信息论第3章课后习题答案
- 格式:docx
- 大小:3.40 KB
- 文档页数:2
信息论与编码理论习题答案LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第二章 信息量和熵八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。
解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。
问各得到多少信息量。
解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log = bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log = bit 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log = bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C = bit 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。
解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6= bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6= bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H = bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H 而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H = bit),|(Y X Z H =)|(Y Z H =)(X H = bit )|,(Y Z X H =)|(Y X H +)|(XY Z H =+= bit设一个系统传送10个数字,0,1,…,9。
各章参考答案2.1. (1)4.17比特 ;(2)5.17比特 ; (3)1.17比特 ;(4)3.17比特2.2. 1.42比特2.3. (1)225.6比特 ;(2)13.2比特2.4. (1)24.07比特; (2)31.02比特2.5. (1)根据熵的可加性,一个复合事件的平均不确定性可以通过多次实验逐步解除。
如果我们使每次实验所获得的信息量最大。
那么所需要的总实验次数就最少。
用无砝码天平的一次称重实验结果所得到的信息量为log3,k 次称重所得的信息量为klog3。
从12个硬币中鉴别其中的一个重量不同(不知是否轻或重)所需信息量为log24。
因为3log3=log27>log24。
所以在理论上用3次称重能够鉴别硬币并判断其轻或重。
每次实验应使结果具有最大的熵。
其中的一个方法如下:第一次称重:将天平左右两盘各放4枚硬币,观察其结果:①平衡 ②左倾 ③右倾。
ⅰ)若结果为①,则假币在未放入的4枚币,第二次称重:将未放入的4枚中的3枚和已称过的3枚分别放到左右两盘,根据结果可判断出盘中没有假币;若有,还能判断出轻和重,第三次称重:将判断出含有假币的三枚硬币中的两枚放到左右两盘中,便可判断出假币。
ⅱ)若结果为②或③即将左盘中的3枚取下,将右盘中的3枚放到左盘中,未称的3枚放到右盘中,观察称重砝码,若平衡,说明取下的3枚中含假币,只能判出轻重,若倾斜方向不变,说明在左、右盘中未动的两枚中其中有一枚为假币,若倾斜方向变反,说明从右盘取过的3枚中有假币,便可判出轻重。
(2)第三次称重 类似ⅰ)的情况,但当两个硬币知其中一个为假,不知为哪个时,第三步用一个真币与其中一个称重比较即可。
对13个外形相同的硬币情况.第一次按4,4,5分别称重,如果假币在五个硬币的组里,则鉴别所需信息量为log10>log9=2log3,所以剩下的2次称重不能获得所需的信息.2.6. (1)215log =15比特; (2) 1比特;(3)15个问题2. 7. 证明: (略) 2.8. 证明: (略)2.9.31)(11=b a p ,121)(21=b a p ,121)(31=b a p ,61)()(1312==b a b a p p ,241)()()()(33233222====b a b a b a b a p p p p。
第三章 信道容量-习题答案3.1 设二元对称信道的传递矩阵为⎥⎦⎤⎢⎣⎡3/23/13/13/2 (1) 若P(0) = 3/4, P(1) = 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y); (2) 求该信道的信道容量及其达到信道容量时的输入概率分布;解: 1)symbolbit Y X H X H Y X I symbol bit X Y H Y H X H Y X H X Y H Y H Y X H X H Y X I symbol bit y p Y H x y p x p x y p x p y x p y x p y p x y p x p x y p x p y x p y x p y p symbolbit x y p x y p x p X Y H symbolbit x p X H jj iji j i j i i i / 062.0749.0811.0)/()();(/ 749.0918.0980.0811.0)/()()()/()/()()/()();(/ 980.0)4167.0log 4167.05833.0log 5833.0()()(4167.032413143)/()()/()()()()(5833.031413243)/()()/()()()()(/ 918.0 10log )32lg 324131lg 314131lg 314332lg 3243( )/(log )/()()/(/ 811.0)41log 4143log 43()()(222221212221221211112111222=-==-==+-=+-=-=-==⨯+⨯-=-==⨯+⨯=+=+==⨯+⨯=+=+==⨯⨯+⨯+⨯+⨯-=-==⨯+⨯-=-=∑∑∑∑2)21)(/ 082.010log )32lg 3231lg 31(2log log );(max 222==⨯++=-==i mi x p symbolbit H m Y X I C3.2 解:(1)αα-==1)(,)(21x p x p⎥⎦⎤⎢⎣⎡=4/14/12/102/12/1P ,⎥⎦⎤⎢⎣⎡---=4/)1(4/)1(2/)1(02/12/1)(αααααj i y x P 4/)1()(,4/14/)(,2/1)(321αα-=+==y p y p y p接收端的不确定度:))1(41log()1(41)4141log()4141()2log(21)(αααα---++-=Y H)1log(41)1log(4123αααα---++-= (2))4log()1(41)4log()1(41)2log()1(210)2log(21)2log(21)|(ααααα-+-+-+++=X Y H α2123-= (3))|()();(X Y H Y H Y X I -=);(max )()(Y X C i x p =α,0)(=ααC d d,得到5/3=α 161.0)5/3();max(===C Y X C 3.3∑==⨯++=+=21919.001.0log 01.099.0log 99.02log log )log(j ij ij p p m C0.919*1000=919bit/s 3.4⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=εεεε-10-10001ij p2/1)()(0)(321===a p a p a p 0)(1=b p2/12/1)1(2/100)|()(),()(222=⨯+-⨯+⨯===∑∑εεi ii ii a b p a p b a p b p2/1-12/12/100)|()(),()(333=⨯+⨯+⨯===∑∑)(εεi ii ii a b p a p b a p b p)()|(log)|();(j i j ji j i b p a b p a b p Y a I ∑=0);(1=Y a Iεεεε2log )1(2log )1(0)()|(log)|();(222+--+==∑j j jj b p a b p a b p Y a I )1(2log )1(2log 0)()|(log)|();(333εεεε--++==∑j j jj b p a b p a b p Y a I当0=ε,1=C 当2/1=ε,0=C 3.5两个信道均为准对称DMC 信道设输入符号概率αα-==1)(,)(21a p a p , (1) 对于第一种信道的联合概率的矩阵为:⎥⎦⎤⎢⎣⎡---------)1(2)1)(1()1)((2)()1(αεαεαεεααεαεp p p p⎥⎦⎤⎢⎣⎡---)()1(εαεp p 3.6⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/1002/12/12/10002/12/10002/12/1P 121log 2121log 214log log )log(41=++=+=∑=ij j ij p p m C3.7解:(1)从已知条件可知:3,2,1,3/1)(==i x p i ,且转移概率⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0109101103103525110321)|(i j x y p ,则联合概率⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==010330110110115215110161)()|(i i j ij x p x y p p ,因为:),()(∑=ij i j y x p y p ,可计算得到31)(1=y p ,21)(2=y p ,61)(3=y p499.16log 612log 213log 31)(=++=Y H(2)175.1910log 10310log 301310log 101310log10125log 1525log 151310log 1012log 61)|(log )()|(=+++++++=-=∑iji j j i x y p y x p X Y H (3)当接收为2y ,发送为2x 时正确,如果发送为1x 和3x 为错误,各自的概率为: 5/1)|(21=y x p ,5/1)|(22=y x p ,5/3)|(23=y x p 它的错误概率为:5/4)|()|(2321=+=y x p y x p p e(4)从接收端看到的平均错误概率为:===∑∑≠≠ji ij ji j i j e p y x p y p p )|()(收733.010/115/110/310/130/115/2=+++++(5)从发送端看到的平均错误概率为:===∑∑≠≠ji ij ji i j i e p x y p x p p )|()(发733.010/115/110/310/130/115/2=+++++(6)此信道不好,因为信源等概率分布,从转移信道来看,正确发送的概率11y x >-为0.5,有一半失真;22y x >-为0.3,严重失真;33y x >-为0,完全失真。
Chap3 思考题与习题 参考答案3.1 设有一个信源,它产生0、1 序列的消息。
它在任意时间而且不论以前发生过什么符号,均按P(0)=0.4,P(1)=0.6 的概率发出符号。
(1) 试问这个信源是否平稳的? (2) 试计算H(X 2),H(X 3/X 1X 2)及H ∞。
(3) 试计算H(X 4),并写出X 4 信源中可能有的所有符号。
解:(1)根据题意,此信源在任何时刻发出的符号概率都是相同的,均按p(0)=0.4,p(1)=0.6,即信源发出符号的概率分布与时间平移无关,而且信源发出的序列之间也是彼此无信赖的。
所以这信源是平稳信源。
(2)23123121()2()2(0.4log 0.40.6log 0.6) 1.942(/)(|)()()log ()(0.4log 0.40.6log 0.6)0.971(/)lim (|)()0.971(/)i i iN N N N H X H X bit symbols H X X X H X p x p x bit symbol H H X X X X H X bit symbol ∞−→∞==−×+===−=−+====∑" (3)4()4()4(0.4log 0.40.6log 0.6) 3.884(/)H X H X bit symbols ==−×+=4X 的所有符号:0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 11113.2 在一个二进制的信道中,信源消息集X={0,1}且p(1)=p(0),信宿的消息集Y={0,1},信道传输概率(10)1/p y x ===4,(01)1/p y x ===8。
求:(1) 在接收端收到y=0后,所提供的关于传输消息x 的平均条件互信息I(X ;y=0); (2) 该情况下所能提供的平均互信息量I(X ;Y)。
《信息论、编码与密码学》课后习题答案第1章 信源编码1.1考虑一个信源概率为{0.30,0.25,0.20,0.15,0.10}的DMS 。
求信源熵H (X )。
解: 信源熵 ∑=-=512)(log )(k k k p p X HH(X)=-[0.30*(-1.737)+0.25*(-2)+0.2*(-2.322)+0.15*(-2.737)+0.1*(-3.322)]=[0.521+0.5+0.464+0.411+0.332] =2.228(bit)故得其信源熵H(X)为2.228bit1.2 证明一个离散信源在它的输出符号等概率的情况下其熵达到最大值。
解: 若二元离散信源的统计特性为P+Q=1 H(X)=-[P*log(P)+(1-P)*log(1-P)] 对H(X)求导求极值,由dH(X)/d(P)=0可得211101log ==-=-p ppp p可知当概率P=Q=1/2时,有信源熵)(1)(max bit X H =对于三元离散信源,当概率3/1321===P P P 时,信源熵)(585.1)(m ax bit X H =,此结论可以推广到N 元的离散信源。
1.3 证明不等式ln 1x x ≤-。
画出曲线1ln y x =和21y x =-的平面图以表明上述不等式的正确性。
证明:max ()ln 1(0)1()()01001()0()0ln 11ln 1ln 1f x x x x f x xf x x x x f x f x f x x x x x x x =-+>'=''==>∴<≤>≤=≤-≥≤-≤-令,又有时此时也即当时同理可得此时综上可得证毕绘制图形说明如下 可以很明确说明上述 不等式的正确性。
1.4 证明(;)0I X Y ≥。
在什么条件下等号成立?1111(,)(,)(,)(,)log()()n mi j i j i j n mi j i j i j i j I P x y I x y P x y P x y P x P y =====∑∑∑∑(X ;Y )=当和相互独立时等号成立。
信息论与编码习题参考答案 第一章单符号离散信源信息论与编码作业是 74页,1.1的(1)(5),1.3,1.4,1.6,1.13,1.14 还有证明熵函数的 连续性、扩展性、可加性1.1同时掷一对均匀的子,试求:(1) “2和6同时出现”这一事件的自信息量; (2) “两个5同时出现”这一事件的自信息量; (3) 两个点数的各种组合的熵; ⑷两个点数之和的熵;(5) “两个点数中至少有一个是 1”的自信息量。
解:样本空间:N =c ;c ; =6 X6 =36n 12(1) R =—”1(a) =—log R =log18=4.17bitN 36 n 2 1(2) F 2 N =36 I (a) = -log F 2 =log36 =5.17bit (3) 信源空间:2 36 1.H(x)=15 log 6 log 36 = 4.32bit36 2 36(4)log 36+ — l og 36 — log 36 — log 迸36 2 36 3 36 4 log 塑 + — log 36 =3.71bit5 36 6 (5) F 3 =匹 二11. 1(a) - Tog F 3 -log 36 =1.17bit N 36 111.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它2H(r.卫36们的坐标分别为(Xa,Ya) , (Xb,Yb),但A,B不能同时落入同一方格内。
(1)若仅有质点A,求A落入任一方格的平均信息量;(2)若已知A已落入,求B落入的平均信息量;(3)若A,B是可辨认的,求A,B落入的平均信息量。
解:1(1) 幕A落入任一格的概率:P(a i) I (aj =-log P(aJ = log 484848.H(a) - P(a j)log P(aJ = log 48 =5.58biti 41(2) ;在已知A落入任一格的情况下,B落入任一格的概率是:P(bJ = —47.I(b) - -logP(b i) =log4748.H(b) = -' P(b i)log P(b i) =log47 =5.55biti -11 1(3) AB同时落入某两格的概率是P(ABJ二一一48 47.I(ABJ =-log P(AB i)48 47H(AB」-八P(ABJIog P(ABJ =log(48 47)=11.14biti 二1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
第3章 信道容量习题解答3-1 设二进制对称信道的转移概率矩阵为2/31/31/32/3⎡⎤⎢⎥⎣⎦解: (1) 若12()3/4,()1/4P a P a ==,求(),(),(|),(|)H X H Y H X Y H Y X 和(;)I X Y 。
i i 2i=13311H(X)=p(a )log p(a )log()log()0.8113(/)4444bit -=-⨯-=∑符号111121*********j j j=132117p(b )=p(a )p(b |a )+p(a )p(b |a )=43431231125p(b )=p(a )p(b |a )+p(a )p(b |a )=4343127755H(Y)=p(b )log(b )=log()log()0.9799(/)12121212bit ⨯+⨯=⨯+⨯=---=∑符号 22i j j i j i j i ,H(Y|X)=p(a ,b )logp(b |a )p(b |a )logp(b |a )2211log()log()0.9183(/)3333i jjbit -=-=-⨯-⨯=∑∑符号I(X;Y)=H(Y)H(Y|X)=0.97990.91830.0616(/)bit --=符号 H(X|Y)=H(X)I(X;Y)=0.81130.06160.7497(/bit --=符号)(2)求该信道的信道容量及其达到信道容量时的输入概率分布。
二进制对称信息的信道容量H(P)=-plog(p)-(1-p)log(1-p)1122C =1-H(P)=1+log()+log()=0.0817(bit/)3333符 BSC 信道达到信道容量时,输入为等概率分布,即:{0.5,0.5} 注意单位3-4 设BSC 信道的转移概率矩阵为112211Q εεεε-⎡⎤=⎢⎥-⎣⎦1)写出信息熵()H Y 和条件熵(|)H Y X 的关于1()H ε和2()H ε表达式,其中()log (1)log(1)H εεεεε=----。
信息论第3章课后习题答案
信息论是一门研究信息传输、存储和处理的学科。
它的核心理论是香农信息论,由克劳德·香农于1948年提出。
信息论的应用范围广泛,涵盖了通信、数据压缩、密码学等领域。
在信息论的学习过程中,课后习题是巩固知识、检验理解
的重要环节。
本文将对信息论第3章的课后习题进行解答,帮助读者更好地理
解和掌握信息论的基本概念和方法。
1. 证明:对于任意两个随机变量X和Y,有H(X,Y)≤H(X)+H(Y)。
首先,根据联合熵的定义,有H(X,Y)=-∑p(x,y)log2p(x,y)。
而熵的定义为
H(X)=-∑p(x)log2p(x)和H(Y)=-∑p(y)log2p(y)。
我们可以将联合熵表示为
H(X,Y)=-∑p(x,y)log2(p(x)p(y))。
根据对数的性质,log2(p(x)p(y))=log2p(x)+log2p(y)。
将其代入联合熵的表达式中,得到H(X,Y)=-∑p(x,y)(log2p(x)+log2p(y))。
再根据概率的乘法规则,p(x,y)=p(x)p(y)。
将其代入上式中,得到H(X,Y)=-
∑p(x,y)(log2p(x)+log2p(y))=-∑p(x,y)log2p(x)-∑p(x,y)log2p(y)。
根据熵的定义,可以将上式分解为H(X,Y)=H(X)+H(Y)。
因此,对于任意两个随
机变量X和Y,有H(X,Y)≤H(X)+H(Y)。
2. 证明:对于一个随机变量X,有H(X)≥0。
根据熵的定义,可以得到H(X)=-∑p(x)log2p(x)。
由于概率p(x)是非负的,而
log2p(x)的取值范围是负无穷到0之间,所以-p(x)log2p(x)的取值范围是非负的。
因此,对于任意一个随机变量X,H(X)≥0。
3. 证明:对于一个随机变量X,当且仅当X是一个确定性变量时,H(X)=0。
当X是一个确定性变量时,即X只能取一个确定的值,概率分布为p(x)=1。
根
据熵的定义,可以得到H(X)=-∑p(x)log2p(x)=-log21=0。
因此,当X是一个确定性变量时,H(X)=0。
反之,当H(X)=0时,即熵为0,根据熵的定义,可以得到∑p(x)log2p(x)=0。
由于log2p(x)的取值范围是负无穷到0之间,且p(x)是非负的,所以只有当
p(x)=1时,log2p(x)=0。
因此,当H(X)=0时,X只能取一个确定的值,即X是一个确定性变量。
4. 证明:对于一个随机变量X,当且仅当X的概率分布是均匀分布时,H(X)达到最大值。
当X的概率分布是均匀分布时,即所有的取值概率相等,记为p(x)=1/n,其中n为X的取值个数。
根据熵的定义,可以得到H(X)=-∑p(x)log2p(x)=-
∑(1/n)log2(1/n)。
由于取值个数为n,所以求和的次数为n。
根据对数的性质,
log2(1/n)=log2(1)-log2(n)=-log2(n)。
将其代入上式中,得到H(X)=-∑(1/n)(-log2(n))=log2(n)。
因此,当X的概率分布是均匀分布时,H(X)达到最大值log2(n)。
通过对信息论第3章课后习题的解答,我们可以更深入地理解信息论的基本概念和方法。
信息论不仅是一门理论学科,也是应用广泛的实践工具。
通过对信息的量化和处理,我们可以更好地理解和应用信息,为通信、数据压缩、密码学等领域的发展提供有力支持。