武汉纺织大学 机械振动研究生试题
- 格式:doc
- 大小:149.00 KB
- 文档页数:2
《机械振动》测试题(含答案)(1)一、机械振动 选择题1.如图所示,在一根张紧的水平绳上,悬挂有 a 、b 、c 、d 、e 五个单摆,让a 摆略偏离平衡位置后无初速释放,在垂直纸面的平面内振动;接着其余各摆也开始振动,当振动稳定后,下列说法中正确的有( )A .各摆的振动周期与a 摆相同B .各摆的振动周期不同,c 摆的周期最长C .各摆均做自由振动D .各摆的振幅大小不同,c 摆的振幅最大2.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍B .若2Tt ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于mkx m M+ 3.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。
物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。
图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A 、B 、C 、D ,用刻度尺测出A 、B 间的距离为x 1;C 、D 间的距离为x 2。
已知单摆的摆长为L ,重力加速度为g ,则此次实验中测得的物体的加速度为( )A .212()x x gLπ-B .212()2x x gLπ-C .212()4x x gLπ-D .212()8x x gLπ-4.在做“用单摆测定重力加速度”的实验中,有人提出以下几点建议,可行的是( ) A .适当加长摆线B .质量相同,体积不同的摆球,应选用体积较大的C .单摆偏离平衡位置的角度要适当大一些D .当单摆经过平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆振动的周期5.如图甲所示,一个单摆做小角度摆动,从某次摆球由左向右通过平衡位置时开始计时,相对平衡位置的位移x 随时间t 变化的图象如图乙所示.不计空气阻力,g 取10m/s 2.对于这个单摆的振动过程,下列说法中不正确的是( )A .单摆的位移x 随时间t 变化的关系式为8sin(π)cm x t =B .单摆的摆长约为1.0mC .从 2.5s t =到 3.0s t =的过程中,摆球的重力势能逐渐增大D .从 2.5s t =到 3.0s t =的过程中,摆球所受回复力逐渐减小6.如右图甲所示,水平的光滑杆上有一弹簧振子,振子以O 点为平衡位置,在a 、b 两点之间做简谐运动,其振动图象如图乙所示.由振动图象可以得知( )A .振子的振动周期等于t 1B .在t =0时刻,振子的位置在a 点C .在t =t 1时刻,振子的速度为零D .从t 1到t 2,振子正从O 点向b 点运动7.如图所示,物块M 与m 叠放在一起,以O 为平衡位置,在ab 之间做简谐振动,两者始终保持相对静止,取向右为正方向,其振动的位移x 随时间t 的变化图像如图,则下列说法正确的是( )A .在1~2Tt 时间内,物块m 的速度和所受摩擦力都沿负方向,且都在增大 B .从1t 时刻开始计时,接下来4T内,两物块通过的路程为AC .在某段时间内,两物块速度增大时,加速度可能增大,也可能减小D .两物块运动到最大位移处时,若轻轻取走m ,则M 的振幅不变8.如图(甲)所示,小球在内壁光滑的固定半圆形轨道最低点附近做小角度振动,其振动图象如图(乙)所示,以下说法正确的是( )A .t 1时刻小球速度为零,轨道对它的支持力最小B .t 2时刻小球速度最大,轨道对它的支持力最小C .t 3时刻小球速度为零,轨道对它的支持力最大D .t 4时刻小球速度 为零,轨道对它的支持力最大9.如图所示,在一条张紧的绳子上悬挂A 、B 、C 三个单摆,摆长分别为L 1、L 2、L 3,且L 1<L 2<L 3,现将A 拉起一较小角度后释放,已知当地重力加速度为g ,对释放A 之后较短时间内的运动,以下说法正确的是( )A .C 的振幅比B 的大 B .B 和C 的振幅相等 C .B 的周期为2L g D .C 的周期为1L g10.如图所示,物体A 放置在物体B 上,B 与一轻弹簧相连,它们一起在光滑水平面上以O 点为平衡位置做简谐运动,所能到达相对于O 点的最大位移处分别为P 点和Q 点,运动过程中A 、B 之间无相对运动.已知物体A 的质量为m ,物体B 的质量为M ,弹簧的劲度系数为k ,系统的振动周期为T ,振幅为L ,弹簧始终处于弹性限度内.下列说法中正确的是A .物体B 从P 向O 运动的过程中,A 、B 之间的摩擦力对A 做正功B .物体B 处于PO 之间某位置时开始计时,经14T 时间,物体B 通过的路程一定为L C .当物体B 的加速度为a 时开始计时,每经过T 时间,物体B 的加速度仍为a D .当物体B 相对平衡位置的位移为x 时,A 、B 间摩擦力的大小等于m kx M m ⎛⎫⎪+⎝⎭11.如图所示,水平弹簧振子沿x 轴在M 、N 间做简谐运动,坐标原点O 为振子的平衡位置,其振动方程为5sin 10cm 2x t ππ⎛⎫=+ ⎪⎝⎭.下列说法正确的是( )A .MN 间距离为5cmB .振子的运动周期是0.2sC .0t =时,振子位于N 点D .0.05t s =时,振子具有最大加速度12.如图所示是两个理想单摆的振动图象,纵轴表示摆球偏离平衡位置的位移,以向右为正方向.下列说法中正确的是___________(填入正确选项前的字母.选对1个给2分,选对2个给4分,选对3个给5分,每选错一个扣3分,得分为0分)A .同一摆球在运动过程中前后两次经过轨迹上的同一点,加速度是相同的B .甲、乙两个摆的频率之比为1︰2C .甲、乙两个摆的摆长之比为1︰2;D .从t=0时起,乙第一次到达右方最大位移处时,甲位于平衡位置,速度方向向左 E.t=2s 时,甲摆的重力势能最小,乙摆的动能为零;13.如图所示,一个弹簧振子在A 、B 两点之间做简谐运动,其中O 为平衡位置,某时刻物体正经过C 点向上运动,速度大小为v c ,已知OC =a ,物体的质量为M ,振动周期为T ,则从此时刻开始的半个周期内A .重力做功2mgaB .重力冲量为mgT2C .回复力做功为零D .回复力的冲量为014.某弹簧振子做周期为T 的简谐运动,t 时刻和t +Δt 时刻速度相同,已知Δt <T ,下列说法正确的是A .t 时刻和t +Δt 时刻位移相同B .t 时刻和t +Δt 时刻加速度大小相等,方向相反C .可能Δ4T t >D .可能Δ4T t < E.一定Δ2=T t 15.如图所示是单摆做阻尼振动的振动图象,下列说法正确的是( )A .摆球A 时刻的动能等于B 时刻的动能 B .摆球A 时刻的势能等于B 时刻的势能C .摆球A 时刻的机械能等于B 时刻的机械能D .摆球A 时刻的机械能大于B 时刻的机械能 16.下列说法中正确的有( ) A .简谐运动的回复力是按效果命名的力 B .振动图像描述的是振动质点的轨迹C .当驱动力的频率等于受迫振动系统的固有频率时,受迫振动的振幅最大D .两个简谐运动:x 1=4sin (100πt +3π) cm 和x 2=5sin (100πt +6π) cm ,它们的相位差恒定17.如图所示为一个单摆在地面上做受迫振动的共振曲线(振幅A 与驱动力频率f 的关系),则( )A .此单摆的固有周期约为2sB .此单摆的摆长约为1mC .若摆长增大,单摆的固有频率增大D .若摆长增大,共振曲线的峰将右移18.如图所示,弹簧振子在光滑水平杆上的A 、B 之间做往复运动,O 为平衡位置,下列说法正确的是( )A .弹簧振子运动过程中受重力、支持力和弹簧弹力的作用B .弹簧振子运动过程中受重力、支持力、弹簧弹力和回复力作用C .振子由A 向O 运动过程中,回复力逐渐增大D .振子由O 向B 运动过程中,回复力的方向指向平衡位置19.如图甲所示为以O 点为平衡位置,在A 、B 两点间做简谐运动的弹簧振子,图乙为这个弹簧振子的振动图象,由图可知下列说法中正确的是( )A .在t =0.2 s 时,弹簧振子的加速度为正向最大B .在t =0.1 s 与t =0.3 s 两个时刻,弹簧振子在同一位置C .从t =0到t =0.2 s 时间内,弹簧振子做加速度增大的减速运动D .在t =0.6 s 时,弹簧振子有最小的弹性势能 E.在t =0.2 s 与t =0.6 s 两个时刻,振子速度都为零20.做简谐运动的水平弹簧振子,振子质量为m ,最大速度为v ,周期为T ,则下列说法正确的是( ) A .从某时刻算起,在2T的时间内,回复力做的功一定为零 B .从某一时刻算起,在2T的时间内,速度变化量一定为零 C .若Δt =T ,则在t 时刻和(t +Δt )时刻,振子运动的速度一定相等 D .若Δt =2T,则在t 时刻和(t +Δt )时刻,弹簧的形变量一定相等 二、机械振动 实验题21.某小组同学做了“用单摆测量重力加速度”实验后,为进一步探究,将单摆的轻质细线改为刚性重杆。
武汉纺织大学2017年招收硕士学位研究生试卷科目代码836科目名称机械制造技术基础考试时间2016年12月25日下午报考专业1、试题内容不得超过画线范围,试题必须打印,图表清晰,标注准确。
2、试题之间不留空格。
3、答案请写在答题纸上,在此试卷上答题无效。
题号一二三四五六七八九十十一得分得分本试卷总分150分,考试时间3小时。
一、单项选择(在备选的四个答案中选择一个正确的,将其编号写在括号内,每小题2分,共20分)1、切削力经验公式的形式为()。
A、线性方程B、三角函数C、指数方程D、对数方程2、通过切削刃选定点,垂直于主运动方向的平面称为()。
A、切削平面B、进给平面C、基面D、主剖面3、在主剖面内度量的基面与前刀面的夹角为()。
A、前角B、后角C、主偏角D、刃倾角4、在机械产品中。
相似件约占零件总数的()。
A、30%B、50%C、70%D、90%5、对碳素钢工件进行精加工时,应选择牌号为()。
A、YT30B、YT5C、YG5D、YG86、车床主轴采用滑动轴承时,影响主轴回转精度的主要因素是()。
A、轴承孔的圆度误差B、主轴轴径的圆度误差C、轴径与轴承孔的间隙D、切削力的大小7、在普通车床上用三爪卡盘夹持工件外圆车内孔,车后发现内孔与外圆不同轴其原因可能是()。
A、车床主轴轴径跳动B、卡盘装夹面与主轴回转轴线不同轴C、刀尖与主轴轴线不等高D、车床纵向导轨与主轴回转轴线不平行8、车削加工塑性材料时,大部分切削热()A、传给工件B、传给刀具C、传给机床和夹具D、被切屑顺带走9、直线尺寸链采用概率算法时,若各组成环均接近正态分布,则封闭环的公差等于()。
A、各组成环中公差最大值B、各组成环中公差的最小值C、各组成环公差之和D、各组成环公差平方和的平方根10、分组选择装配法适用于()的场合。
A、装配尺寸链组成环环数较多,装配精度要求不高B、装配尺寸链组成环环数较多,装配精度要求较高C、装配尺寸链组成环环数较少,装配精度要求不高D、装配尺寸链组成环环数较少,装配精度要求较高二、多项选择(在备选的四个答案中选择2~4个正确的,将其编号写在括号内,每小题2分,共16分)1、采用工序集中原则的优点是()。
机械振动考试题和答案一、单项选择题(每题2分,共20分)1. 简谐运动的振动周期与振幅无关,与()有关。
A. 质量B. 频率C. 弹簧常数D. 初始条件答案:C2. 阻尼振动中,振幅逐渐减小的原因是()。
A. 系统内部摩擦B. 外部阻力C. 系统内部摩擦和外部阻力D. 系统内部摩擦或外部阻力答案:C3. 两个简谐运动合成时,合成运动的频率等于()。
A. 两个简谐运动频率之和B. 两个简谐运动频率之差C. 两个简谐运动频率中较大的一个D. 两个简谐运动频率中较小的一个答案:D4. 受迫振动的频率与()有关。
A. 驱动力频率B. 系统固有频率C. 驱动力大小D. 系统阻尼系数答案:A5. 阻尼振动中,阻尼系数越大,振动周期()。
A. 越大B. 越小C. 不变D. 无法确定答案:B6. 受迫振动中,当驱动力频率接近系统固有频率时,会发生()。
A. 共振B. 反共振C. 振动增强D. 振动减弱答案:A7. 简谐运动的振动周期与()成正比。
B. 频率C. 弹簧常数D. 质量的平方根答案:D8. 阻尼振动中,阻尼系数越小,振动周期()。
A. 越大B. 越小C. 不变D. 无法确定答案:C9. 受迫振动中,当驱动力频率等于系统固有频率时,振动的振幅()。
A. 最小C. 不变D. 无法确定答案:B10. 简谐运动的振动周期与()无关。
A. 质量B. 频率C. 弹簧常数D. 初始条件答案:D二、多项选择题(每题3分,共15分)11. 简谐运动的振动周期与以下哪些因素有关?()A. 质量C. 弹簧常数D. 初始条件答案:AC12. 阻尼振动中,振幅逐渐减小的原因包括()。
A. 系统内部摩擦B. 外部阻力C. 系统内部摩擦和外部阻力D. 系统内部摩擦或外部阻力答案:CD13. 两个简谐运动合成时,合成运动的频率等于以下哪些选项?()A. 两个简谐运动频率之和B. 两个简谐运动频率之差C. 两个简谐运动频率中较大的一个D. 两个简谐运动频率中较小的一个答案:BD14. 受迫振动的频率与以下哪些因素有关?()A. 驱动力频率B. 系统固有频率C. 驱动力大小D. 系统阻尼系数答案:AB15. 阻尼振动中,阻尼系数越大,振动周期的变化情况是()。
《机械振动学》研究生试题一填空题 (本题14分,每空1分)1、机械振动大致可分成:()和非线性振动;确定性振动和( );()和强迫振动。
2、在离散系统中,弹性元件储存( ),惯性元件储存(),()元件耗散能量。
3、周期运动的最简单形式是(),它是时间的单一()或()函数。
4、叠加原理是分析()系统的基础。
5、系统的脉冲响应函数和()函数是一对傅里叶变换对,和()函数是一对拉普拉斯变换对。
6、简谐激励下单自由度系统的响应由()和()组成。
二. 判断题(正确的打“√”,错误的打“×”,每题2分,共16分)1、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。
()2、一个单盘的轴盘系统,在高速旋转时,由于盘的偏心质量使轴盘做弓形回旋时,引起轴内产生交变应力,这是导致在临界转速时,感到剧烈振动的原因。
()3、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。
()4、当激振力的频率等于单自由度线性阻尼系统的固有频率时,其振幅最大值。
()5、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,只是两波形间有一定的相位差。
()6、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的线性组合。
()7、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的固有性质,而只是广义坐标选用的结果。
()8、隔振系统的阻尼愈大,则隔振效果愈好。
()三.问答题(本题20分,每题5分)1、什么是隔振,什么是吸振,两者区别与联系。
2. 某粘滞阻尼振动系统,8个振动周期后振幅由10mm减为1mm,阻尼比为多少3. 转动惯量为J的圆盘由三段抗扭刚度分别为看k1、k2和k3的轴约束,如图所示。
求系统的固有频率。
图14. 写出下图2示系统的等效刚度的表达式。
当m=2.5kg ,k 1=k 2=2×105N/m, k 3=3×105N/m 时,求系统的固有频率。
大学机械振动考试题目及答案一、选择题(每题2分,共10分)1. 在简谐振动中,振幅与振动的能量关系是()。
A. 无关B. 成正比C. 成反比D. 振幅越大,能量越小答案:B2. 下列哪个不是机械振动系统的自由度?()。
A. 转动B. 平动C. 振动D. 形变答案:C3. 一个单自由度系统在受到初始条件激励后,其振动形式是()。
A. 简谐振动B. 阻尼振动C. 受迫振动D. 自由振动答案:D4. 在阻尼振动中,如果阻尼系数增加,振动的振幅将()。
A. 增加B. 不变C. 减小D. 先增加后减小答案:C5. 对于一个二自由度振动系统,其振动模态数量是()。
A. 1B. 2C. 3D. 4答案:B二、填空题(每题2分,共10分)6. 一个物体做自由振动时,其频率称为______。
答案:固有频率7. 当外力的频率与系统的固有频率相等时,系统发生的振动称为______。
答案:共振8. 阻尼力与速度成正比的阻尼称为______阻尼。
答案:线性9. 振动系统的动态响应可以通过______分析法求解。
答案:傅里叶10. 在转子动力学中,临界转速是指转子发生______振动的转速。
答案:自激三、简答题(每题5分,共20分)11. 简述什么是简谐振动,并说明其运动方程的形式。
答案:简谐振动是一种周期性的振动,其加速度与位移成正比,且方向相反。
在数学上,简谐振动的运动方程可以表示为:x(t) = A * cos(ωt + φ)其中,A 是振幅,ω 是角频率,t 是时间,φ 是初相位。
12. 解释什么是阻尼振动,并说明其特点。
答案:阻尼振动是指在振动系统中存在能量耗散,导致振幅随时间逐渐减小的振动。
其特点包括振幅逐渐衰减,振动频率可能会随着振幅的减小而发生变化,且阻尼力通常与振动速度成正比。
13. 描述什么是受迫振动,并给出其稳态响应的条件。
答案:受迫振动是指系统在周期性外力作用下的振动。
当外力的频率接近系统的固有频率时,系统将发生共振,此时振幅会显著增大。
机械振动试题及答案⼀、填空题1、机械振动按不同情况进⾏分类⼤致可分成(线性振动)和⾮线性振动;确定性振动和(随机振动);(⾃由振动)和强迫振动,连续振动和离散系统。
2、(弹性元件)元件、(惯性元件)元件、(阻尼元件)元件是离散振动系统的三个最基本元素。
3、在振动系统中,弹性元件存储(势能)、惯性元件存储(动能)、(阻尼元件)元件耗散能量。
4、系统固有频率主要与系统的(质量)和(刚度)有关,与系统受到的激励⽆关。
5、研究随机振动的⽅法是(数理统计),⼯程上常见的随机过程的数字特征有:(均值)(⽅差)(⾃相关函数)和(互相关函数)。
6、周期运动的最简单形式是(简谐运动),它是时间的单⼀(正弦)或(余弦)函数。
7、单⾃由度系统⽆阻尼⾃由振动的频率只与(质量)和(刚度)有关,与系统受到的激励⽆关。
8、简谐激励下单⾃由度系统的响应由(瞬态响应)和(稳态响应)组成。
9、⼯程上分析随机振动⽤(数学统计)⽅法,描述随机过程的最基本的数字特征包括均值、⽅差、(⾃相关函数)和(互相关函数)。
10、机械振动是指机械或结构在(静平衡)附近的(弹性往复)运动。
11、单位脉冲⼒激励下,系统的脉冲响应函数和系统的(频响函数)函数是⼀对傅⾥叶变换对,和系统的(传递函数)函数是⼀对拉普拉斯变换对。
12、叠加原理是分析(线性振动系统)和(振动性质)的基础。
⼆、简答题1、什么是机械振动?振动发⽣的内在原因是什么?外在原因是什么?答:机械振动是指机械或结构在它的静平衡位置附近的往复弹性运动。
振动发⽣的内在原因是机械或结构具有在振动时储存动能和势能,⽽且释放动能和势能并能使动能和势能相互转换的能⼒。
外在原因是由于外界对系统的激励或者作⽤。
2、机械振动系统的固有频率与哪些因素有关?关系如何?答:机械振动系统的固有频率与系统的质量矩阵、刚度矩阵和阻尼有关。
质量越⼤,固有频率越低;刚度越⼤,固有频率越⾼;阻尼越⼤,固有频率越低。
3、从能量、运动、共振等⾓度简述阻尼对单⾃由度系统振动的影响。
五邑大学(期末试题)院系:机电工程学院专业:机械工程年级: 12级研究生学号: 2111206011姓名:崔卫国机械振动考题1、如图所示两自由度系统。
(1)求系统固有频率和模态矩阵,并画出各阶主振型图形;(2)当系统存在初始条件⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡03.00)0()0(21x x 和⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡00)0()0(21x x 时,试采用模态叠加法求系统响应,并绘出相应曲线;(3)试合理确定k2和m2,使之构成无阻尼动力减振器。
(4)用任何一种语言编制计算程序,完成上述计算工作。
参数:m1=500kg, m2=200kg, k1=8000N/m, k2=3000N/m, F0=350N, ω=0.8解:(1)由题意及图所示可知:这是一个动力减震器问题。
1m 1k 组成的系统为主系统;2m 2k 组成的附加系统为减振器。
故可知这个组合系统的振动微分方程为:()11121221222122sin 0m x k k x k x F wt m x k x k x ⎧++-=⎪⎨-+=⎪⎩ ① 设其解为:11sin x X wt = 22sin x X wt = ② 又因为由②可得:211sin x X w wt =- 222sin x X w wt =- 把②代入方程①中可得:()()212112212112220k k w m X k X F k X k w m X ⎧+--=⎪⎨-+-=⎪⎩ 故系统的特征值问题为:2111212222220X F k k w m k X k k w m ⎡⎤+--⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦ ③ 特征方程为:2121222220k k w m k k k w m +--=-- ④由④可得:()()2222212120kw m k k w m k -+--=⇒222412*********k k k w m k w m k w m w m m ---+= ⑤ 把1k 2k 1m 2m 的值代入⑤式可得:42372400w w -+= ⑥21223720.22378.388223720.223728.61192w w -⎧==⎪⎪⎨+⎪==⎪⎩⇒ 12 2.89625.3490w w =⎧⎨=⎩计算对应二个固有频率的固有振型。
1.一个机器内某零件的振动规律为x=0.5sinwt+0.3coswt, x的单位是cm, w=10pei 1/s.这个振动是否简谐振动,求出它的振幅,最大速度,最大加速度,并用旋转矢量表示三者之间的关系(10分)2.如图所示不计质量的杠杆系统,求坐标x的等效质量和等效刚度(10分)解(I)按能就法系统的幼能及势■能分别为T~ \ S ;z + 十叭(j x ) Z 乙> » I z=;3 + #血)>匕、、I i 'U=捉,/+ 捉(:J=2 S * 5因此简化后的弹黄质反系统的等效质用及等效刚度为M上A.虬二 + / ; m? .K,-加+ 'E设使系统在X坐标上产生单位位移需要施加力P,则在弹簧加及奴处将有图2 W)所示的弹性恢复力,对支点取矩有3.质量弹簧系统,W=150N,而=lcm,*l=0.8cm,A21=0.16cm 。
求阻尼系数 c 。
(10 分)解:_A_=. ..h^=(e nT d yo 1 A R 1 0.8 _(〃皿)20 麻一 * )i T _ 2。
奂“2 勿 1115=20奂“写= --- ,由于,很小,ln5«40^ =0.122(N-s/cm)4. 电机转速1760 W 分,由于未很好平衡,产生不平衡力70公斤使支座振动,支座弹簧常 数11000公斤/厘米,配有阻尼装置,其c=35公斤/厘米,电机重300公斤。
求:振幅,无 阻尼时的振幅,固有频率fn 。
(15分)解:激振力频率co = ------ x 1760 = 184 弧度/秒60于是 P 70 B=°, , = =0.0108 cm+(E T J(11000-|^X 1 842 )2 +352 xl 842 当c=o 时, 70 B ' = --------------- — ---------------- = 0.109 cm11000 ---------- x 184 2 981可见,由于阻尼的存在使振幅下降为原来的l/10o它与激振力频率1760转/分很接近。
机械振动试题(含答案) 一、机械振动 选择题1.做简谐运动的水平弹簧振子,振子质量为m ,最大速度为v ,周期为T ,则下列说法正确的是( )A .从某时刻算起,在2T 的时间内,回复力做的功一定为零 B .从某一时刻算起,在2T 的时间内,速度变化量一定为零 C .若Δt =T ,则在t 时刻和(t +Δt )时刻,振子运动的速度一定相等D .若Δt =2T ,则在t 时刻和(t +Δt )时刻,弹簧的形变量一定相等 2.某同学用单摆测当地的重力加速度.他测出了摆线长度L 和摆动周期T ,如图(a)所示.通过改变悬线长度L ,测出对应的摆动周期T ,获得多组T 与L ,再以T 2为纵轴、L 为横轴画出函数关系图像如图(b)所示.由此种方法得到的重力加速度值与测实际摆长得到的重力加速度值相比会( )A .偏大B .偏小C .一样D .都有可能3.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l ,引力常量为G ,地球质量为M ,摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为( )A .T =2πr GM lB .T =2πr l GMC .T =2πGM r lD .T =2πlr GM 4.如图所示,弹簧下面挂一质量为m 的物体,物体在竖直方向上做振幅为A 的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中A .弹簧的弹性势能和物体动能总和不变B .物体在最低点时的加速度大小应为2gC .物体在最低点时所受弹簧的弹力大小应为mgD .弹簧的最大弹性势能等于2mgA5.如图甲所示,一个单摆做小角度摆动,从某次摆球由左向右通过平衡位置时开始计时,相对平衡位置的位移x 随时间t 变化的图象如图乙所示.不计空气阻力,g 取10m/s 2.对于这个单摆的振动过程,下列说法中不正确的是( )A .单摆的位移x 随时间t 变化的关系式为8sin(π)cm x t =B .单摆的摆长约为1.0mC .从 2.5s t =到 3.0s t =的过程中,摆球的重力势能逐渐增大D .从 2.5s t =到 3.0s t =的过程中,摆球所受回复力逐渐减小6.图(甲)所示为以O 点为平衡位置、在A 、B 两点间做简谐运动的弹簧振子,图(乙)为这个弹簧振子的振动图象,由图可知下列说法中正确的是( )A .在t =0.2s 时,弹簧振子可能运动到B 位置B .在t =0.1s 与t =0.3s 两个时刻,弹簧振子的速度相同C .从t =0到t =0.2s 的时间内,弹簧振子的动能持续地增加D .在t =0.2s 与t =0.6s 两个时刻,弹簧振子的加速度相同7.如图(甲)所示,小球在内壁光滑的固定半圆形轨道最低点附近做小角度振动,其振动图象如图(乙)所示,以下说法正确的是( )A .t 1时刻小球速度为零,轨道对它的支持力最小B .t 2时刻小球速度最大,轨道对它的支持力最小C .t 3时刻小球速度为零,轨道对它的支持力最大D .t 4时刻小球速度 为零,轨道对它的支持力最大8.如图所示,将可视为质点的小物块用轻弹簧悬挂于拉力传感器上,拉力传感器固定于天花板上,将小物块托起一定高度后释放,拉力传感器记录了弹簧拉力F 随时间t 变化的关系如图所示。
《机械振动学》研究生试题
一填空题 (本题14分,每空1分)
1、机械振动大致可分成:()和非线性振动;确定性振动和( );()和强迫振动。
2、在离散系统中,弹性元件储存( ),惯性元件储存(),()元件耗散能量。
3、周期运动的最简单形式是(),它是时间的单一()或()函数。
4、叠加原理是分析()系统的基础。
5、系统的脉冲响应函数和()函数是一对傅里叶变换对,和()函数是一对拉普拉
斯变换对。
6、简谐激励下单自由度系统的响应由()和()组成。
二. 判断题(正确的打“√”,错误的打“×”,每题2分,共16分)
1、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。
()
2、一个单盘的轴盘系统,在高速旋转时,由于盘的偏心质量使轴盘做弓形回旋时,引
起轴内产生交变应力,这是导致在临界转速时,感到剧烈振动的原因。
()
3、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。
()
4、当激振力的频率等于单自由度线性阻尼系统的固有频率时,其振幅最大值。
()
5、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,
只是两波形间有一定的相位差。
()
6、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的
线性组合。
()
7、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的
固有性质,而只是广义坐标选用的结果。
()
8、隔振系统的阻尼愈大,则隔振效果愈好。
()
三.问答题(本题20分,每题5分)
1、什么是隔振,什么是吸振,两者区别与联系。
2. 某粘滞阻尼振动系统,8个振动周期后振幅由10mm减为1mm,阻尼比为多少
3. 转动惯量为J的圆盘由三段抗扭刚度分别为看k1、k2和k3的轴约束,如图所示。
求系统的固有频率。
图1
4. 写出下图2示系统的等效刚度的表达式。
当
m=2.5kg ,k 1=k 2=2×105N/m, k 3=3×105N/m 时,
求系统的固有频率。
四、计算题(本题50分)
1. 细杆OA 可绕水平轴O 转动,如图3所示,在静平衡时成水平。
杆端锤的质量为m ,杆与弹簧的质量均可略去不计,求自由振动的微分方程及周期。
(10分)
图3 图4
2. 如图4所示为一弹簧-质量系统,箱子由高h 处静止自由下落,当箱子触到地面时,试求传递到质量m 上的最大力是多少?假定质量m 和箱子之间有足够的间隙不会碰撞。
(18分)
3. 根据图5所以微振系统,(1) 求系统的质量矩阵和刚度矩阵及频率方程;(2) 求固有频率; (3) 求系统的振型。
(12
分)
图5
4. 长为l 、单位长度质量为l ρ的弦左端固定,右端连接在一质量弹簧系统的物块上,如图6所示。
物块质量为m ,弹簧刚度系数为k ,静平衡
位置在0=y 处。
弦线微幅振动,弦内张力F 保持不
变,求弦横向振动的频率方程。
(10分)。