第5章 框架—剪力墙结构的内力和位移计算
- 格式:ppt
- 大小:12.32 MB
- 文档页数:56
第五章框架、剪力墙、框架-剪力墙结构的近似计算方法与设计概念5.1 计算基本假定1、基本假定(1)一片框架或一片剪力墙可以抵抗在本身平面内的侧向力,而在平面外的刚度很小,可以忽略。
因而整个结构可以划分成若干个平面结构共同抵抗与平面结构平行的侧向荷载,垂直于该方向的结构不参加力。
(2)楼板在其自身平面内刚度无限大,楼板平面外刚度很小,可以忽略。
因而在侧向力作用下,楼板可作剐体平移或转动,各个平面抗侧力结构之间通过楼板互相联系并协同工作。
¾弹性工作状态假定¾平面抗侧力结构和刚性楼板假定¾水平荷载的作用方向¾框架结构计算方法分类平面抗侧力结构和刚性楼板假定¾平面抗侧力结构假定¾(a)结构平面¾(b)y方向抗侧力结构¾(c)x方向抗侧力结构¾刚性楼板假定结构→构件→截面→材料2、框架结构计算方法分类框架计算方法精确法渐进法近似法位移法力法力矩分配法迭代法无剪力分配法分层法反弯点D 值法5.2 框架结构的近似计算方法5.2.1 竖向荷载下的近似计算——分层力矩分配法基本假定多层多跨框架在竖向荷载作用下,侧向位移比较小,计算时可忽略侧移的影响;本层横梁上竖向荷载对其他各层横梁内力的影响很小,计算时也可忽略,因此可将多层框架分解成一层一层的单层框架,分别进行计算。
分层法示意图计算要点¾分层方法:将多层框架分层,每层梁与上下柱构成的单层框架作为计算单元,柱远端假定为固端;¾各计算单元按弯矩分配法计算内力;¾分层计算所得的横梁的弯矩即为其最后的弯矩,每一柱(底层柱除外)属于上下两层,所以柱的弯矩为上下两层柱的弯矩叠加;¾因为分层计算时,假定上下柱的远端为固定端,而实际上是弹性支承,为了反映这个特点,减小误差,除底层柱外,其他层各柱的线刚度乘以折减系数0.9;楼层柱弯矩传递系数为1/3,底层柱为1/2;¾分层计算法所得的结果,在刚结点上诸弯矩可能不平衡,但误差也不致很大,如有需要,可对结点不平衡弯矩再进行一次分配。
框架和剪力墙结构的内力与位移计算在建筑结构设计中,框架和剪力墙结构是一种常见且重要的结构形式。
理解和准确计算这种结构的内力与位移,对于确保建筑物的安全性、稳定性以及使用性能至关重要。
框架结构主要由梁和柱组成,通过节点连接形成空间受力体系。
在承受水平荷载时,框架结构的变形以剪切型为主,即层间位移由下至上逐渐增大。
而剪力墙结构则是由一系列的钢筋混凝土墙板组成,能够有效地抵抗水平荷载,其变形以弯曲型为主,即顶部位移较大。
当框架和剪力墙共同工作时,其内力和位移的计算就变得较为复杂。
首先,我们来探讨内力的计算。
内力包括弯矩、剪力和轴力。
在水平荷载作用下,框架和剪力墙所承担的内力会根据它们的刚度比例进行分配。
对于框架部分,其内力计算通常采用 D 值法。
D 值法考虑了梁柱线刚度比、上下层横梁线刚度比以及层高变化等因素对框架柱抗侧刚度的影响。
通过计算得到框架柱的抗侧刚度后,再根据水平荷载的大小和分布,就可以计算出框架柱和框架梁的内力。
剪力墙的内力计算则相对复杂一些。
一般来说,可以采用等效抗弯刚度法或者连续连杆法。
等效抗弯刚度法将剪力墙等效为一个悬臂梁,通过计算其等效抗弯刚度来确定内力。
连续连杆法则是将剪力墙视为一系列连续的连杆,通过建立微分方程来求解内力。
在计算框架和剪力墙结构的位移时,需要分别考虑弯曲变形和剪切变形的影响。
对于框架结构,由于其剪切变形较大,需要同时考虑梁柱的弯曲变形和剪切变形。
而剪力墙结构主要是弯曲变形,其位移计算可以基于材料力学中的弯曲理论。
在实际工程中,为了更准确地计算框架和剪力墙结构的内力和位移,通常会借助计算机软件进行分析。
这些软件基于有限元法等数值方法,能够模拟结构在各种荷载作用下的响应。
然而,软件计算结果也并非绝对准确,工程师还需要根据自己的经验和判断对结果进行分析和校核。
例如,在一些特殊的情况下,软件可能无法准确考虑结构的非线性行为或者一些复杂的边界条件。
另外,在设计过程中,还需要考虑一些其他因素对内力和位移的影响。
第五讲(一) 剪力墙结构的内力、位移计算本章内容:一、剪力墙结构的计算图1、剪力墙结构的计算图—水平荷载下剪力墙的计算截面2、剪力墙的分类(1)整体墙和小开口整体墙(2)双肢剪力墙和多肢剪力墙(3)框支剪力墙(4)开有不规则大洞口的墙二、剪力墙构件的受力特点和分类依据1、影响剪力墙受力性能的两个主要指标(1)肢强系数(2)剪力墙整体性系数2、单榀剪力墙受力特点(水平力作用下墙肢中的整体弯矩和局部弯矩)3、剪力墙的分类(1)整截面剪力墙(2)整体小开口剪力墙(3)联肢剪力墙(4)壁式框架三、剪力墙的计算方法1、整体墙和小开口整体墙的计算2、双肢墙的计算1)连续连杆法的基本假设2)力法方程的建立3)基本方程的解4)双肢墙的内力计算5)双肢墙的位移与等效刚度6)关于墙肢剪切变形和轴向变形的影晌7)关于各类剪力墙划分判别式的讨论一、剪力墙结构的计算图1、剪力墙结构的计算图—水平荷载下剪力墙的计算截面下图为一高层建筑剪力墙结构的平面布置及剖面示意图。
从图中可以看出,剪力墙结构是由一系列的竖向纵、横墙和平面楼板组合在一起的—个空间盒子式结构体系。
按照对高层建筑结构计算的基本假定及计算图取法,它可以按纵、横两方向的平面抗侧力结构进行分析。
为了方便,下面采用简单的图形说明问题。
下图所示为剪力墙结构,在横向水平荷载作用下,只考虑横墙起作用,而“略去”纵墙的作用。
在纵向水平荷载作用时,只考虑纵墙起作用,而“略去"横墙的作用。
需要指出的是,这里所谓“略去”另一方向剪力墙的影响,并非完全略去,而是将其影响体现在与它相交的另一方向剪力墙结构端部存在的翼缘,将翼缘部分作为剪力墙的一部分来计算.根据《高层规程》的规定,计算剪力墙结构的内力和位移时,应考虑纵、横墙的共同工作,即纵墙的一部分可作为横墙的有效翼缘,横墙的一部分也可作为纵墙的有效冀缘。
现浇剪力墙有效翼缘的宽度i b可按下表所列各项中最小值取用。
剪力墙通常是布置得规则、拉通、对直的。
剪力墙计算第 5 章剪力墙结构设计本章主要内容: 5.1 概述 结构布置 剪力墙的分类 剪力墙的分析方法 5.2 整体剪力墙和整体小开口剪力墙的计算 整体剪力墙的计算 整体小开口剪力墙的计算 5.3 联肢剪力墙的计算 双肢剪力墙的计算 多肢墙的计算 5.4 壁式框架的计算 计算简图 内力计算 位移的计算 5.5 剪力墙结构的分类 按整体参数分类 按剪力墙墙肢惯性矩的比值 剪力墙类别的判定 5.6 剪力墙截面的设计 墙肢正截面抗弯承载力 墙肢斜截面抗剪承载力 施工缝的抗滑移验算 5.7 剪力墙轴压比限制及边缘构建配筋要求 5.8 短肢剪力墙的设计要求 5.9 剪力墙设计构造要求 5.10 连梁截面设计及配筋构造 连梁的配筋计算 连梁的配筋构造5.1 概述 一、概述 1、利用建筑物的墙体作为竖向承重和抵抗侧力的结构,称为剪力墙结构体系。
墙体同时也作为维护及房间分隔构件。
2、剪力墙的间距受楼板构件跨度的限制,一般为 3~8m。
因而剪力墙结构适用 于要求小房间的住宅、旅馆等建筑,此时可省去大量砌筑填充墙的工序及材料, 如果采用滑升模板及大模板等先进的施工方法,施工速度很快。
3、剪力墙沿竖向应贯通建筑物全高,墙厚在高度方向可以逐步减少,但要注意避免突然减少很多。
剪力墙厚度不应小于楼层高度的 1/25 及 160mm。
4、现浇钢筋混凝土剪力墙结构的整体性好,刚度大,在水平力作用下侧向变形 很小。
墙体截面面积大,承载力要求也比较容易满足,剪力墙的抗震性能也较好。
因此,它适宜于建造高层建筑,在 10~50 层范围内都适用,目前我国 10~30 层的高层公寓式住宅大多采用这种体系。
5、剪力墙结构的缺点和局限性也是很明显的,主要是剪力墙间距太小,平面布 置不灵活,不适应于建造公共建筑,结构自重较大。
6、为了减轻自重和充分利用剪力墙的承载力和刚度,剪力墙的间距要尽可能做 大些,如做成 6m 左右。
7、剪力墙上常因开门开窗、穿越管线而需要开有洞口,这时应尽量使洞口上下 对齐、布置规则,洞与洞之间、洞到墙边的距离不能太小。
Ch1 绪论1.高层建筑与多层建筑如何界定?我国《民用建筑设计通则》(JGJ37-87)规定,10层及10层以上的住宅建筑以及高度超过28m的公共建筑和综合性建筑为高层建筑;高度超过100m时,不论是住宅建筑还是公共建筑,一律称为超高层建筑。
我国《高层建筑混凝土结构技术规程》规定:≥10层或H>28m的建筑物为高层;H>100m 的建筑物均为超高层。
4.谈谈你对高层建筑的发展趋势有何见解?1).新材料的开发和应用:高强度混凝土(C100);高强、可焊性好的厚钢板;耐火钢材;FR钢(耐候钢)*耐候钢是指在恶劣环境条件下(主要是指腐蚀较强的环境),具有较强工作性能的钢材。
2).高度会突破:超过1000m的超高层钢材建筑已成为反映一个国家或城市科技实力和建设水平的指标之一。
3).组合结构增多:钢和混凝土的组合结构抗震性能好、耐火耐蚀,优于全钢、全混凝土结构。
钢筋混凝土结构:高层建筑的主要结构体系组合结构:超高层建筑的主要结构体系/4)..新型结构形式应用增多巨型框架、桁架筒体、多束筒体……5). 耗能减震技术发展减震技术有被动耗能减震和主动减震两种。
前者有耗能支撑,带竖缝耗能剪力墙,被动调谐质量阻尼器以及安装各种被动耗能的油阻尼器等;后者是计算机控制的,通过安装在结构上的各种驱动装置和传感器,与计算机系统相连接,对结构反应进行实时分析,发出信号驱动装置对结构施加作用,减小结构反应。
Ch2 高层结构体系与结构布置1.高层建筑中常用的结构体系有哪些?各有何适用范围?答:高层建筑中常用的结构体系有框架、剪力墙、框架-剪力墙、筒体以及它们的组合。
(1)框架结构体系是由梁、柱构件通过节点连接构成,既承受竖向荷载,也承受水平荷载的结构体系。
这种体系适用于非抗震区多层建筑及高度不大的高层建筑。
(2)剪力墙结构体系剪力墙结构体系是利用建筑物墙体承受竖向与水平荷载,并作为建筑物的围护及房间分隔构件的结构体系。
适用于开间较小、墙体较多、房间面积不太大的住宅和旅馆。
剪力墙结构的内力与位移计算在现代建筑结构设计中,剪力墙结构因其良好的抗震性能和空间整体性而被广泛应用。
要确保剪力墙结构的安全性和稳定性,准确计算其内力与位移至关重要。
接下来,让我们一起深入探讨剪力墙结构内力与位移计算的相关知识。
剪力墙,简单来说,就是主要承受风荷载或地震作用引起的水平荷载的墙体。
它如同建筑物的坚强卫士,能够有效地抵抗侧向力,保障建筑的稳定。
内力计算是剪力墙结构设计的关键环节之一。
在水平荷载作用下,剪力墙会产生弯矩、剪力和轴力。
计算这些内力时,需要考虑多种因素。
首先是荷载的确定。
水平荷载通常包括风荷载和地震作用。
风荷载的大小取决于建筑物所在地区的基本风压、体型系数以及高度等因素。
地震作用则需要根据抗震设防烈度、场地类别等进行计算。
其次,剪力墙的几何形状和尺寸对内力计算有着重要影响。
比如,墙的长度、厚度以及开洞情况等。
开洞会使剪力墙的刚度发生变化,从而影响内力分布。
在计算方法上,常用的有等效抗弯刚度法和有限元法等。
等效抗弯刚度法相对简单,适用于规则形状的剪力墙。
它将剪力墙等效为一个具有一定抗弯刚度的杆件,通过结构力学的方法计算内力。
有限元法则能够更精确地模拟剪力墙的复杂受力情况,适用于各种形状和开洞的剪力墙,但计算过程相对复杂。
位移计算同样不容忽视。
位移过大可能导致建筑物使用功能受限,甚至影响结构的安全。
计算剪力墙的位移,需要先确定其侧向刚度。
侧向刚度与剪力墙的材料、几何形状、边界条件等密切相关。
对于混凝土剪力墙,其刚度会随着混凝土的龄期和受力状态而变化。
在计算位移时,要考虑多种因素的影响。
比如,梁和柱对剪力墙的约束作用,以及填充墙等非结构构件对结构刚度的贡献。
实际工程中,为了更准确地计算剪力墙结构的内力和位移,通常会借助计算机软件进行分析。
这些软件基于各种成熟的计算理论和算法,能够快速给出精确的结果。
然而,软件计算结果并不是绝对可靠的,工程师需要对其进行判断和校核。
这就要求工程师具备扎实的专业知识和丰富的工程经验,能够识别计算结果中的不合理之处,并进行必要的调整。