩擦都很大,产生的切削热多;大量切削热都集中在切削区和刀削接触的界面上,散热条件差。
在相同的条件下切削温度比45号钢高200℃左右。
4. 切削不易折断、易粘结:不锈钢的塑性、韧性都很大,在高温、高压下,不锈钢与其他金属的亲和性强,易产生粘附现象,并形成积削瘤,既加剧刀具磨损,又会出现撕扯现象而使已加工表面恶化。
含碳量较低的马氏体不锈钢的这一特点更为明显。
5. 刀具易磨损:切削不锈钢过程中的亲和作用,使刀削间产生粘结、扩散,从而使刀具产生粘结磨损、扩散磨损,致使刀具前刀面产生月牙洼,切削刃还会形成微小的剥落和缺口;加上不锈钢中的碳化物(如TiC)微粒硬度很高,
切削时直接与刀具接触、摩擦,擦伤刀具,还有加工硬化现象,均会使刀具磨损加剧。
切削不锈钢时应怎样选择刀具的材料:
合理选择刀具材料是保证高效率切削加工不锈钢的重要条件。
根据不锈钢的切削特点,要求刀具材料应具有耐热性好、耐磨性高、与不锈钢的亲和作用小等特点,YG类硬质合金的韧性较好,可采用较大的前角,刀刃也可以磨得锋利些,使切削轻快,且切屑与刀具不易产生粘结,较适于加工不锈钢。
另外,YG类合金的导热性较好,其导热系数比高速钢高将近两倍,比YT类合金高一倍。
切削不锈钢时怎样选择刀具几何参数?
前角:不锈钢的硬度、强度并不高,但其塑性、韧性都较好,热强性高,切削时切屑不易被切离。
在保证刀具有足够强度的前提下,应选用较大的前角,这样不仅能够减小被切削金属的塑性变形,而且可以降低切削力和切削温度,同时使硬化层深度减小。
后角:加大后角能减小后刀面与加工表面的摩擦,但会使切削刃的强度和散热能力降低。
后角的合理值取决于切削厚度,切削厚度小时,宜选较大后角,我们三轨由于切削量大,所以选用20°的后角。
选择合适的涂层对于金属切削来说能起到非常重要的作用,TiAICRN(碳氮化铝钛)涂层在不锈钢切削加工中起着非常重要的作用涂层材料作为化学屏障和热屏障,减小了月牙洼磨损,耐磨性良好。
与未涂层刀具相比,涂层刀具加工精度提高0.5~1级,刀具消耗费用降低20%~50%,耐磨性提高2~10倍,切削速度提高25%~70%,使用寿命延长3~5倍。
在选择刀盘直径时也有非常大的讲究,刀盘的直径一定要比被加工件大一点,否则在切削时受力非常大,而且不易刀片的散热和铁削的排出!一般刀盘直径是被加工件宽度的1.5倍。
在刀盘的设计选用上,应从效率和成本这两方面找到一个很好的平衡点,我们最后选用七个齿的刀盘,在保证了切削速度的同时也增大了排削的空间,并且节约了
成本!
刀片切削时的角度取决于刀盘的装夹角度,不锈钢切削一般都采用45°角,在刀片与被切削钢件接触角也应该从切削受力与加工表面质量中做取决!
为了保
疏
每齿能有较大的进给量 较大的齿槽 较大的切削深度
最小的切削马力
密
较多的齿接触 更高的每分钟进给量 较小的切削深度
较小的排屑空间
证切削强度,我们设计时采用2mm宽度的平面倒角,在加工时保证了切削强度,当然,这种设计是在保证光洁度的前提下进行的!
在铣削不锈钢时,不锈钢的粘附性及熔着性很强,切屑容易粘附在铣刀刀齿上,使切削条件恶化;逆铣时,刀齿先在已经硬化的表面上滑行,增加了加工硬化的趋势;铣削时冲击、振动较大,使铣刀刀齿易崩刃和磨损。
所以铣削不锈钢时,应尽可能采用顺铣法加工。
顺铣法能保证切削刃平稳地从金属中切离,切屑粘结接触面积较小,在高速离心力的作用下易被甩掉,以免刀齿重新切入工件时,切屑冲击前刀面产生剥落和崩刃现象,提高刀具的耐用度。
加工中的方式和技巧对于刀片的寿命的延长起着举足轻重地作用!
冷却方法:采用喷雾冷却法效果最为显著,可提高铣刀耐用度一倍以上;如用一般10%乳化液冷却(我们现在用的是煤油雾冷的方法,因为考虑到产品的清洁度),应保证切削液流量达到充分冷却。
在加工中,表面质量是最重要的,但是往往会出现很多设计时都意想不到的表面粗糙度的问题困扰着大家:
如何找出原因:
接柄
当铣削时刀盘应少量的偏置的好处
1.减小震刀
2.在刀盘进入工件与离开工件时可得
倒括刀痕
如何找出原因: 强度 工件夹持
切削力 走刀量 切宽
刀盘
刀片锋利度
机床刚性
被加工件变形量大
在切削加工中,刀具的破损在所难免,但是刀具破损的原因却有很多,每种破损代表的原因却是不同的,刀具破损的种类分为:缺口、切深处缺口、热裂痕、废削刃口堆积、月牙洼、后刀面磨损、多种原因引起的断裂
造成刀具破损的原因
刚度不强
刀刃的锋利度差
材质不适合切削被加工件
速度太快
造成切深处缺口的原因
刀具的几何尺寸设计不合理
材质不适合切削被加工件
吃刀量太大
速度太快
刀刃的锋利度太差
造成热裂痕的原因
冷却液冷却不充分
材质不恰当,承受不了这么
造成刃口堆积的原因
速度设置不当
吃刀量太大
冷却不充分
槽型设计不当
造成月牙洼的原因
刃口不够锋利,不能更快切削和排材质太软
速度太快
吃刀量太大
造成后刀面磨损的原因
速度太快
吃刀量大
材质易磨损
后角角度设计不正确,造成排。