组卷高中数学组卷—统计案例
- 格式:doc
- 大小:185.00 KB
- 文档页数:7
统计案例1•下列抽样试验中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3 : 2 : 8 : 2,从中抽取200人入样B.从某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样2.某中学开学后从高一年级的学生中随机抽取90名学生进行家庭情况调查,经过一段时间后再次从这个年级随机抽取100名学生进行学情调查,发现有20名同学上次被抽到过,估计这个学校高一年级的学生人数为()A. 180B. 400C. 450D. 2 0003.1,在等腰直角三角形ABC中,在斜边AB上任取一点M,则AM>AC的概率是__________答案:耳124.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,施{1,2,3,4,5,6},若|«-^|<1,就称甲乙"心有灵犀” •4 现任意找两人玩这个游戏,则他们“心有灵犀”的概率为•答案:一9 5.每次抛掷一枚骰子(六个面上分别标以1, 2, 3, 4, 5, 6).连续抛掷2次,则2次向上的数之和不小于10的概率为__________ •答案:丄66.若从集合{1,2,3,4,5}的所有子集中任取一个子集,则取出的集合含有至少两个元素的13概率是______________ •答案:—167. _________________________________________________________________ 设aw {1,3,5},施{2,4,6},则函数y = log h丄是增函数的概率为______________________ 答案:丄方x 3 &设有一个回归方程为y = 2-1.5x则变量x每增加一个单位时,y平均减少_____________1. 5个单位9.若变量y与x之间的相关系数r =-0.9362,则变量y与x之间()A、不具有线性相关关系B、具有线性相关关系C、它们的线性关系还要进一步确定D、不确定10.下列说法:①将一组数据中的每个数据都加上或减去一个常数后,方差恒不变;②设A有一个回归方程y = 3-5x,变量x增加一个单位时,y平均增加5个单位;③线性回归方A程y = bx + a必过点(x, y);④曲线上的点与改点的坐标之间具有相关关系;⑤在一个2x2列联表中,由计算得力2=13. 079,则其两个变量间有关系的可能性是90%,其中错误的序号是________________ ②④⑤11.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟试根据上述数据计算力2= __________________比较这两种手术对病人又发作心脏病的影响有没有差别. ______________________________________________1. 78;不能作出这两种手术对病人又发作心脏病的影响有差别的结论12.(09天津)为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A, B,C三个区中抽取7个工厂进行调查,已知A,B, C区中分别有18, 27, 18个工厂(I )求从A.B.C区中分别抽取的工厂个数;(II)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率。
高三数学统计案例试题答案及解析1.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()D.阅读量【答案】D【解析】根据公式分别计算得:A., B. C. D. ,选项D的值最大,所以与性别有关联的可能性最大为D. 【考点】关联判断2. 对100只小白鼠进行某种激素试验,其中雄性小白鼠、雌性小白鼠对激素的敏感情况统计得到如下列联表由附表:则下列说法正确的是:( ) A .在犯错误的概率不超过的前提下认为“对激素敏感与性别有关”; B .在犯错误的概率不超过的前提下认为“对激素敏感与性别无关”; C .有以上的把握认为“对激素敏感与性别有关”; D .有以上的把握认为“对激素敏感与性别无关”; 【答案】C 【解析】因为,所以有以上的把握认为“对激素敏感与性别有关”.3. 设A 是由m×n 个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m ,n)为所有这样的数表构成的集合。
对于A ∈S(m,n),记r i (A)为A 的第ⅰ行各数之和(1≤ⅰ≤m ),C j (A)为A 的第j 列各数之和(1≤j≤n ):记K(A)为∣r 1(A)∣,∣R 2(A)∣,…,∣Rm(A)∣,∣C 1(A)∣,∣C 2(A)∣,…,∣Cn(A)∣中的最小值。
对如下数表A ,求K (A )的值;11-0.8(2)设数表A ∈S (2,3)形如求K (A )的最大值;(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。
【答案】(1)0.7 (2)1 (3)【考点定位】此题作为压轴题难度较大,考查学生分析问题解决问题的能力,考查学生严谨的逻辑思维能力【解析】(1)因为,所以不妨设.由题意得.又因为,所以,于是,,所以,当,且时,取得最大值1。
(3)对于给定的正整数t,任给数表如下,…任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表,并且,因此,不妨设,且。
( 时间:60分钟 满分100分)一、选择题(每小题5分,共50分)1、对于散点图下列说法中正确一个是( )(A )通过散点图一定可以看出变量之间的变化规律(B )通过散点图一定不可以看出变量之间的变化规律(C )通过散点图可以看出正相关与负相关有明显区别(D )通过散点图看不出正相关与负相关有什么区别2、在画两个变量的散点图时,下面叙述正确的是( )(A )预报变量在x 轴上,解释变量在y 轴上(B )解释变量在x 轴上,预报变量在y 轴上(C )可以选择两个变量中的任意一个变量在x 轴上(D )可以选择两个变量中的任意一个变量在y 轴上3、如果根据性别与是否爱好运动的列联表,得到841.3852.3>≈k ,所以判断性别与运动有关,那么这种判断出错的可能性为( )(A )0020 (B )0015 (C )0010 (D )0054、下列关于线性回归的说法,不正确的是( )(A )变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系;(B )在平面直角坐标系中用描点法的方法得到表示具有相关关系的两个变量的一组数据的图形叫散点图;(C )线性回归直线方程最能代表观测值y x ,之间的关系;(D )任何一组观测值都能得到具有代表意义的回归直线方程;5、在两个变量y 与x 的回归模型中,分别选择了四个不同的模型,它们的相关指数2R 如下,其中拟合效果最好的为( )(A )模型①的相关指数为976.0 (B )模型②的相关指数为776.0(C )模型③的相关指数为076.0 (D )模型④的相关指数为351.06、关于如何求回归直线的方程,下列说法正确的一项是( )(A )先画一条,测出各点到它的距离,然后移动直线,到达一个使距离之和最小的位置,测出此时的斜率与截距,就可得到回归直线方程(B )在散点图中,选两点,画一条直线,使所画直线两侧的点数一样多或基本相同,求出此直线方程,则该方程即为所求回归方程(C )在散点图中多选几组点,分别求出各直线的斜率与截距,再求它们的平均值,就得到了回归直线的斜率与截距,即可产生回归方程(D )上述三种方法都不可行7、若对于变量y 与x 的10组统计数据的回归模型中,相关指数95.02=R ,又知残差平方和为53.120,那么∑=-1012)(i i y y的值为( )(A )06.241 (B )6.2410 (C )08.253 (D )8.25308、右表是对与喜欢足球与否的统计列联表依据表中的数据,得到( )(A )564.92=K(B )564.32=K(C )706.22<K(D )841.32>K9、某医院用光电比色计检验尿汞时,得尿汞含量)/(L mg 与消光系数读数的结果如下:如果y 与x 之间具有线性相关关系,那么当消光系数的读数为480时,( )(A )汞含量约为L mg /27.13 (B )汞含量高于L mg /27.13(C )汞含量低于L mg /27.13 (D )汞含量一定是L mg /27.1310、由一组样本数据),(,),,(),,(2221n n y x y x y x 得到的回归直线方程a bx y +=∧,那么下面说法正确的是( )(A )直线a bx y +=∧必过点),(--y x(B )直线a bx y +=∧必经过),(,),,(),,(2221n n y x y x y x 一点(C )直线a bx y +=∧经过),(,),,(),,(2221n n y x y x y x 中某两个特殊点(D )直线a bx y +=∧必不过点),(--y x二、填空题(每小题4分,共16分.把答案填在题中的横线上)11、下表是关于出生男婴与女婴调查的列联表那么,A= ,B= ,C= ,D= ,E= ;12、如右表中给出五组数据),(y x ,从中选出四组使其线性相关最大,且保留第一组)3,5(--,那么,应去掉第 组。
高考数学统计与统计案例1.小吴一星期的总开支分布如图 1 所示,一星期的食品开支如图 2 所示,则小吴一星期的鸡蛋开支占总开支的百分比为()A.1%B.2%C.3%D.5%C[ 由图 1 所示,食品开支占总开支的 30%,由图 2 所示,鸡蛋开支占食品开支的30 = 1 ,30+40+100+80+ 50 101∴鸡蛋开支占总开支的百分比为30%×10=3%.故选 C.]2.(2019 德·州模拟 )某人到甲、乙两市各7 个小区调查空置房情况,调查得到的小区空置房的套数绘成了如图所示的茎叶图,则调查中甲市空置房套数的中位数与乙市空置房套数的中位数之差为()A.4B. 3C.2D.1B[ 由茎叶图可以看出甲、乙两市的空置房的套数的中位数分别是79,76,因此其差是 79- 76=3,故选 B.]3.某工厂对一批新产品的长度(单位: mm)进行检测,如图是检测结果的频率分布直方,据此估批品的中位数()A.20B. 25C.22.5D.22.75C[ 品的中位数出在概率是 0.5 的地方 . 自左至右各小矩形面依次0.1,0.2,0.4,⋯⋯,中位数是 x,由 0.1+0.2+0.08 ·(x-20)=0.5,得 x= 22.5,故 C.]4.(2019 ·三明模 )在某次高中数学中,随机抽取 90 名考生,其分数如所示,若所得分数的平均数,众数,中位数分 a, b, c, a,b,c 的大小关系 ()A.b<a<c B.c<b<aC.c<a<b D.b<c<a2 50+ 60D [算得平均a=593,众数b=50,中位数c= 2 =55,故b<c<a, A.]5.(2019 南·充模 )如表是我国某城市在2017 年 1 月份至 10 月份各月最低温与最高温 (℃ )的数据一表.月份 1 2 3 4 5 6 7 8 9 10最高温 5 9 9 11 17 24 27 30 31 21最低温-12 - 3 1 - 2 7 17 19 23 25 10 已知城市的各月最低温与最高温具有相关关系,根据一表,下列的是 ()A.最低温与最高温正相关B.每月最高温与最低温的平均在前8 个月逐月增加C.月温差 (最高温减最低温 )的最大出在 1 月D.1 月至 4 月的月温差 (最高温减最低温 )相于 7 月至 10 月,波性更大B[ 根据意,依次分析:于 A ,知城市的各月最低温与最高温具有相关关系,由数据分析可得最低温与最高温正相关, A 正确;于B,由表中数据,每月最高温与最低温的平均依次:-3.5,3,5,4.5,12,20.5,23,26.5,28,15.5,在前 8 个月不是逐月增加, B ;于 C,由表中数据,月温差依次: 17,12,8,13,10,7,8,7,6,11;月温差的最大出在 1 月,C 正确;于 D,有 C 的,分析可得 1 月至 4 月的月温差相于 7 月至 10 月,波性更大, D 正确;故B.]6.某中学的高中女生体重y(位: kg)与身高 x(位: cm)具有性相关关系,根据本数据 (x i, y i )(i =1,2,3,⋯, n),用最小二乘法近似得到回直^方程 y=0.85x-85.71,下列中不正确的是()A.y 与 x 具有正性相关关系––B.回直本点的中心( x , y )C.若中学某高中女生身高增加 1 cm,其体重增加0.85 kgD.若中学某高中女生身高160 cm,可断定其体重必50.29 kg^D[ 因回直方程 y=0.85x-85.71 中 x 的系数 0.85>0,因此 y 与 x 具有正性相关关系,所以 A 正确;由最小二乘法及回直方程的求解––可知回直本点的中心( x , y ),所以 B 正确;由于用最小二乘法得到的回直方程是估,而不是具体,若中学某高中女生身高增加 1 cm,其体重增加0.85 kg,所以 C 正确, D 不正确. ]7.(2018 ·永州三模 )党的十九大告明确提出:在共享等域培育增点、形成新能.共享是公众将置源通社会化平台与他人共享,而得收入的象.考察共享企活度的影响,在四个不同的企各取两个部行共享比,根据四个企得到的数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()D[ 根据四个列联表中的等高条形图可知,图中 D 中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.]8.(2019 ·州模拟惠)已知 x 与 y 之间的几组数据如下表:x 1 2 3 4 5 6y 0 2 1 3 3 4假设根据上表数据所得的线性回归方程为^ ^ ^y= b +若某同学根据上表中的x a.前两组数据 (1,0)和 (2,2)求得的直线方程为y= b′ x+a′,则以下结论正确的是()^ ^ ^ ^A.b>b′, a>a′B.b>b′, a<a′^ ^ ^ ^C.b<b′, a>a′D.b<b′, a<a′C[ 由两组数据 (1,0)和(2,2)可求得直线方程为 y=2x-2,b′=2,a′=-^ 2.而利用线性回归方程的公式与已知表格中的数据,可求得 b =5 ^ – ^– 13 5==7,a= y -b x =6-771^^×2=-3,所以 b<b′,a>a′.]9.(2019 天·津模 )某校高中共有 720 人,其中理科生 480 人,文科生 240 人,采用分抽的方法从中抽取 90 名学生参加研,抽取理科生的人数________.48060[由分抽的定得抽取理科生的人数720×90=60.]–10.已知本数据x1,x2,⋯, x n的平均数 x = 5,本数据2x1+1,2x2 +1,⋯, 2x n+1 的平均数 ________.11[ 由 x1,x2,⋯,x n的平均数 x= 5,得 2x1+1,2x2+1,⋯,2x n+1 的平–均数 2 x +1= 2× 5+ 1= 11.]11.某学校随机抽取部分新生其上学所需(位:分 ),并将所得数据制成率分布直方(如 ),其中,上学所需的范是[0,100] ,本数据分 [0,20),[20,40),[40,60), [60,80), [80,100],(1)中的 x= ________;(2)若上学所需不少于 1 小的学生可申在学校住宿,校600 名新生中估有 ________名学生可以申住宿.0.0125 72[(1) 由率分布直方知20x= 1-20×(0.025+ 0.0065+ 0.003 +0.003),解得 x=0.0125.(2)上学不少于 1 小的学生的率0.12,因此估有0.12×600=72(人)可以申住宿. ]12.以下四个命题,其中正确的序号是________.①从匀速传递的产品生产流水线上,质检员每20 分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;^③在线性回归方程 y=0.2x+12 中,当解释变量x 每增加一个单位时,预报^变量 y平均增加 0.2 个单位;④对分类变量 X 与 Y 的统计量 K2来说, K2越小,“ X 与 Y 有关系”的把握程度越大.②③[①是系统抽样;对于④,统计量 K2越小,说明两个相关变量有关系的把握程度越小. ]。
高中数学组卷—统计案例1.(2016•延边州模拟)下表是高三某位文科生连续5次月考的历史、政治的成绩,结果统计如下:月份9 10 11 12 1历史(x分)79 81 83 85 87政治(y分)77 79 79 82 83(1)求该生5次月考历史成绩的平均分和政治成绩的方差(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关,根据上表提供的数据,求两个变量x、y的线性回归方程=x+(附:==,=y﹣x)2.(2016春•南城县校级月考)某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表:年份x 2011 2012 2013 2014 2015储蓄存款y(千亿元) 5 6 7 8 10为了研究计算的方便,工作人员将上表的数据进行了处理,t=x﹣2010,z=y﹣5得到如下表:时间代号t 1 2 3 4 5z 0 1 2 3 5(Ⅰ)求z关于t的线性回归方程;(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?(附:对于线性回归方程,其中:,=﹣)3.(2015•重庆)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份2010 2011 2012 2013 2014时间代号t 1 2 3 4 5储蓄存款y(千亿元) 5 6 7 8 10(Ⅰ)求y关于t的回归方程=t+.(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程=t+中.4.(2015•衡阳二模)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料日期3月1日3月2日3月3日3月4日3月5日温差x(°C) 10 11 13 12 8发芽数y(颗) 23 25 30 26 16(Ⅰ)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于25”的概率.(Ⅱ)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程=x+;(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)所得的线性回归方程是否可靠?5.(2016•黄山一模)为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数9 10 11 12 13 14人数10 18 22 25 20 5将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷"与性别有关?非歌迷歌迷合计男女合计(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷"中任意选取2人,求至少有1名女性观众的概率.P(K2≥k) 0.05 0.01k 3。
高三数学统计案例试题答案及解析1.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()D.阅读量【答案】D【解析】根据公式分别计算得:A., B. C. D. ,选项D的值最大,所以与性别有关联的可能性最大为D.【考点】关联判断2.某种产品的广告费支出z与销售额y(单位:万元)之间有如下对应数据:若广告费支出z与销售额y回归直线方程为多一6.5z+n(n∈R).(1)试预测当广告费支出为12万元时,销售额是多少?(2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.【答案】(1);(2).【解析】(1)回归方程必过样本中心点,,将样本中心点代入回归方程,求出,即得回归方程,当广告费支出万元时,代入求得就是销售额;(2)将实际值与观测值对应列出,列举法一一列出任取两组的所有基本事件,至少有一组数据其预测值与实际值之差的绝对值不超过的对立事件为,两组都超过,找到两组都超过的基本事件的个数,.(1)因为点(5,50)在回归直线上,代入回归直线方程求得,所求回归直线方程为: 3分当广告支出为12时,销售额. 5分(2)实际值和预测值对应表为在已有的五组数据中任意抽取两组的基本事件:(30,40),(30,60),(30,50),(30,70),(40,60),(40,50),(40,70),(60,50),(60,70),(50,70)共10个, 10分两组数据其预测值与实际值之差的绝对值都超过5的有(60,50),所以至少有一组数据其预测值与实际值之差的绝对值不超过5的概率为. 12分【考点】1.回归方程;2.古典概型的概率问题.3.一台机器由于使用时间较长,但还可以使用,它按不同的转速生产出来的某机器零件有一些会有缺点,每小时生产有缺点零件的多少随机器运转的速度而变化,下表是抽样试验结果:在的范围是()A.10转/s以下B.15转/s以下C.20转/s以下D.25转/s以下【答案】B【解析】则a=-b=-0.857 5.∴回归直线方程为=0.728 6x-0.857 5.要使y≤10,则0.728 6x-0.857 5≤10,∴x≤14.901 9.因此,机器的转速应该控制在15转/s以下.故选B.4.登山族为了了解某山高y(km)与气温x(°C)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x(°C)181310-1由表中数据,得到线性回归方程,由此请估计出山高为72(km)处气温的度数为()A.-10B.-8C.-6D.-6【答案】C【解析】由题意可得=10,=40.5,所以=+2=40.5+2×10=60.5,所以,当=72时,,解得x≈-6,故选C.【考点】回归分析5.在某次高三考试成绩中,随机抽取了9位同学的数学成绩进行统计。
统计案例高中数学
高中数学统计案例示例如下:
假设你是一名学生,想要了解不同科目在学校的成绩分布。
你使用班级的成绩表来计算每个科目的平均分数,并将结果展示在学校官方网站上。
计算平均分数的过程如下:
1. 整理成绩表,将每个科目的成绩按列排序。
2. 计算每个科目的平均分数。
- 如果有一个科目有多个学生成绩,需要选取取平均值。
- 如果只有一个科目,则可以直接计算所有学生成绩的和再除以人数。
例如,如果成绩表如下所示:
| 科目 | 成绩 |
|------|----------|
| 数学 | 90 |
| 英语 | 85 |
| 物理 | 80 |
| 化学 | 75 |
| 历史 | 80 |
那么平均分数为(90 + 85 + 80 + 75 + 80) / 5 = 175/5 = 34.33(保留两位小数)。
将平均分数和学校官方网站上的成绩进行比较,以确保成绩分布
符合预期。
该学生在学校官方网站上发布了数学、英语和历史的平均分数分别为34.33、34.33和33.67。
这意味着在这个班级中,数学、英语和历史的平均分数相对较高,而物理、化学和历史的平均分数相对较低。
高中数学第九章统计经典大题例题单选题1、为保障食品安全,某监管部门对辖区内一家食品企业进行检查,现从其生产的某种产品中随机抽取100件作为样本,并以产品的一项关键质量指标值为检测依据,整理得到如下的样本频率分布直方图.若质量指标值在[25,35)内的产品为一等品,则该企业生产的产品为一等品的概率约为()A.0.38B.0.61C.0.122D.0.75答案:B×组距,即可得解.分析:利用频率=频率组距根据频率分布直方图可知,质量指标值在[25,35)内的概率P=(0.080+0.042)×5=0.122×5=0.61故选:B2、为了更好地支持“中小型企业”的发展,某市决定对部分企业的税收进行适当的减免,某机构调查了当地的中小型企业年收入情况,并根据所得数据画出了样本的频率分布直方图,下面三个结论:①样本数据落在区间[300,500)的频率为0.45;②如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免③样本的中位数为480万元.其中正确结论的个数为A.0B.1C.2D.3答案:D解析:根据直方图求出a=0.0025,求出[300,500)的频率,可判断①;求出[200,500)的频率,可判断②;根据中位数是从左到右频率为0.5的分界点,先确定在哪个区间,再求出占该区间的比例,求出中位数,判断③.由(0.001+0.0015+0,002+0.0005+2a)×100=1,a=0.0025,[300,500)的频率为(0.002+0.0025)×100=0.45,①正确;[200,500)的频率为(0.0015+0.002+0.0025)×100=0.55,②正确;[200,400)的频率为0.3,[200,500)的频率为0.55,,中位数在[400,500)且占该组的45×100=480,③正确.故中位数为400+0.5−0.30.25故选:D.小提示:本题考查补全直方图,由直方图求频率和平均数,属于基础题3、某地区对当地3000户家庭的当年所得年收入情况调查统计,年收入(单位:万元)的频率分布直方图如图所示,数据的分组依次为[2,4),[4,6),[6,8),[8,10],则年收入不超过6万元的家庭有( )A.900户B.600户C.300户D.150户分析:根据频率分布直方图求出[2,4)和[4,6)这两组的频率之和,用这个频率之和乘以样本总量3000即可的答案.由图可知,[2,4)和[4,6)这两组的频率之和为(0.05+0.1)×2=0.3,年收入不超过6万元的家庭有3000×0.3=900户.故选:A.4、新莽铜嘉量是由王莽国师刘歆等人设计制造的标准量器,它包括了龠(yuè)、合、升、斗、斛这五个容量单位.每一个量又有详细的分铭,记录了各器的径、深、底面积和容积.现根据铭文计算,当时制造容器时所用的圆周率分别为3.1547,3.1992,3.1498,3.2031,比《周髀算经》的“径一而周三”前进了一大步,则上面4个数据与祖冲之给出的约率(227≈3.1429)、密率(355113≈3.1416)这6个数据的中位数与极差分别为()A.3.1429,0.0615B.3.1523,0.0615C.3.1498,0.0484D.3.1547,0.0484答案:B分析:先对这6个数由小到大(或由大到小)排列,然后利用中位数和极差的定义求解即可所给6个数据由小到大排列依次为3.1416,3.1429,3.1498,3.1547,3.1992,3.2031,所以这6个数据的中位数为(3.1498+3.1547)÷2≈3.1523,极差为3.2031−3.1416=0.0615,故选:B.5、下表是某校校级联欢晚会比赛中12个班级的得分情况,则得分的30百分位数是()答案:D分析:根据百分位数的定义求解即可.12×30%=3.6,把12个班级的得分按照从小到大排序为7,7,8,9,9,10,10,10,11,13,13,14,可得30百分位数是第4个得分数,即9.故选:D6、某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论错误的是()注:90后指1990年及以后出生,80后指1980−1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后一定比80前多D.互联网行业中从事技术岗位的人数90后一定比80后多答案:D解析:根据整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,对四个选项逐一分析,即可得出正确选项.对于选项A,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术和运营岗位的人数占的比分别为39.6%和17%,则“90后”从事技术和运营岗位的人数占总人数的56%×(39.6%+17%)≈31.7%.“80前”和“80后”中必然也有从事技术和运营岗位的人,则总的占比一定超过三成,故选项A正确;对于选项B,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术岗位的人数占的比为39.6%,则“90后”从事技术岗位的人数占总人数的56%×39.6%≈22.2%.“80前”和“80后”中必然也有从事技术岗位的人,则总的占比一定超过20%,故选项B正确;对于选项C,“90后”从事运营岗位的人数占总人数的比为56%×17%≈9.5%,大于“80前”的总人数所占比3%,故选项C正确;选项D,“90后”从事技术岗位的人数占总人数的56%×39.6%≈22.2%,“80后”的总人数所占比为41%,条件中未给出从事技术岗位的占比,故不能判断,所以选项D错误.故选:D.小提示:关键点点睛:本题考查利用扇形统计图和条形统计图解决实际问题,解本题的关键就是利用条形统计图中“90后”事互联网行业岗位的占比乘以“90后”所占总人数的占比,再对各选项逐一分析即可.7、总体由编号01,02,…,29,30的30个个体组成.利用下面的随机数表选取6个个体,选取方法是从如下随机数表的第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为()第1行78 16 62 32 08 02 62 42 62 52 53 69 97 28 01 98第2行32 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81A.27B.26C.25D.19答案:D分析:根据随机数表法的步骤即可求得答案.由题意,取出的数有23,20,80(超出范围,故舍去),26,24,26(重复,故舍去),25,25(重复,故舍去),36(超出范围,故舍去),99(超出范围,故舍去),72(超出范围,故舍去),80(超出范围,故舍去),19.故选:D.8、某学校在校学生有2000人,为了增强学生的体质,学校举行了跑步和登山比赛,每人都参加且只参加其中一项比赛,高一、高二、高三年级参加跑步的人数分别为a,b,c,且a:b:c=2:5:3,全校参加登山的人数占总人数的1.为了了解学生对本次比赛的满意程度,按分层抽样的方法从中抽取一个容量为200的样本进4行调查,则应从高三年级参加跑步的学生中抽取()A.15人B.30人C.40人D.45人答案:D分析:由题知全校参加跑步的人数为2000×3=1500,再根据分层抽样的方法求解即可得答案.4=1500,解:由题意,可知全校参加跑步的人数为2000×34=450.所以a+b+c=1500.因为a:b:c=2:5:3,所以c=1500×32+5+3因为按分层抽样的方法从中抽取一个容量为200的样本,所以应从高三年级参加跑步的学生中抽取的人数为450×200=45.2000故选:D多选题9、最近几个月,新冠肺炎疫情又出现反复,各学校均加强了疫情防控要求,学生在进校时必须走测温通道,每天早中晚都要进行体温检测并将结果上报主管部门.某班级体温检测员对一周内甲乙两名同学的体温进行了统计,其结果如图所示,则下列结论正确的是()A.甲同学体温的极差为0.4℃B.乙同学体温的众数为36.4℃,中位数与平均数相等C.乙同学的体温比甲同学的体温稳定D.甲同学体温的第60百分位数为36.4℃答案:ABC分析:根据给定的折线图,逐一分析判断各个选项即可作答.观察折线图知,甲同学体温的极差为36.6−36.2=0.4℃,A正确;乙同学体温从小到大排成一列:36.3℃,36.3℃,36.4℃,36.4℃,36.4℃,36.5℃,36.5℃,(36.3×2+36.4×3+36.5×2)=46.4℃,B正乙同学体温的众数为36.4℃,中位数为36.4℃,平均数x=17确;乙同学的体温波动较甲同学的小,极差为0.2℃,也比甲同学的小,因此乙同学的体温比甲同学的体温稳定,C正确;将甲同学的体温从小到大排成一列:36.2℃,36.2℃,36.4℃,36.4℃,36.5℃,36.5℃,36.6℃,因7×60%=4.2,则甲同学体温的第60百分位数为36.5℃,D不正确.故选:ABC10、下表记录了某地区一年之内的月降水量是53mm和56mmC.该年份月降水量的25%分位数是52mmD.该年份月降水量的中位数是56mm答案:ACD分析:A. 利用极差的定义判断;B.利用众数的定义判断;C.利用百分位数的定义判断;D.利用中位数的定义判断.A. 该年份月降水量的极差是71-46=25mm,故正确;B.该年份月降水量的众数是56mm,故错误;C.该年份月降水量从小到大为46,48,51,53,53,56,56,56,56,58,64,66,71,12×25%=3,=52mm,故正确;所以年份月降水量的25%分位数是51+532D. 该年份月降水量从小到大为46,48,51,53,53,56,56,56,56,58,64,66,71,所以该年份月降水量的中位数是56+56=56mm,故正确;2故选:ACD11、某教育局对全区高一年级的学生身高进行抽样调查,随机抽取了200名学生,他们的身高都处在A,B,C,D,E五个层次内,根据抽样结果得到统计图表如下,则下列结论正确的是().A.男生人数为80人B.B层次男女生人数差值最大C.D层次男生人数多于女生人数D.E层次女生人数最少答案:ABD分析:根据条形图求出抽取女生人,得出抽取男生人,再对照图表判断选项中的命题是否正确即可.解:由条形图知,抽取女生学生有18+48+30+18+6=120(人),所以抽取男生有200−120=80(人),选项A正确;B层次的男生有80×(1−10%−15%−20%−25%)=24(人),A,B,C,D,E五个层次男生人数分别:8,24,20,16,12(人),与女生各层次差值分别为:10,24,10,2,6,选项B正确;D层次的男生有12(人),女生有18人,男生人数少于女生,选项C错误;E层次的女生人数最少,选项D正确.故选:ABD.12、某保险公司为客户定制了5个险种:甲,一年期短险;乙,两全保险;丙,理财类保险;丁,定期寿险:戊,重大疾病保险,各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得出如下的统计图例:用该样本估计总体,以下四个选项正确的是()A.54周岁以上参保人数最少B.18~29周岁人群参保总费用最少C.丁险种更受参保人青睐D.30周岁以上的人群约占参保人群20%答案:AC分析:根据选项逐一对相应的统计图进行分析判断即可.解:对A:由扇形图可知,54周岁以上参保人数最少,故选项A正确;对B:由折线图可知,18~29周岁人群人均参保费用最少,但是由扇形图知参保人数并不是最少的,所以参保总费用不是最少,故选项B错误;对C:由柱状图可知,丁险种参保比例最高,故选项C正确;对D:由扇形图可知,30周岁以上的人群约占参保人群80%,故选项D错误.故选:AC.13、睡眠很重要,教育部《关于进一步加强中小学生睡眠管理工作的通知》中强调“小学生每天睡眠时间应达到10小时,初中生应达到9小时,高中生应达到8小时”.某机构调查了1万个学生时间利用信息得出下图,则以下判断正确的有()A .高三年级学生平均学习时间最长B .中小学生的平均睡眠时间都没有达到《通知》中的标准,其中高中生平均睡眠时间最接近标准C .大多数年龄段学生平均睡眠时间长于学习时间D .与高中生相比,大学生平均学习时间大幅下降,释放出的时间基本是在睡眠答案:BC分析:根据图象提供数据对选项进行分析,从而确定正确答案.根据图象可知,高三年级学生平均学习时间没有高二年级学生平均学习时间长,A 选项错误.根据图象可知,中小学生平均睡眠时间都没有达到《通知》中的标准,高中生平均睡眠时间最接近标准,B 选项正确.学习时间大于睡眠时间的有:初二、初三、高一、高二、高三,占比516.睡眠时间长于学习时间的占比1116,C 选项正确.从高三到大学一年级,学习时间减少9.65−5.71=3.94,睡眠时间增加8.52−7.9=0.62,所以D 选项错误. 故选:BC填空题14、已知一组样本数据5、2、3、6,则该组数据的第70百分位数为__________.答案:5分析:首先计算指数,再由百分位数的定义可得答案.解:这组样本数据5、2、3、6,从小到大排列为2、3、5、6,又4×70%=2.8,则该组数据的第70百分位数为第3个数5,所以答案是:5.15、若样本数据x1,x2,⋅⋅⋅,x8的标准差为1,则数据2x1−1,2x2−1,⋅⋅⋅,2x8−1的标准差为_______.答案:2解析:若一组数据x1,x2,x3,⋯,x n的方差为s2,则数据ax1+b,ax2+b,ax3+b,⋯,ax n+b的方差为a2s2.若样本数据x1,x2,⋅⋅⋅,x8的标准差为1,则其方差也为1,所以数据2x1−1,2x2−1,⋅⋅⋅,2x8−1的方差为4,标准差为2.所以答案是:2.16、某车间生产A,B,C三种不同型号的产品,产量之比分别为5:k:3,为检验产品的质量,现用分层抽样的方法抽取一个容量为120的样本进行检验,已知B种型号的产品共抽取了24件,则C种型号的产品抽取的件数为_________.答案:36分析:根据题意可得24120=k5+k+3,解方程求出k的值,再根据C种型号的产品所占的比例,求出C种型号的产品应抽取的数量.由题意,得24120=k5+k+3,所以k=2,所以C种型号的产品抽取的件数为120×35+2+3=36.所以答案是:36.解答题17、在①55%分位数,②众数这两个条件中任选一个,补充在下面问题中的横线上,并解答问题.维生素C又叫L-抗坏血酸,是一种水溶性维生素,是高等灵长类动物与其他少数生物的必需营养素.现从猕猴桃、柚子两种食物中测得每100克维生素C的含量(单位:mg)各10个数据如下,其中猕猴桃的一个数据x被污损.猕猴桃:104,119,106,102,132,107,113,134,116,x;柚子:121,113,109,122,114,116,132,121,131,117.已知x等于柚子的10个数据中的___________.(1)求x的值与猕猴桃的数据的中位数;(2)分别计算上述猕猴桃、柚子两种食物中测得每100克维生素C含量的平均数.答案:(1)121,中位数为114.5(2)115.4mg,119.6mg分析:(1)先将柚子从小到大排序,若选①,利用55%分位数的定义得到x=121,若选②,利用众数的定义进行也得到x=121,接着代入猕猴桃里面,从小到大排序算出中位数;(2)利用平均数的定义进行计算(1)柚子的10个数据按照从小到大的顺序排列为:109,113,114,116,117,121,121,122,131,132.选①,因为10×55%=5.5,所以柚子10个数据的55%分位数为第6个数,即121,所以x=121.猕猴桃的10个数据按照从小到大的顺序排列为:102,104,106,107,113,116,119,121,132,134,则(113+116)=114.5.中位数为12选②,因为柚子的10个数据的众数为121,所以x=121.猕猴桃的10个数据按照从小到大的顺序排列为:102,104,106,107,113,116,119,121,132,134,则(113+116)=114.5.中位数为12(2)×(102+104+106+107+113+116+119+121+由(1)得每100克猕猴桃维生素C含量的平均数为110132+134)=115.4mg×(109+113+114+116+117+121+121+122+131+每100克柚子维生素C含量的平均数为110132)=119.6mg18、从某校高一年级新生中随机抽取一个容量为20的身高样本,数据如下(单位:cm,数据间无大小顺序要求):152,155,158,164,164,165,165,165,166,167,168,168,169,170,170,170,171,x,174,175.(1)若x为这组数据的一个众数,求x的取值集合;(2)若样本数据的第90百分位数是173,求x的值;(3)若x=174,试估计该校高一年级新生的平均身高.答案:(1){164,165,168,170}(2)172(3)166.5(cm)分析:(1)首先排列19个数据,根据众数的定义,即可确定x的取值集合;(2)首先确定第90百分位数是第18项和第19项数据的平均数,再讨论x的取值,根据百分位数,列式求值;(3)根据平均数公式,列式求值.(1)其余十九个数据152,155,158,164,164,165,165,165,166,167,168,168,169,170,170,170,171,174,175中,数据出现的频数为3的数有165,170,出现频数为2的数据有164,168.因为x为这组数据的一个众数,所以x的取值集合为{164,165,168,170}.(2)因为20×90%=18,所以90百分位数是第18项和第19项数据的平均数,若x⩽171,则90百分位数为1(171+174)=17,矛盾.2(x+174)=173,所以x=172.若171<x<175,即12(174+175)=174.5,矛盾.若x⩾175,则90百分位数为12综上,x的值为172.(3)依题意可得152+155+158+164+164+165+165+165+166+167+168+168+169+170+170+170+171+174+174+175=3330所以平均数为3330÷20=166.5(cm),估计该校高一年级学生的平均身高.。
高考数学统计与统计案例专题卷(附答案)一、单选题1.新高考改革后,某校2000名学生参加物理学考,该校学生物理成绩的频率分布直方图如图所示,若规定分数达到90分以上为A级,则该校学生物理成绩达到A级的人数是()A. 600B. 300C. 60D. 302.国庆70周年庆典磅礴而又欢快的场景,仍历历在目.已知庆典中某省的游行花车需要用到某类花卉,而该类花卉有甲、乙两个品种,花车的设计团队对这两个品种进行了检测.现从两个品种中各抽测了10株的高度,得到如下茎叶图.下列描述正确的是()A. 甲品种的平均高度大于乙品种的平均高度,且甲品种比乙品种长的整齐B. 甲品种的平均高度大于乙品种的平均高度,但乙品种比甲品种长的整齐C. 乙品种的平均高度大于甲品种的平均高度,且乙品种比甲品种长的整齐D. 乙品种的平均高度大于甲品种的平均高度,但甲品种比乙品种长的整齐3.某次歌唱比赛中,7位评委为某选手打出的分数分别为83,91,91,94,94,95,96,去掉一个最高分和一个最低分后,所剩数据的平均数为()A. 94B. 93C. 92D. 914.为了解某市居民用水情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨).将数据按照,…,分成9组,绘制了如图所示的频率分布直方图.政府要试行居民用水定额管理,制定一个用水量标准.使的居民用水量不超过,按平价收水费,超出的部分按议价收费,则以下比较适合做为标准的是()A. 2.5吨B. 3吨C. 3.5吨D. 4吨5.某校高三年级有男生220人,学籍编号为1,2,...,220;女生380人,学籍编号为221,222, (600)为了解学生学习的心理状态,按学籍编号采用系统抽样的方法从这600名学生中抽取10人进行问卷调查(第一组采用简单随机抽样,抽到的号码为10),再从这10名学生中随机抽取3人进行座谈,则这3人中既有男生又有女生的概率是()A. B. C. D.6.如图的折线图是某超市2018年一月份至五月份的营业额与成本数据,根据该折线图,下列说法正确的是()A. 该超市2018年的前五个月中三月份的利润最高B. 该超市2018年的前五个月的利润一直呈增长趋势C. 该超市2018年的前五个月的利润的中位数为0.8万元D. 该超市2018年前五个月的总利润为3.5万元7.为了从甲、乙两组学生中选一组参加“喜迎祖国七十华诞,共建全国文明城市”知识竞赛活动,班主任老师将这两组学生最近6次的测试成绩进行统计,得到如图所示的茎叶图.若甲、乙两组的平均成绩分别是,则下列说法正确的是()A. ,乙组比甲组成绩稳定,应选乙组参加竞赛B. ,甲组比乙组成绩稳定,应选甲组参加竞赛C. ,甲组比乙组成绩稳定,应选甲组参加竞赛D. ,乙组比甲组成绩稳定,应选乙组参加竞赛8.为了节能减排,发展低碳经济,我国政府从2001年起就通过相关政策推动新能源汽车产业发展.下面的图表反映了该产业发展的相关信息:根据上述图表信息,下列结论错误的是()A. 2017年3月份我国新能源汽车的产量不超过万辆B. 2017年我国新能源汽车总销量超过万辆C. 2018年8月份我国新能源汽车的销量高于产量D. 2019年1月份我国插电式混合动力汽车的销量低于万辆9.某学校运动会的立定跳远和秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为名学生的预赛成绩,其中有三个数据模糊.秒跳绳(单位:次)在这名学生中,进入立定跳远决赛的有人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则()A. 号学生进入秒跳绳决赛B. 号学生进入秒跳绳决赛C. 号学生进入秒跳绳决赛D. 号学生进入秒跳绳决赛10.2010-2018年之间,受益于基础设施建设对光纤产品的需求,以及个人计算机及智能手机的下一代规格升级,电动汽车及物联网等新机遇,连接器行业增长呈现加速状态.根据该折线图,下列结论正确的个数为()①每年市场规模量逐年增加;②增长最快的一年为2013~2014;③这8年的增长率约为40%;④2014年至2018年每年的市场规模相对于2010年至2014年每年的市场规模,数据方差更小,变化比较平稳A. 1B. 2C. 3D. 4二、填空题(共7题;共7分)11.己知随机变量与有相关关系,当时,的预报值为________.12.若数据的方差为,则________.13.某学校高一、高二、高三年级的学生人数成等差数列,现用分层抽样的方法从这三个年级中抽取90人,则应从高二年级抽取的学生人数为________.14.某班的全体学生参加数学测试,成绩的频率分布直方图如图,数据的分组依次为:、、、,若低于分的人数是,则成绩不低于分的学生人数是________.15.已知样本7,8,9,的平均数是9,且,则此样本的方差是________.16.某中学采用系统抽样方法,从该校高三年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是42,则在第1小组1~16中随机抽到的数是________.17.2020年年初,新冠肺炎疫情袭击全国.口罩成为重要的抗疫物资,为了确保口罩供应,某工厂口罩生产线高速运转,工人加班加点生产.设该工厂连续5天生产的口罩数依次为,,,,(单位:十万只),若这组数据,,,,的方差为1.44,且,,,,的平均数为4,则该工厂这5天平均每天生产口罩________十万只.三、解答题(共6题;共60分)18.每年的12月4日为我国“法制宣传日”.天津市某高中团委在2019年12月4日开展了以“学法、遵法、守法”为主题的学习活动.已知该学校高一、高二、高三的学生人数分别是480人、360人、360人.为检查该学校组织学生学习的效果,现采用分层抽样的方法从该校全体学生中选取10名学生进行问卷测试.具体要求:每位被选中的学生要从10个有关法律、法规的问题中随机抽出4个问题进行作答,所抽取的4个问题全部答对的学生将在全校给予表彰.(1)求各个年级应选取的学生人数;(2)若从被选取的10名学生中任选3人,求这3名学生分别来自三个年级的概率;(3)若被选取的10人中的某学生能答对10道题中的7道题,另外3道题回答不对,记表示该名学生答对问题的个数,求随机变量的分布列及数学期望.19.清华大学自主招生考试题中要求考生从A,B,C三道题中任选一题作答,考试结束后,统计数据显示共有600名学生参加测试,选择A,B,C三题答卷数如下表:(Ⅰ)负责招生的教授为了解参加测试的学生答卷情况,现用分层抽样的方法从600份答案中抽出若干份答卷,其中从选择A题作答的答卷中抽出了3份,则应分别从选择B,C题作答的答卷中各抽出多少份?(Ⅱ)测试后的统计数据显示,A题的答卷得优的有60份,若以频率作为概率,在(Ⅰ)问中被抽出的选择A题作答的答卷中,记其中得优的份数为,求的分布列及其数学期望.20.近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:土地使用面积(单位:亩) 1 2管理时间(单位:月)并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:参考公式:其中.临界值表:0.100 0.050 0.025 0.010 0.001参考数据:(1)求出相关系数的大小,并判断管理时间与土地使用面积是否线性相关?(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?(3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为,求的分布列及数学期望.21.出版商为了解某科普书一个季度的销售量y(单位:千本)和利润x(单位:元/本)之间的关系,对近年来几次调价之后的季销售量进行统计分析,得到如下的10组数据.根据上述数据画出如图所示的散点图:参考公式及参考数据:①对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线的斜率和截距的公式分别为, .②参考数据:表中u i=Inx i,= .另:In4.06≈1.40.计算时,所有的小数都精确到0.01.(1)根据图中所示的散点图判断y=ax+b和y=clnx+d哪个更适宜作为销售量y关于利润x的回归方程类型?(给出判断即可,不需要说明理由);(2)根据(1)中的判断结果及参考数据,求出y关于x的回归方程;(3)根据回归方程分析:设该科普书一个季度的利润总额为:(单位:千元),当季销售量y为何值时,该书一个季度的利润总额预报值最大?(季利润总额=季销售量×每本书的利润)22.某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(Ⅲ)求续保人本年度的平均保费估计值.23.为了研究55岁左右的中国人睡眠质量与心脑血管病是否有关联,某机构在适龄人群中随机抽取了100万个样本,调查了他们每周是否至少三个晚上出现了三种失眠症状,症状:入睡困难;症状:醒得太早;症状:不能深度入睡或做梦,得到的调查数据如下:数据1:出现症状人数为8.5万,出现症状人数为9.3万,出现症状人数为6.5万,其中含症状同时出现1.8万人,症状同时出现1万人,症状同时出现2万人,症状同时出现0.5万人;数据2:同时有失眠症状和患心脑血管病的人数为5万人,没有失眠症状且无心脑血管病的人数为73万人.(Ⅰ)依据上述数据试分析55岁左右的中国人患有失眠症的比例大约多少?(Ⅱ)根据以上数据完成如下列联表,并根据所填列联表判断能否有95%的把握说明失眠与心脑血管病存在“强关联”?参考数据如下:0.500.05参考公式:答案一、单选题1. B2. D3. B4. B5. D6. D7. D8. D9. B 10. C二、填空题11. 7 12. 13. 30 14. 15 15. 2 16. 10 17. 1.6三、解答题18. (1)解:由题意,知高一、高二、高三年级的人数之比为,由于采用分层抽样方法从中选取人,因此,高一年级应选取人,高二年级应选取人,高三年级应选取人.(2)解:由(1)知,被选取的名学生高一、高二、高三年级分别有人、人、人,所以,从这名学生任选名,且名学生分别来自三个年级的概率为.(3)解:由题意知,随机变量的所有可能取值为,且服从超几何分布,().所以,随机变量的分布列为所以,随机变量的数学期望为.19. 解:解:(Ⅰ)由题意可得:应分别从B,C题的答卷中抽出5份,2份.(Ⅱ)由题意可知,A题答案得优的概率为,显然被抽出的A题的答案中得优的份数x的可能取值为0,1,2,3,且.;;;随机变量x的分布列为:所以.20. (1)解:依题意:故则,故管理时间与土地使用面积线性相关.(2)解:依题意,完善表格如下:计算得的观测值为故有99.9%的把握认为村民的性别与参与管理的意愿具有相关性.(3)解:依题意,的可能取值为0,1,2,3,从该贫困县中随机抽取一名,则取到不愿意参与管理的男性村民的概率为,故故的分布列为则数学期望为(或由,得21. (1)解:y=cln x+d更适宜作为销售量y关于利润x的回归方程类型(2)解:令u=lnx,先建立y关于u的线性回归方程,由于,=6.63+10.20×1.75=24.48,所以x关于u的线性回归方程为=24.48-10.20u,即y关于x的回归方程为=24.48-10.20lnx.(3)解:由题意得z=xy=x(24.48-10.20lnx),z'=[x(24.48-10.20lnx)]'=14.28-10.20lnx,令z'=0 即14.28-10.20lnx=0,解得lnx=1.40,所以x≈4.06.当x∈(0,4.06)时,z'>0,所以z在(0,4.06)上单调递增,当x∈(4.06,+∞)时,z'<0,所以z在(4.06,+∞)上单调递减,所以当x=4.06时,即季销量y=10.20千本时,季利润总额预报值最大22. 解:(I)记A为事件:“一续保人本年度的保费不高于基本保费”.事件A的人数为:60+50=110,该险种的200名续保,P(A)的估计值为:;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.事件B的人数为:30+30=60,P(B)的估计值为:;(Ⅲ)续保人本年度的平均保费估计值为1.1925a.23. 解:(Ⅰ)设{出现症状的人}、{出现症状的人}、{出现症状的人}(表示有限集合元素个数)根据数据1可知,,,,所以得患失眠症总人数为20万人,比例大约为20%(Ⅱ)根据数据2可得:有95%的把握说明失眠与中风或心脏病存在“强关联”.第11 页共11 页。
专题检测(十四)统计、统计案例A组——“6+3+3”考点落实练一、选择题1.(2019·福州市质量检测)某校学生会为了了解本校高一1 000名学生的课余时间参加传统文化活动的情况,随机抽取50名学生进行调查.将数据分组整理后,列表如下:参加场数01234567 参加人数占调查8%10%20%26%18%m%4%2% 人数的百分比A.表中m的数值为10B.估计该校高一学生参加传统文化活动次数不高于2场的学生约为180人C.估计该校高一学生参加传统文化活动次数不低于4场的学生约为360人D.若采用系统抽样方法进行调查,从该校高一1 000名学生中抽取容量为50的样本,则分段间隔为25解析:选C A中的m值应为12;B中应为380人;C是正确的;D中的分段间隔应为20,故选C.2.(2019·全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差解析:选A中位数是将9个数据从小到大或从大到小排列后,处于中间位置的数据,因而去掉1个最高分和1个最低分,不变的是中位数,平均数、方差、极差均受影响.故选A.3.从某地高中男生中随机抽取100名同学,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图),由直方图可知()A.估计体重的众数为50或60B.a=0.03C.学生体重在[50,60)有35人D .从这100名男生中随机抽取一人,体重在[60,80)的概率为13解析:选C 根据频率分布直方图知,最高的小矩形对应的底边中点为50+602=55,所以估计众数为55,A 错误;根据频率和为1,计算(a +0.035+0.030+0.020+0.010)×10=1,解得a =0.005,B 错误;体重在[50,60)内的频率是0.35,估计体重在[50,60)内的学生有100×0.35=35人,C 正确;体重在[60,80)内的频率为0.3+0.2=0.5,用频率估计概率,知这100名男生中随机抽取一人,体重在[60,80)的概率为12,D 错误.4.(2019·武汉市调研测试)某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A —结伴步行,B —自行乘车,C —家人接送,D —其他方式.并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,求本次抽查的学生中A 类人数是( )A .30B .40C .42D .48解析:选A 由条形统计图知,B —自行乘车上学的有42人,C —家人接送上学的有30人,D —其他方式上学的有18人,采用B ,C ,D 三种方式上学的共90人,设A —结伴步行上学的有x 人,由扇形统计图知,A —结伴步行上学与B —自行乘车上学的学生占60%,所以x +42x +90=60100,解得x =30,故选A. 5.如图是民航部门统计的2019年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是( )A .深圳的变化幅度最小,北京的平均价格最高B .深圳和厦门的春运期间往返机票价格同去年相比有所下降C .平均价格从高到低居于前三位的城市为北京、深圳、广州D .平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门解析:选D 由图可知深圳对应的小黑点最接近0%,故变化幅度最小,北京对应的条形图最高,则北京的平均价格最高,故A 正确;由图可知深圳和厦门对应的小黑点在0%以下,故深圳和厦门的价格同去年相比有所下降,故B 正确;由图可知条形图由高到低居于前三位的城市为北京、深圳和广州,故C 正确;由图可知平均价格的涨幅由高到低分别为天津、西安和南京,故D 错误,选D.6.(2019·郑州市第二次质量预测)将甲、乙两个篮球队各5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是( )A .甲队平均得分高于乙队的平均得分B .甲队得分的中位数大于乙队得分的中位数C .甲队得分的方差大于乙队得分的方差D .甲、乙两队得分的极差相等解析:选C 由题中茎叶图得,甲队的平均得分x 甲=26+28+29+31+315=29,乙队的平均得分x 乙=28+29+30+31+325=30,x 甲<x 乙,选项A 不正确;甲队得分的中位数为29,乙队得分的中位数为30,甲队得分的中位数小于乙队得分的中位数,选项B 不正确;甲队得分的方差s 2甲=15×[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=185,乙队得分的方差s 2乙=15×[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2,s 2甲>s 2乙,选项C 正确;甲队得分的极差为31-26=5,乙队得分的极差为32-28=4,两者不相等,选项D 不正确.故选C.二、填空题7.如图是某学校一名篮球运动员在10场比赛中所得分数的茎叶图,则该运动员在这10场比赛中得分的中位数为________.解析:把10场比赛的所得分数按顺序排列:5,8,9,12,14,16,16,19,21,24,中间两个为14与16,故中位数为14+162=15.答案:158.已知一组数据x 1,x 2,…,x n 的方差为2,若数据ax 1+b ,ax 2+b ,…,ax n +b (a >0)的方差为8,则a 的值为________.解析:根据方差的性质可知,a 2×2=8,故a =2. 答案:29.(2019·广东六校第一次联考)某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量y (单位:kW·h)与气温x (单位:℃)之间的关系,随机选取了4天的用电量与当天气温,并制作了如下对照表:由表中数据得线性回归方程:y =-2x +60,则a 的值为________.解析:由题意,得x -=17+14+10-14=10,y -=24+34+38+a 4=96+a4.样本点的中心(x -,y -)在回归直线y ^=-2x +60上,代入线性回归方程可得96+a 4=-20+60,解得a =64.答案:64 三、解答题10.(2019·兰州市诊断考试)“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人数逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:若某人平均每周进行长跑训练天数不少于5,则称其为“热烈参与者”,否则称为“非热烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数; (2)根据上表的数据,填写下列2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“热烈参与马拉松”与性别有关?附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(n 为样本容量)解:(1)以200人中“热烈参与者”的频率作为概率,则该市“热烈参与者”的人数约为20 000×40200=4 000.(2)2×2列联表为K 2=200×(35×55-105×5)240×160×140×60≈7.292>6.635,故能在犯错误的概率不超过0.01的前提下认为“热烈参与马拉松”与性别有关. 11.(2019·广东六校第一次联考)某市大力推广纯电动汽车,对购买用户依照车辆出厂续驶里程R (单位:千米)的行业标准,予以地方财政补贴,其补贴标准如下表:2017年底某部门随机调查该市1 000辆纯电动汽车,统计其出厂续驶里程R,得到频率分布直方图如上图所示,用样本估计总体,频率估计概率,解决如下问题:(1)求该市每辆纯电动汽车2017年地方财政补贴的均值.(2)某企业统计2017年其充电站100天中各天充电车辆数,得如下频数分布表:辆数[5 500,6 500)[6 500,7 500)[7 500,8 500)[8 500,9 500]天数20304010(同一组中的数据用该组区间的中点值作代表)2018年2月,国家出台政策,将纯电动汽车财政补贴逐步转移到充电基础设施建设上来,该企业拟将转移补贴资金用于添置新型充电设备.现有直流、交流两种充电桩可供购置,直流充电桩5万元/台,每台每天最多可以充电30辆车,每天维护费用500元/台;交流充电桩1万元/台,每台每天最多可以充电4辆车,每天维护费用80元/台.该企业现有两种购置方案:方案一,购买100台直流充电桩和900台交流充电桩;方案二,购买200台直流充电桩和400台交流充电桩.假设车辆充电时优先使用新设备,且充电一辆车产生25元的收入,用2017年的统计数据,分别估计该企业在两种方案下新设备产生的日利润(日利润=日收入-日维护费用).解:(1)依题意可得纯电动汽车地方财政补贴的分布列为补贴/(万元/辆)34 4.5概率0.20.50.3∴该市每辆纯电动汽车2017年地方财政补贴的均值为3×0.2+4×0.5+4.5×0.3=3.95(万元).(2)由频数分布表得每天需要充电车辆数的分布列为辆数 6 0007 0008 0009 000概率0.20.30.40.1若采用方案一,100台直流充电桩和900台交流充电桩每天可充电车辆数为30×100+4×900=6 600,可得实际充电车辆数的分布列为于是估计方案一下新设备产生的日利润为25×(6 000×0.2+6 600×0.8)-500×100-80×900=40 000(元).若采用方案二,200台直流充电桩和400台交流充电桩每天可充电车辆数为30×200+4×400=7 600,可得实际充电车辆数的分布列为于是估计方案二下新设备产生的日利润为25×(6 000×0.2+7 000×0.3+7 600×0.5)-500×200-80×400=45 500(元).12.某地一商场记录了12月份某5天当中某商品的销售量y (单位:kg)与该地当日最高气温x (单位:℃)的相关数据,如下表:(1)试求y 与x 的回归方程y =b x +a ;(2)判断y 与x 之间是正相关还是负相关;若该地12月某日的最高气温是6 ℃,试用所求回归方程预测这天该商品的销售量;(3)假定该地12月份的日最高气温X ~N (μ,σ2),其中μ近似取样本平均数x ,σ2近似取样本方差s 2,试求P (3.8<X <13.4).附:参考公式和有关数据⎩⎪⎨⎪⎧b ^=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2,a ^=y -b ^x ,10≈3.2, 3.2≈1.8,若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)=0.682 7,且P (μ-2σ<X <μ+2σ)=0.954 5.解:(1)由题意,x =7,y =9,∑i =1nx i y i -n x y =287-5×7×9=-28,∑i =1nx 2i -n x 2=295-5×72=50,b ^=-2850=-0.56,a ^=y -b ^x =9-(-0.56)×7=12.92. 所以所求回归直线方程为y ^=-0.56x +12.92.(2)由b ^=-0.56<0知,y 与x 负相关.将x =6代入回归方程可得, y ^=-0.56×6+12.92=9.56,即可预测当日该商品的销售量为9.56 kg.(3)由(1)知μ≈x =7,σ≈s 2≈3.2,所以P (3.8<X <13.4)=P (μ-σ<X <μ+2σ)=12P (μ-σ<X <μ+σ)+12P (μ-2σ<X <μ+2σ)=0.818 6.B 组——大题专攻强化练1.电影公司随机收集了电影的有关数据,经分类整理得到下表:假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率. (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率. (3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“ξk =1”表示第k 类电影得到人们喜欢,“ξk =0”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差D (ξ1),D (ξ2),D (ξ3),D (ξ4),D (ξ5),D (ξ6)的大小关系.解:(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000, 第四类电影中获得好评的电影部数是200×0.25=50, 故所求概率为502 000=0.025.(2)设事件A 为“从第四类电影中随机选出的电影获得好评”,事件B 为“从第五类电影中随机选出的电影获得好评”.由题意知P (A )估计为0.25,P (B )估计为0.2, 故所求概率为P (A B +A B )=P (A B )+P (A B ) =P (A )(1-P (B ))+(1-P (A ))P (B ) =0.25×0.8+0.75×0.2=0.35.(3)D(ξ1)>D(ξ4)>D(ξ2)=D(ξ5)>D(ξ3)>D(ξ6).2.(2019·江西八所重点中学联考)某部门经统计,客户对不同款型理财产品的最满意度百分比和对应的理财总销售量(单位:万元)如下表(最满意度百分比越高时总销售量越高):产品款型 A B C D E F G H I J 最满意度百分比/%20342519262019241913总销售量/万元80898978757165626052设x表示理财产品最满意度的百分比,y为该理财产品的总销售量(单位:万元).这些数据的散点图如图所示.(1)在5份A款型理财产品的客户满意度调查资料中只有一份是最满意的,从这5份资料中任取2份,求含有最满意客户资料的概率.(2)我们约定:相关系数的绝对值在0.3以下是无线性相关,在0.3以上(含0.3)至0.75是一般线性相关,在0.75以上(含0.75)是较强线性相关,y与x是否达到较强线性相关?若达到,请求出线性回归方程;若没有达到较强线性相关,则采取“末位”剔除制度(即总销售量最少的那一款型产品退出理财销售),请求在剔除“末位”款型后的线性回归方程(系数精确到0.1).数据参考计算值:x y∑i=110x2i-10x2∑i=110y2i-10y2∑i=110x i y i-10x·y288.9参考计算值21.972.1288.937.16452.117.00附:线性相关系数r=∑i=1nx i y i-n x·y∑i=1nx2i-n x2∑i=1ny2i-n y2,回归直线方程y^=a^+b^x的斜率和截距的最小二乘法估计分别为b^=∑i=1nx i y i-n x·y∑i=1nx2i-n x2,a^=y-b^x.解:(1)在5份A 款型理财产品的客户资料中只有1份是最满意的,把最满意客户资料记为a ,其余客户资料记为b ,c ,d ,e .则任取2份资料的基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ) ,(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e ),共10个.含有a 的基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),共4个. 则含有最满意客户资料的概率为410=25.(2)线性相关系数r =∑i =110x i y i -10x ·y∑i =110x 2i -10x2∑i =110y 2i -10y2=452.117×37.16≈0.72∈[0.3,0,75), 即y 与x 具有一般线性相关关系,没有达到较强线性相关关系. 由“末位”剔除制度可知,应剔除J 款型理财产品, 重新计算得x ′=10×21.9-139=2069≈22.89,y ′=10×72.1-529=6699≈74.33,∑i =19x 2i -9x ′=288.9+10×21.92-132-9×22.892≈200.43, ∑i =19x i y i -9x ′·y ′=452.1+10×21.9×72.1-13×52-9×22.89×74.33≈253.27.b ^=∑i =19x i y i -9x ′·y ′∑i =19x 2i -9x ′2=253.27200.43≈1.26≈1.3. a ^=y ′-b ^x ′=74.33-1.26×22.89≈45.5. 所求线性回归方程为y ^=45.5+1.3x .(注:若用b ^=1.3计算出a ≈44.6,即y ^=44.6+1.3x 不扣分)。
高中数学组卷—统计案例1.(2016•延边州模拟)下表是高三某位文科生连续5次月考的历史、政治的成绩,结果统计如下:月份9 10 11 12 1历史(x分)79 81 83 85 87政治(y分)77 79 79 82 83(1)求该生5次月考历史成绩的平均分和政治成绩的方差(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关,根据上表提供的数据,求两个变量x、y的线性回归方程=x+(附:==,=y﹣x)2.(2016春•南城县校级月考)某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表:年份x 2 2014 2015储蓄存款y(千亿元) 5 6 7 8 10为了研究计算的方便,工作人员将上表的数据进行了处理,t=x﹣2010,z=y﹣5得到如下表:时间代号t 1 2 3 4 5z 0 1 2 3 5(Ⅰ)求z关于t的线性回归方程;(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?(附:对于线性回归方程,其中:,=﹣)3.(2015•重庆)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2 2013 2014时间代号t 1 2 3 4 5储蓄存款y(千亿元) 5 6 7 8 10(Ⅰ)求y关于t的回归方程=t+.(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程=t+中.4.(2015•衡阳二模)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料日期3月1日3月2日3月3日3月4日3月5日温差x(°C)10 11 13 12 8发芽数y(颗)23 25 30 26 16(Ⅰ)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于25”的概率.(Ⅱ)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程=x+;(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)所得的线性回归方程是否可靠?5.(2016•黄山一模)为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数9 10 11 12 13 14人数10 18 22 25 20 5将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.P(K2≥k)0.05 0.01k 3.841 6.635附:K2=.6.(2016•衡阳二模)心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如右表:(单位:人)几何题代数题总计男同学22 8 30女同学8 12 20总计30 20 50(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?(2)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为 X,求 X的分布列及数学期望 EX.附表及公式P(k2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828K2=.7.(2016•宝鸡二模)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图直方图:(Ⅰ)若直方图中前三组的频数成等比数列,后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:是否近视1~50 951~1000年级名次近视41 32不近视9 18根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?(Ⅲ)在(Ⅱ)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.P(K2≥k)0.10 0.05 0.025 0.010 0.005k 2.706 3.841 5.024 6.635 7.879附:.8.(2016•广州模拟)“冰桶挑战赛”是一项社交网络上发起的慈善公益活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.(Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?(Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下2×2列联表:接受挑战不接受挑战合计男性45 15 60女性25 15 40合计70 30 100根据表中数据,能否有90%的把握认为“冰桶挑战赛与受邀者的性别有关”?附:K2=P(K2≥k0)0.100 0.050 0.010 0.001k0 2.706 3.841 6.635 10.8289.(2014•安徽)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300名学生每周平均体育运动时间的样本数据(单位:小时).(Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.P(K2≥k0)0.10 0.05 0.010 0.005k0 2.706 3.841 6.635 7.879附:K2=.10.(2014•辽宁)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生60 20 80北方学生10 10 20合计70 30 100(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:X2=P(x2>k)0.100 0.050 0.010k 2.706 3.841 6.635高中数学组卷—统计案例参考答案与试题解析1.(2016•延边州模拟)下表是高三某位文科生连续5次月考的历史、政治的成绩,结果统计如下:月份9 10 11 12 1历史(x分)79 81 83 85 87政治(y分)77 79 79 82 83(1)求该生5次月考历史成绩的平均分和政治成绩的方差(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关,根据上表提供的数据,求两个变量x、y的线性回归方程=x+(附:==,=y﹣x)【解答】解:(1)=(79+81+83+85+87)=83.∵=(77+79+79+82+83)=80,∴政治成绩的方差=[(77﹣80)2+(79﹣80)2+(79﹣80)2+(82﹣80)2+(83﹣80)2]=4.8(2)(x i﹣)(y i﹣)=30,(x i﹣)2=40,∴b=,∴a=80﹣=17.75,∴y=x+17.75.2.(2016春•南城县校级月考)某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表:年份x 2 2014 2015储蓄存款y(千亿元) 5 6 7 8 10为了研究计算的方便,工作人员将上表的数据进行了处理,t=x﹣2010,z=y﹣5得到如下表:时间代号t 1 2 3 4 5z 0 1 2 3 5(Ⅰ)求z关于t的线性回归方程;(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?(附:对于线性回归方程,其中:,=﹣)【解答】解:(Ⅰ),,,,,∴z=1.2t﹣1.4•…(6分)(Ⅱ)t=x﹣2010,z=y﹣5,代入z=1.2t﹣1.4得到:y﹣5=1.2(x﹣2010)﹣1.4,即y=1.2x﹣2408.4•…(9分)(Ⅲ)x=2020,∴y=1.2×2020﹣2408.4=15.6,∴预测到2020年年底,该地储蓄存款额可达15.6千亿元•…(12分)3.(2015•重庆)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2 2013 2014时间代号t 1 2 3 4 5储蓄存款y(千亿元) 5 6 7 8 10(Ⅰ)求y关于t的回归方程=t+.(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程=t+中.【解答】解:(Ⅰ)由题意,=3,=7.2,=55﹣5×32=10,=120﹣5×3×7.2=12,∴=1.2,=7.2﹣1.2×3=3.6,∴y关于t的回归方程=1.2t+3.6.(Ⅱ)t=6时,=1.2×6+3.6=10.8(千亿元).4.(2015•衡阳二模)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料日期3月1日3月2日3月3日3月4日3月5日温差x(°C)10 11 13 12 8发芽数y(颗)23 25 30 26 16(Ⅰ)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于25”的概率.(Ⅱ)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程=x+;(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)所得的线性回归方程是否可靠?【解答】解:(I)由题意知本题是一个等可能事件的概率,试验发生包含的事件共有C52=10种结果,满足条件的事件是事件“m,n均小于25”的只有1个,∴要求的概率是p=.(II)∵,∴b==∴a=27﹣,∴所求的线性回归方程是y=(III)当x=10时,y=22,当x=8时,y=17,与检验数据的误差是1,满足题意,被认为得到的线性回归方程是可靠的.5.(2016•黄山一模)为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数9 10 11 12 13 14人数10 18 22 25 20 5将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.P(K2≥k)0.05 0.01k 3.841 6.635附:K2=.【解答】解:(Ⅰ)由统计表可知,在抽取的100人中,“歌迷”有25人,从而完成2×2列联表如下:。