-实数的概念和运算(基础)知识讲解-
- 格式:doc
- 大小:318.50 KB
- 文档页数:5
实数知识点归纳整理1.引言1.1 概述概述部分主要对实数的基本概念进行介绍和解释。
实数是数学中最基本且最常用的数集之一,它包括所有的有理数和无理数。
有理数是可以表示为两个整数之比的数字,而无理数则是不能被表示为两个整数之比的数字。
实数作为数学中的一个重要概念,具有以下几个特点:首先,实数具有连续性,即在任意两个实数之间都存在无数个实数。
其次,实数具有无限性,即实数集合是无限的。
再次,实数具有稠密性,即在任意两个实数之间都存在另一个实数。
实数的运算法则和性质是我们进一步研究实数的基础。
实数的四则运算规则和性质可以通过加法、减法、乘法和除法来描述。
此外,实数还具有交换律、结合律、分配律等运算规律。
了解实数的定义和性质对我们在数学问题的求解和实际生活中的运用非常重要。
实数在各个领域都有广泛的应用,如物理学、经济学、工程学等。
在这些领域中,实数的连续性和无限性特点使得实数能够准确地描述事物的变化和趋势,为问题的解决提供了有力的工具。
本文主要围绕实数的定义与性质以及实数的运算法则展开讨论,同时总结实数的重要性质和实数在实际生活中的应用。
通过对实数的系统梳理和整理,旨在帮助读者更好地理解实数的概念、运算规则和应用价值,并进一步提升数学问题的解决能力和应用能力。
【1.2 文章结构】本文主要介绍实数的相关知识点,包括实数的定义与性质以及实数的运算法则。
文章内容分为引言、正文和结论三个部分。
引言部分主要对实数进行概述,说明实数在数学中的重要性和应用领域。
同时,介绍了文章的结构,方便读者对接下来的内容有一个整体的了解。
正文部分分为两个小节:实数的定义与性质以及实数的运算法则。
首先,详细介绍了实数的定义,包括实数的范围和特点。
然后,探讨实数的性质,如实数的可比性、稠密性和有序性等。
接着,重点介绍实数的运算法则,包括实数的加法、减法、乘法和除法法则。
通过具体的例子和推导,帮助读者理解和掌握实数的运算方法。
结论部分对全文进行总结,强调了实数的重要性质,并说明了实数在实际生活中的应用。
实数的看法和运算(基础)【学目】1.认识无理数和数的意;2.认识有理数的看法、运算在数范内仍适用.【要点梳理】要点一、有理数与无理数有限小数和无量循小数都称有理数. 无量不循小数又叫无理数.要点:(1)无理数的特色:无理数的小数部分位数无量. 无理数的小数部分不循,不能够表示成分数的形式 .(2)常的无理数有三种形式:①含π .②看似循而不循的数,如:⋯⋯ . ③ 有根号的数,但根号下的数字开方开不尽,如5 .要点二、数有理数和无理数称数.1.数的分正有理数有理数零有限小数或无量循环小数实数负有理数无理数正无理数无量不循环小数负无理数2. 数与数上的点一一.数上的任何一个点都一个数,反之任何一个数都能在数上找到一个点与之.要点三、数大小的比正数大于0,数小于0.两个正数,大的数大;两个数,大的数小.从数上看,右的点所表示的数比左的点所表示的数大.要点四、数的运算有理数关于相反数和的意同适合于数.当数从有理数充到数今后,数之不能够行加、减、乘、除(除数不0)、乘方运算,而且正数及0 能够行开平方运算,任意一个数能够行开立方运算. 在行数的运算,有理数的运算法及运算性等同适用.要点五、近似数及有效数字1. 近似数:完好吻合地表示一个量多少的数叫做正确数;与正确数达到必然凑近程度的数叫做近似数.2. 精确度:近似数与正确数的凑近程度即近似程度. 近似程度的要求叫做精确度.要点:精确度有两种形式:①精确到哪一位.②保留几个有效数字.3. 有效数字:从一个数的左第一个不零的数字起,往右到末位数字止的所有的数字都是个数的有效数字,如的有效数字有三个:2, 0, 8.【典型例】型一、数看法1、指出以下各数中的有理数和无理数:2,22, ,9, 38, 39, 0,2, 1 2, 5 5, 0.1010010001......73【思路点 】 数 行分 ,先 某些数 行 算或化 ,尔后依照它的最后 果行分 ,不能够 看到根号表示的数就 是无理数 . π是无理数,化 后含π的代数式也是无理数 .【答案与剖析】 有理数有无理数有22 , 9, 38, 0,2 , 732,,39,1【 升 】 有限小数和无量循 小数都称 有理数. 无量不循 小数又叫无理数 .常 的无理数有三种形式:①含π. ②看似循 而 不循 的数, 如: ⋯⋯ . ③ 有根号的数,但根号下的数字开方开不尽,如55,39,2,12.一反三:【 式】( 2015 春?聊城校 月考)在以下 句中: ①无理数的相反数是无理数; ②一个数的 必然是非 数; ③有理数比无理数小;④无量小数不用然是无理数. 其中正确的选项是( )A .②③B .②③④C .①②④D .②④【答案】 C ;解:①因 数包括有理数和无理数,无理数的相反数 不能能式有理数,故本 正确;②一个数的 必然≥0,故本 正确;③数的大小,和它是有理数 是无理数没关,故本 是 的; ④无量循 小数是有理数,故本 正确. 型二、 数大小的比2、比5和的大小.2【答案与剖析】5解:作商,得25 .5因51,即21 ,所以5.2【 升 】 依照若 a ,b 均 正数, 由“a1,a1,a1”分 获取 “ ab ,b b ba b , a b ,”从而比 两个 数的大小.比 大小的方法有作差法和作商法等,依照详尽情况 用适合的方法 .贯穿交融:【变式】比较大小___7___ 54__ 2 2 3___3 22-39___033 ___10|4 3|___( 7)【答案】<;>;<;<;<;>;<.3、(2015?枣庄)实数a,b,c 在数轴上对应的点以下列图,则以下式子中正确的选项是()A. ac> bc B. |a ﹣ b|=a ﹣ b C.﹣ a<﹣ b< c D.﹣ a﹣ c>﹣ b﹣ c【答案】 D;【剖析】解:∵由图可知,a< b< 0<c,∴A、 ac< bc,故 A 选项错误;B、∵ a< b,∴a﹣ b< 0,∴|a ﹣ b|=b ﹣ a,故 B 选项错误;C、∵ a< b< 0,∴﹣ a>﹣ b,故 C 选项错误;D、∵﹣ a>﹣ b, c>0,∴﹣ a﹣ c>﹣ b﹣ c,故 D 选项正确.应选: D.【总结升华】此题观察的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的要点.种类三、实数的运算4、化简:(1)| 2-1.4|(2)| 7-| 7-4||(3)|1-2|+| 2-3|+| 3- 2|【答案与剖析】解: |2-1.4||7-| 7-4||=| 7-4+ 7|=274|1- 2|+| 2- 3|+| 3- 2|2132231.【总结升华】有理数关于相反数和绝对值的意义同样适合于实数 . 有理数的运算法规及运算性质等同样适用 .5、若| a 2 | b 3 (c 4)20 ,则a b c________.【思路点拨】由有限个非负数之和为零,则每个数都应为零可获取方程中 a ,b,c的值.【答案】 3;【剖析】a20a2解:由非负数性质可知:b30 ,即b 3 ,∴ a b c 2 3 4 3.c40c4【总结升华】初中阶段所学的非负数有|a |,a2, a ,非负数的和为0,只能每个非负数分别为 0.贯穿交融:【变式】已知 ( x16)2| y 3 |z30 ,求xyz 的值.【答案】x160x16解:由已知得 y30,解得y3.z30z3∴ xyz =( 16)(3)312.种类四、近似数和有效数字6、以下各数有几个有效数字,分别是什么?(1)0.010 20;( 2)万;( 3)15 000;( 4)104【答案与剖析】解:由有效数字的定义可得:(1)0.010 20 有4个有效数字,分别为:1, 0, 2,0;(2)1.50 万有3个有效数字,分别为:1, 5, 0;(3)15 000有 5 个有效数字,分别为:1, 5, 0, 0, 0;(4) 2.30 10 4有3个有效数字,分别是:2,3,0【总结升华】带有文字单位或用科学记数法 a 10n表示的数,有效数字的个数与文字单位或 10n没有关系.。
实数的知识点九年级实数是数学中的基本概念之一,它包括有理数和无理数两种类型。
在九年级的数学学习中,我们需要掌握实数的定义、性质以及其在代数运算中的应用。
本文将对实数的相关知识点进行论述,帮助同学们更好地理解和掌握这一概念。
一、实数的定义实数是包括有理数和无理数的数的集合。
有理数是可以表示为两个整数之比的数,包括整数和分数两种类型;无理数是不能表示为两个整数之比的数,它们的十进制表示是无限不循环的。
实数可以用数轴上的点表示,每个实数都与数轴上的唯一一个点对应。
二、实数的性质1. 实数的有序性:对于任意两个实数a和b,必定满足a<b、a=b或者a>b中的一种关系。
2. 实数的稠密性:在任意两个实数之间,总存在其他实数。
这意味着无论两个实数之间的距离有多小,总可以找到一个实数填补其中的空隙。
3. 实数的运算封闭性:对于任意两个实数a和b,其加减乘除的结果仍然是实数。
三、实数的分类1. 有理数:有理数可以表示为一个整数除以一个非零整数的形式,包括整数和分数两种类型。
有理数是可以准确表达的,它们的十进制表示要么是有限小数,要么是循环小数。
2. 无理数:无理数是不能写成有理数的形式,它们的十进制表示是无限不循环的。
常见的无理数有π、√2等。
四、实数的运算1. 实数的加法和减法:实数的加法是可交换的,减法可以看作加法的逆运算。
例如,若a、b是实数,则a+b=b+a,a-b=-(-a)+(-b)。
2. 实数的乘法和除法:实数的乘法是可交换的,除法可以看作乘法的逆运算。
例如,若a、b是实数,则a×b=b×a,a÷b=(1/b)×a。
3. 实数的乘方和开方:实数的乘方是将实数连乘多次,开方则是乘方的逆运算。
例如,a的n次方记作a^n,开方记作√a。
五、实数的应用实数是数学在现实生活中的重要应用之一,它广泛地应用于科学、工程、金融等领域。
在几何中,实数可以表示点的坐标,直线的斜率等。
实数知识点总结考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现) 考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 -a (a <0) ;注意a 的双重非负性:a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
实数概念例题和知识点总结实数是数学中的一个重要概念,它涵盖了有理数和无理数。
理解实数的概念对于进一步学习数学知识,解决数学问题至关重要。
下面我们通过一些例题来深入理解实数的相关概念,并对重要知识点进行总结。
一、实数的定义和分类实数是有理数和无理数的总称。
有理数包括整数(正整数、0、负整数)和分数(正分数、负分数);无理数是无限不循环小数,例如√2、π等。
二、实数的性质1、实数的有序性:任意两个实数 a 和 b,要么 a < b,要么 a = b,要么 a > b。
2、实数的稠密性:在任意两个不同的实数之间,都存在无穷多个实数。
3、实数的运算封闭性:实数进行加、减、乘、除(除数不为 0)运算,其结果仍然是实数。
三、例题解析例 1:判断下列数哪些是有理数,哪些是无理数?22/7,√5,0,-314,***********(相邻两个 1 之间依次多一个 0)解:22/7 是分数,属于有理数;√5 是无限不循环小数,是无理数;0 是整数,属于有理数;-314 是有限小数,可化为分数,属于有理数;***********(相邻两个 1 之间依次多一个 0)是无限不循环小数,是无理数。
例 2:比较大小:√3 + 1 和 2 +√2解:因为(√3 + 1)²= 3 +2√3 + 1 = 4 +2√3 ,(2 +√2)²=4 +4√2 + 2 = 6 +4√2 。
而 4 +2√3 < 6 +4√2 ,所以√3 + 1 < 2 +√2 。
例 3:已知一个实数的绝对值是√5,求这个实数。
解:设这个实数为 x ,则|x| =√5 ,所以 x =±√5 。
四、实数的运算1、加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
2、减法:减去一个数,等于加上这个数的相反数。
3、乘法:两数相乘,同号得正,异号得负,并把绝对值相乘。
一、实数的分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数 二、有理数的性质:⑴有理数的定义:可以写成两个整数p 与q (0q ≠)的比值的数.故所有的有理数都可以化成分数pq(0q ≠)的形式.⑵有理数进行加、减、乘、除四则运算的结果仍是有理数.即有理数集对于加减乘除四则运算具有封闭性.三、平方根和开平方:如果一个数的平方等于a ,那么这个数叫做a 的平方根. 求一个数a 的平方根的运算叫做开平方,a 叫做被开方数. 开平方与平方互为逆运算.在实数范围内,一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根.正数a 的两个平方根可以用“a 的正平方根(又叫算术平方根),读作“根号a ”;a 的负平方根,读作“负根号a ”.=.,00,0,0a a a a a a >⎧⎪===⎨⎪-<⎩四、立方根和开立方:如果一个数的立方等于a,那么这个数叫做a a ”,其中a 叫做被开方数,“3”叫做根指数.2”第九讲实数的概念及运算a ”a ”. 求一个数a 的立方根的运算叫做开立方.在实数范围内,任何一个数都有且只有一个立方根.正数的立方根为正数,负数的立方根为负数,0的立方根为0.实数的概念【例题1】 将下列各数填入适当的括号内:220,0.23,,0.37377377737π∙∙---⑴整 数:{ };⑵非负数:{ }; ⑶有理数:{ };⑷无理数:{ } ⑸正实数:{ };⑹负实数:{ }【例题2】 平方根等于它本身的数是 ,算术平方根等于它本身的数是 ,立方根等于它本身的数是 ;平方根与立方根相等的数是 .①196的平方根是_____;②2( 2.5)-的平方根是 ;③2(的平方根是 ;______的相反数是 ;⑥的立方根是 .【例题3】 求下列各式的值:(1_______= (2)________=(3)________= (4________=(5)________= (6)________=【例题4】 求下列各式的值:(1_______= (2)________=(3)________= (4________=(5________= (6________=实数的性质【例题5】 (1)已知a ,b ,c ,d 是有理数,a c +=+a c =,b d =.(2)已知x ,y 是有理数,且11()()402332x y πππ+++--=,求x y -的值.(3)已知x ,y 是有理数,且11 2.25034x y ⎛⎛+--- ⎝⎭⎝⎭,求x ,y 的值.【例题6】 (1)若a 为自然数,b 为整数,且满足2()7a =-a = ,b = .(2,求a ,b 的值.【例题7】 (12(2)0ab -=,求111(1)(1)(2009)(2009)ab a b a b +++++++的值.(2)已知x ,y ,z 满足24402x y z z -+-++=,求()x y z +的值.【例题8】 (1)已知关于x 1a =有三个整数解,求a 的值.(2)若m =试确定m 的值.【例题9】 (1a ,小数部分是b ,求22a b a b-+的值.(2b ,求4321237620b b b b +++-的值.【例题10】 (1)求最小的正整数m 是一个自然数。
初一数学春季班(教师版)近似数的精确度、分数指数幂及运算知识结构.模块一:近似数的精确度知识精讲知识点:有关概念1.准确数概念:一般来说,完全符合实际地表示一个量多少的数叫做准确数.2.近似数概念:与准确数达到一定接近程度的数叫做近似数(或近似值).☆在很多情况下,很难取得准确数,或者不必使用准确数,而可使用近似数.☆取近似数的方法:四舍五入法,进一法,去尾法(根据具体实际情况使用)3.精确度概念:近似数与准确数的接近程度即近似程度,对近似程度的要求,叫做精确度.☆近似数的精确度通常有两种表示方法:(1)精确到哪一个数位;(2)保留几个有效数字.4.有效数字概念:对于一个近似数,从左边第一个不是零的数字起,往右到末位数字为止的所有数字,叫做这个近似数的有效数字.【例1】 一个正数的平方是3,这个数的准确数_________;近似数(精确到千分之一位)是_______;近似数的有效数字有_______位,有效数字是_______. 【难度】★【答案】3; 1.732; 四; 1、7、3、2.【解析】3 1.732≈,所以有效数字是四位,有效数字是 1、7、3、2. 【总结】本题主要考查了准确度、近似数和有效数字的概念.【例2】 写出下列各数的有效数字,并指出精确到哪一位?1)2000;2)4.523亿 ;3)57.3310⨯;4)0.00125.【难度】★【答案】1)有效数字:2、0、0、0,精确到个位;2)有效数字:4、5、2、3,精确到十万位;3)有效数字:7、3、3,精确到千位;4)有效数字:1、2、5,精确到十万分位.【解析】对于一个近似数,从左边第一个不是零的数字起,往右到末位数字为止的所有数字, 叫做这个近似数的有效数字.【总结】解答此题的关键在于掌握近似数、有效数字与科学记数法的知识点.【例3】 用四舍五入法,按括号内的要求对下列数取近似值.(1)0.008435(保留三个有效数字) ≈_________; (2)12.975(精确到百分位) ≈_________; (3)548203(精确到千位) ≈_________; (4)5365573(保留四个有效数字) ≈_________. 【难度】★【答案】(1)0.00844; (2)12.98; (3)55.4810⨯; (4)65.36610⨯. 【解析】(1)0.00844; (2)12.98; (3)55.4810⨯; (4)65.36610⨯. 【总结】解答本题的关键是理解有效数字的含义,利用科学记数法进行表示.例题解析【例4】 已知 3.1415926π=,按四舍五入法取近似值.(1)π≈__________(保留五个有效数字); (2)π≈_________(保留三个有效数字);(3)0.045267≈_________(保留三个有效数字).【难度】★★【答案】(1)3.1416; (2)3.14; (3)0.0453或24.5310-⨯. 【解析】(1)3.1416; (2)3.14; (3)0.0453或24.5310-⨯. 【总结】本题主要考查的是有效数字的含义,利用科学记数法进行表示.【例5】 用四舍五入法得到:小智身高1.8米与小智身高1.80米,两者有什么区别? 【难度】★★【答案】精确度不同,1.8精确到十分位,1.80精确到百分位.【解析】根据末尾数字所在的数位解答,精确度不同,1.8精确到十分位,1.80精确到百分位. 【总结】本题主要考查了精确度的概念.【例6】 下列近似数各精确到哪一位?各有几个有效数字? (1)3.201; (2)0.0010; (3)2.35亿; (4)107.6010⨯.【难度】★★【答案】(1)精确到千分位,有四个有效数字; (2)精确到万分位,有两个有效数字; (3)精确到百万位,有三个有效数字; (4)精确到亿位,有三个有效数字. 【解析】(1)精确到千分位,有四个有效数字; (2)精确到万分位,有两个有效数字; (3)精确到百万位,有三个有效数字; (4)精确到亿位,有三个有效数字. 【总结】本题主要考查了近似数和有效数字的概念.【例7】 废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水量用科学记数法表示为________立方米. 【难度】★★ 【答案】4310⨯.【解析】45060030000310⨯==⨯.【总结】本题主要考查了科学记数法的表示方法.1、有理数指数幂把指数的取值范围扩大到分数,我们规定:(0)m nmna a a =≥,1(0)m nnmaa a-=>,其中、n 为正整数,1n >.上面规定中的m na 和m na-叫做分数指数幂,a 是底数.整数指数幂和分数指数幂统称为有理数指数幂. 2、有理数指数幂的运算性质:设0a >,0b >,p 、q 为有理数,那么 (1)p q p q a a a +⋅=,p q p q a a a -÷=; (2)()p q pq a a =;(3)()pppab a b =,()pp p a a b b=.【例8】 把下列方根化为幂的形式:(1)32; (2)310-; (3)28(5)-;(4)37--;(5)3a -;(6)a -.【难度】★【答案】(1)132; (2)1310-; (3)145; (4)137; (5)13a -; (6)12()a -. 【解析】(1)13322=; (2)1331010-=-;(3)21822884(5)555-===; (4)1333777--==;(5)1333a a a -=-=-; (6)12()a a -=-.【总结】本题主要考查的是将方根化为分数指数幂的运算.模块二:分数指数幂知识精讲例题解析【例9】把下列分数指数幂化为方根形式:(1)131()27-;(2)238()27;(3)121()16-;(4)1132(64).【难度】★【答案】(1)(2(3)(4.【解析】(1)13127⎛⎫-=⎪⎝⎭;(2)23827⎛⎫=⎪⎝⎭(3)12116⎛⎫-=⎪⎝⎭(4)111362(64)64==【总结】本题考查了分数指数幂与根式之间的互换.【例10】化简:(1)111362a a a÷⋅;(2)8【难度】★【答案】(1)13a;(2)71338x y.【解析】(1)11111113623632a a a a a-+÷==;(2)1211111171 4423333336633 8888 x yx y x y xy x y x y===.【总结】本题主要考查根式与分数指数幂的互化及其化简运算.【例11】计算下列各值:(1;(2)201713(4aa+.【难度】★★【答案】(1)565;(2)1-.【解析】(1151362555⨯=;(2)因为3030a a-≥-≥,,所以3a=,所以3a=或3-,因为30a-≠,所以3a=-.故当3a=-时,原式()2017133143⎛⎫⨯-⎪==-⎪-⎪⎪⎝⎭.【总结】本题考查了平方根有意义的条件及混合运算.【例12】计算下列各值:(1)1225232---+(2)11222[(23)(23)]-++.【难度】★★【答案】(1)12-;(2)16.【解析】(1)1225232---+4923=---+12=-;(2)()()21122 22-⎡⎤++⎢⎥⎢⎥⎣⎦=16=.【总结】本题主要考查了实数的运算,注意利用公式进行.【例13】计算:(1;(2)1112444111()()()242a a a-⋅++;(3)1521216636333(2)(4)x y x y x y÷-⨯.【难度】★★【答案】(1)a;(2)144116a⎛⎫-⎪⎝⎭;(3)166x y-.【解析】(111113342341211121212a a a a aa aa a++===;(2)1114442111242a a a⎛⎫⎛⎫⎛⎫-++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1114442241114416a a a⎛⎫⎛⎫⎛⎫=-+=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)231521166363324x y x y x y⎛⎫⎛⎫÷-⨯⎪ ⎪⎝⎭⎝⎭1225111633663666x y x y-+-+=-=-.【例14】 4249a b==,,求1222b a -的值.【难度】★★★.【解析】()112222242b a ba -=÷==. 【总结】本题主要考查了有理数指数幂的运算性质.【例15】 已知13x x -+=,求下列各式的值:(1)1122x x -+;(2)3322x x -+. 【难度】★★★【答案】(1; (2)【解析】(1)13x x -+=, 21112225x x x x --⎛⎫∴+=++= ⎪⎝⎭,又11220x x-+>, 1122x x-∴+=(2)()3311122221x xx x x x ---⎛⎫+=++-= ⎪⎝⎭【总结】本题主要考查有理数指数幂的化简求值.【例16】 若11112333342133a a a a ---=⨯⨯++,求的值. 【难度】★★★【答案】198.【解析】()111133334214212a =⨯⨯=⨯⨯=,1231111933332488a a a ---∴++=⨯+⨯+=.【总结】本题主要考查了积的乘方的逆运算及分数指数幂和负指数幂的综合运算.【例17】 化简:a b c 【难度】★★★ 【答案】0或1.【解析】当0x =时,原式0=;当0x ≠时,b c c a a bb ca c a bxx----++()()()()()()b c a c a b a b c a a b b c b c c a xxx+++------=⋅⋅2222220()()()1b c c a a b a b b c c a xx -+-+----===.【总结】本题主要考查了含根式的化简,注意要分类讨论.【例18】 已知122a =,132b =,123c =,133d =,试用a b c d 、、、的代数式表示下列各数值.(1 (2 (3 (4【难度】★★★【答案】(1)20a ; (2)10d; (3)23b ; (4)【解析】(11220220a =⨯=; (213131010d =⨯=;(312112333334323223b =⨯=⨯=⨯⨯=;(411114222232(3)22c c =⨯=⨯==. 【总结】本题考查了根式与分数指数幂的相互转化问题.【例19】 已知:210(0)x xxxxa a a a a a --+=>-,求的值. 【难度】★★★【答案】119.【解析】222112121021010x x x x a a a a --+=++=++=(), 又0x x a a -+>,x x a a -∴+=, 222181 21021010x x x x a a a a ---=+-=+-=(),又0x xa a-->, xxa a-∴-=, 119x x xx a a a a --+∴==-. 【总结】本题主要考查了负整数指数幂及乘法公式的综合应用.【例20】 材料:一般地,n 个相同的因数a 相乘:n a aa 个记为n a .如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般地,若n a b =(0a >且 1a ≠,0b >),则n 叫做以a 为底b 的对数,记为log a b (即log a b n =).如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4);(1)计算以下各对数的值:log 24=______,log 216=______,log 264=______;(2)观察(1)中三数4、16、64之间满足怎样的关系式,log 24、log 216、log 264之间又 满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗? log log a a M N +=______;(且1a ≠,M >0,N >0). 【难度】★★★【答案】(1)2,4,6; (2)416=64⨯,222log 4log 16log 64+=;(3)log ()a MN . 【解析】(1)2log 42=,2log 16=4,2log 646=;(2)416=64⨯,222log 4log 16log 64+=; (3)log log log ()a a a M N MN +=.【总结】本题考查学生对新概念的理解及运用.在实数范围内,可以进行加、减、乘、除、乘方等运算,而且有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序与有理数运算顺序基本相同,先乘方.开方.再乘除,最后算加减,同级按从左到右顺序进行,有括号先算括号里的.实数运算的结果是唯一的.实数运算常用到的公式有:2a a =;(0,0)ab a b a b =≥≥;(0,0)a aa b b b=≥>;2()(0)a a a =≥. 知识精讲模块三:实数的运算【例21】 5的整数部分为a ,小数部分为b ,则a b =_________.【难度】★ 【答案】945-.【解析】253<<,2a ∴=,52b =-,2(52)945a b ∴=-=-. 【总结】本题主要考查了无理数的估算及完全平方公式的运用.【例22】 计算:(1)321232416(80.1)3(2)(2)81-⎡⎤-÷-⨯---+-⎣⎦; (2)20152014(76)(67)+-; (3)()()2356315-++-.【难度】★★【答案】(1)19; (2)76+; (3)6563-.【解析】(1)32123241683(2)(2)81-⎡⎤-÷⨯---+-⎣⎦(-0.1)221410982(6)1339=-÷-⨯++=-÷-⨯=()(-);(2)()()201520147667-+()()201520147676=+-()()2014767676=+-=+;(3)()()2356315-++-()()32352+35=⨯-+-()()=3235235⎡⎤⎡⎤⨯--+-⎣⎦⎣⎦()23235⎡⎤=⨯--⎢⎥⎣⎦()3232155=⨯-+-6563=-.【总结】本题主要考查了实数的混合运算,注意能简算时要简算.例题解析【例23】 计-.【难度】★★【答案】2==【总结】本题主要考查了实数的运算,注意利用因式分解的思想去化简.【例24】 计算:(1)11032238[1(0.2)]4271000π--+--⨯-(2112133211127883---⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎝⎭⎝⎭⎝⎭.【难度】★★【答案】(1)7208-; (2)32.【解析】(1)原式2111111()3125125167⎡⎤=+--⨯-÷⎢⎥⎣⎦ 11723721201688=⨯-⨯=-=-;(2)原式()9382296922=----=+-=. 【总结】本题主要考查了实数的混合运算.【例25】 设:73121(3)(3)(1)8433M =÷-⨯-÷-,42211(2)(2)5()0.25326N =-÷+⨯--试比较113M 与1N -的大小. 【难度】★★【答案】1113M N >-.【解析】∵73121(3)(3)(1)8433M =÷-⨯-÷-15151051541031843381535=-÷⨯÷=-⨯⨯⨯=-, 42211(2)(2)5()0.25326N =-÷+⨯-- 42211(2)(2)5()0.2532664111116()9264=-÷+⨯--=÷+⨯--91114124=-- 1312=, ∴11=1313M -,131111212N -=-=-, ∴1113M N >-.【总结】本题主要考查了有理数的综合运算及大小比较.【例26】 已知实数x 、y 满足1142(3)(5)0x y x y -+++-=,求51238x y -+的值. 【难度】★★ 【答案】5.【解析】14(3)0x y -+≥,12(5)0x y +-≥, 3050x y x y -+=⎧∴⎨+-=⎩,解得14x y =⎧⎨=⎩, 51238325x y -∴+=+=.【总结】本题主要考查了对算术平方根的理解及非负性的综合运用.【例27】 已知实数a 、b 、x 、y 满足21y a +=-,231x y b -=--,求22x y a b +++的值. 【难度】★★★ 【答案】17.【解析】21y x a +-=-,21y a ∴=-,231x y b -=--,2222311x a b a b ∴-=----=--,223+0x a b ∴-=,0a ∴=,0b =,3x =, 1y ∴=,40222+217x y a b ++∴+==.【总结】本题主要考查了学生对实数非负性的应用.【例28】 先阅读下列的解答过程,然后再解答:的化简,只要我们找到两个数a 、b ,使a b m +=,ab n =,使得22m +=()a b >,这里7m =,12n =,由于4+3=7,4312⨯=即227+=2=(12;(3. 【难度】★★★【答案】(1; (2)3; (3)【解析】(113m =,42n =,6713+=,6742⨯=,即2213+==;(211m =,24n =,3811+=,3824⨯=,即2211+=,3;(359m =,864n =,322759+=,3227864⨯=,即2259+=. 【总结】本题主要考查了利用新概念对复合平方根进行化简求值.【例29】 已知111333421a =++,求12333a a a ---++的值. 【难度】★★★【答案】1.【解析】设132b =,则3211111b a b b b b -=++==--, 11a b -∴=-, 11b a -∴=+,3131231=33+1b a a a a ----∴=+++(),12333211a a a ---∴++=-=.【总结】本题主要考查了实数的运算和立方和公式的综合运用.一、填空题:【习题1】 下列根式与分数指数幂的互化中,正确的是()A .12()(0)x x x -=-> B .1263(0)y y y =< C .33441()(0)xx x-=>D .133(0)xx x -=-≠【难度】★ 【答案】C【解析】12(0)x x x -=->,故选项A 错误; 1263(0)y y y =-<,故选项B 错误;1331xx-=,故选项D 错误.【总结】本题考查了根式与分数指数幂的互化.【习题2】 下列近似数各精确到哪一个数位?各有几个有效数字? (1)2015;(2)0.6180;(3)7.20万;(4)55.1010⨯.【难度】★【答案】(1)精确到个位,有四个有效数字; (2)精确到万分位,有四个有效数字;(3)精确到百位,有三个有效数字; (4)精确到千位,有三个有效数字.【解析】(1)精确到个位,有四个有效数字为2、0、1、5;(2)精确到万分位,有四个有效数字为6、1、8、0; (3)精确到百位,有三个有效数字为7、2、0; (4)精确到千位,有三个有效数字为5、1、0.【总结】本题主要考查了近似数和有效数字的概念.【习题3】 把下列带根号的数写成幂的形式,分数指数幂化为带根号的形式:()432,13-,()754,536, 322-,343,324-, 237.【难度】★随堂检测【答案】432;123--;754;356.【解析】4432=;1212133-=-=-;7754=;356;3232122-==;343=3232144-==237=【总结】本题主要考查了根式与分数指数幂的互化.【习题4】 比较大小:(1)与; (22+【难度】★★【答案】(1 (22>.【解析】(1)22- 8=-0=,;(2)22(2- 1110=+-10=>, 2+ 【总结】本题主要考查了利用平方法比较两个无理数的大小.【习题5】 把下列方根化为幂的形式. (1;(2(3)a .【难度】★★【答案】(1)582; (2)5766a b ; (3)111144a b . 【解析】(1582;(25766a b =; (3)311111124444aaaa ab a b =⋅=.【总结】本题主要考查了根式与分数指数幂的互化.62+53+(1)2334(9);(2)113339⨯;(3)1442(35)÷;(4)11632(32)-⨯;(5)833324(25)⨯;(6)7511266323(2)x y x y÷.【难度】★★【答案】(1)3;(2)3;(3)925;(4)98;(5)400;(6)116634x y.【解析】(1)231342(9)93==;(2)1112333339333⨯=⨯=;(3)1442229 (35)3525÷=÷=;(4)11623329 (32)328--⨯=⨯=;(5)83342324(25)251625400⨯=⨯=⨯=;(6)751752111266366366233(2)344x y x y x y xy x y ÷=÷=.【总结】本题主要考查了分数指数幂的运算,注意法则的准确运用.【习题7】利用幂的性质运算:(1)111222133()()()5525-⨯⨯;(2;(3).【难度】★★【答案】(1)15;(2)4;(3)18.【解析】(1)1111122222111222 1331331 ()()()552555525---⨯⨯=⨯⨯=;(2213236222224⨯÷==;(3)1211333362332239218=⨯⨯⨯⨯=⨯=.【总结】本题考查了根式与分数指数幂的混合运算,注意法则的准确运用.(1;(2)111111332222113113⎛⎫⎛⎫-⋅+ ⎪ ⎪⎝⎭⎝⎭;(3)20142015⋅; (4))11-+- 【难度】★★【答案】(1)763; (2)2; (3 (4)1-【解析】(1763;(2)11111113332222113113(113)2⎛⎫⎛⎫-⋅+=-= ⎪ ⎪⎝⎭⎝⎭;(3)201420152014(32)⋅=-=(4))11-+11=【总结】本题考查了根式与分数指数幂的混合运算,注意法则的准确运用.【习题9】 =,其中0ab ≠ 【难度】★★★【答案】57.【解析】(a a +=, 12a b ∴,120a b ∴=, 0∴=,=或=-, 16a b ∴=,165451647b b b b b b -+==++.【总结】本题考查了根式的化简求值问题,注意整体代入思想的运用.【习题10】化简求值:(1)已知:15a a-+=,求22a a-+;1122a a-+;1122a a--;(2)已知:223a a-+=,求88a a-+.【难度】★★★【答案】(1)23,7,3±;(2)18.【解析】(1)1222()225a a a a--+=++=,2223a a-∴+=;15a a-+=0a∴>,11220a a-∴+>,112122()27a a a a--+=++=,11227a a-∴+=;112122()23a a a a---=+-=,11223a a-∴-=±;(2)222(22)2229a a a a--+=++=,22227a a-∴+=,332288(2)(2)(22)(212)a a a a a a a a----+=+=+-+,883618a a-∴+=⨯=.【总结】本题主要考查了有理数指数幂的运算法则及其应用,综合性较强,注意对解题方法的归纳总结.【作业1】若25a=+,a的小数部分是b,则a b⋅的值是()A.0B.1C.-1D.2【难度】★【答案】B.【解析】4255<+<,452b a∴=-=-,(52)(52)1a b∴⋅=+-=.【总结】本题主要考查了无理数的整数部分与小数部分的综合运用.【作业2】 下列语句中正确的是() A .500万有7个有效数字B .0.031用科学记数法表示为33.110-⨯C .台风造成了7000间房屋倒塌,7000是近似数D .3.14159精确到0.001的近似数为3.141 【难度】★ 【答案】C .【解析】500万有三个有效数字,故选项A 错误;0.031用科学记数法表示为23.110-⨯,故选项B 错误; 3.14159精确到0.001的近似数为3.142,故选项D 错误.【总结】本题考查了科学记数法和有效数字的应用.【作业3】 按照要求,用四舍五入法对下列各数取近似值:(1)0.76589(精确到千分位);(2)289.91(精确到个位); (3)320541(保留三个有效数字);(4)41.42310⨯(精确到千位).【难度】★【答案】(1)0.766; (2)290; (3)53.2110⨯; (4)41.410⨯. 【解析】(1)0.765890.766≈; (2)289.91290≈;(3)5320541 3.2110≈⨯; (4)441.42310 1.410⨯≈⨯.【总结】本题主要考查的是近似数和有效数字以及科学记数法的综合运用.【作业4】 计算: (1;(2;(3.【难度】★★【答案】(1)565; (2)542; (3).【解析】(1151362555⨯=; (2315424222⨯=; (311136223323⨯÷=⨯= 【总结】本题主要考查了无理数的乘除运算.(1(2【难度】★★【答案】(1)7125;(2)132.【解析】(1111111732342412 55555+-=⋅÷==;(25151112262632222222+-+=⋅÷⋅==.【总结】本题主要考查了根式的乘除运算.【作业6】计算:(1)129()25-;(2)111344(882-⨯;(3)11123227()([(]64----+;(4)11222[(2(23)]-+.【难度】★★【答案】(1)365;(2)11-;(3)43-+(4)16.【解析】(1)129()25-3351655=++=;(2)111344(882--⨯31442(28)225=--⨯÷65=--11=-;(3)11123227()([(]64----+4433=-+=-+;(4)11222[(23)(2]-+211221(23)(2=⎡⎤++⎢⎥⎣⎦16==.【总结】本题主要考查了根式及有理数指数幂的混合运算.(1;(2.【难度】★★★【答案】(1)35x-;(2)1724a.【解析】(135x-===;(21724a==.【总结】本题主要考查了根式的运算及有理数指数幂的化简.【作业8】设的整数部分为,小数部分为,求的立方根.【难度】★★★【答案】2-.【解析】122<<,1a∴=,1b=,22168161)81)8ab b∴--=-⨯-⨯=-,2168ab b∴--的立方根是2-.【总结】本题主要考查的是估算无理数的大小、立方根的定义及完全平方公式的综合应用.【作业9】如果223311320x a x bx x⎛⎫⎛⎫-++++=⎪ ⎪⎝⎭⎝⎭,求232(43)a b b+-的值.【难度】★★★【答案】0.【解析】223311320x a x bx x⎛⎫⎛⎫-++++=⎪ ⎪⎝⎭⎝⎭,33130x ax∴-+=,120x bx++=,3313x ax∴+=,2211()(1)3x x ax x∴+-+=,即211()()33x x ax x⎡⎤∴++-=⎢⎥⎣⎦,120x bx++=,12x bx∴+=-,22(43)3b b a∴--=,232(43)0a b b∴+-=.【总结】本题主要考查了非负数的性质及立方和公式的综合应用.0)a>2a b2816bab--【作业10】 已知21xa =,求33x xx xa a a a --++的值.【难度】★★★【答案】1.【解析】33x x x xa a a a--++22()(1)x x x x x x a a a a a a ---+-+=+ 221x x a a -=-+,221x a =, 21x a -∴,2211111x x a a -∴-+-=.【总结】本题主要考查指数幂的化简与求值,利用立方和公式是解决本题的关键.【作业11】 若[]x 表示不超过x 的最大整数(如2[]3[2]33π=-=-,等),求++的值. 【难度】★★★ 【答案】2016.【解析】++⋅⋅⋅+=++⋅⋅⋅+⎣⎦⎣⎦⎣⎦111=++⋅⋅⋅+ 2016=.【总结】本题主要考查了取整计算,正确利用已知条件中的概念及相关性质进行化简.。
数学知识点总结实数数学是一门关于数量,结构,空间和变化等概念的科学。
它在我们的生活中随处可见,从日常的购物和金融交易到科学研究和工程设计,数学都扮演着不可或缺的角色。
在这篇文章中,我们将总结一些基础的数学知识点,包括整数,分数,代数,几何和统计学等。
整数整数是自然数(包括正整数和零)与其相反数(负整数)的集合。
整数之间的运算包括加法,减法,乘法和除法。
整数被广泛应用于计算,代数和统计学等领域。
分数分数是指由分子和分母组成的有理数,表示为一个整数除以另一个整数。
分数在日常生活中被广泛应用,例如在食谱和药物剂量中。
在数学中,分数用于表示两个整数之间的比率,以及解决各种问题,如比较大小,加减乘除等。
代数代数是数学的一个重要分支,研究数学结构和运算规则。
代数中的基本概念包括变量,方程,函数和图形等。
代数被广泛应用于科学,工程和经济等领域,例如用于求解未知数的方程,建立数学模型和分析数据等。
几何几何是研究空间,形状,大小和相对位置的数学学科。
在几何中,我们学习关于点,线,面,多边形,圆,角,距离,相似性和对称性等概念。
几何在建筑,设计,地图制作和天文观测等领域有重要应用。
统计学统计学是研究数据收集,分析和解释的科学。
统计学的基本概念包括数据类型,样本和总体,平均值,方差,概率和推断等。
统计学被广泛应用于调查研究,风险评估,市场分析和政策制定等方面。
总结数学是一门重要的学科,它不仅帮助我们理解世界的运作规律,也为我们提供了解决问题的方法和工具。
通过学习数学,我们可以提高逻辑思维能力,培养分析和解决问题的能力,这对我们的个人和职业发展都具有重要意义。
因此,我们应该重视数学学习,不断积累数学知识,提高数学水平,以应对日常生活和工作中的各种挑战。
实数的概念和运算(基础)
【学习目标】
1. 了解无理数和实数的意义;
2. 了解有理数的概念、运算在实数范围内仍适用.
【要点梳理】
要点一、有理数与无理数
有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.
要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,
不能表示成分数的形式.
(2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,
如:1.313113111…….③带有根号的数,但根号下的数字开方开不尽,
要点二、实数
有理数和无理数统称为实数.
1.实数的分类
⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩
正有理数有理数零有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数 2.实数与数轴上的点一一对应.
数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.
要点三、实数大小的比较
正实数大于0,负实数小于0.
两个正数,绝对值大的数较大;两个负数,绝对值大的数较小.
从数轴上看,右边的点所表示的数总比左边的点所表示的数大.
要点四、实数的运算
有理数关于相反数和绝对值的意义同样适合于实数.
当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用.
要点五、近似数及有效数字
1.近似数:完全符合实际地表示一个量多少的数叫做准确数;与准确数达到一定接近程度的数叫做近似数.
2.精确度:近似数与准确数的接近程度即近似程度.对近似程度的要求叫做精确度. 要点诠释:精确度有两种形式:①精确到哪一位.②保留几个有效数字.
3.有效数字:从一个数的左边第一个不为零的数字起,往右到末位数字为止的所有的数字都是这个数的有效数字,如0.208的有效数字有三个:2,0,8.
【典型例题】
类型一、实数概念
1、指出下列各数中的有理数和无理数:
222,,0,,10.1010010001 (73)
π-- 【思路点拨】对实数进行分类时,应先对某些数进行计算或化简,然后根据它的最后结果进行分类,不能仅看到根号表示的数就认为是无理数.π是无理数,化简后含π的代数式也是无理数.
【答案与解析】
有理数有222,0,,73
-
,10.1010010001π
【总结升华】有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.
常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:0.1010010001…….
③带有根号的数,但根号下的数字开方开不尽,如
1举一反三:
【变式】(2015春•聊城校级月考)在下列语句中:
①无理数的相反数是无理数;
②一个数的绝对值一定是非负数;
③有理数比无理数小;
④无限小数不一定是无理数.
其中正确的是( )
A .②③
B .②③④
C .①②④
D .②④
【答案】C ;
解:①因为实数包括有理数和无理数,无理数的相反数 不可能式有理数,故本选项正确; ②一个数的绝对值一定≥0,故本选项正确;
③数的大小,和它是有理数还是无理数无关,故本选项是错误的;
④无限循环小数是有理数,故本选项正确.
类型二、实数大小的比较
2
、比较2
和0.5的大小. 【答案与解析】
解:作商,得20.5
=
1>
,即210.5>
0.5>. 【总结升华】根据若a ,b 均为正数,则由“1a b >,1a b =,1a b
<”分别得到结论“a b >,
a b =,a b <,”从而比较两个实数的大小.比较大小的方法有作差法和作商法等,根据具体情况选用适当的方法.
举一反三:
【变式】比较大小
___ 3.14π--4__3 2 0
3___- |___(7)---
【答案】<; >; <; <; <; >; <.
3、(2015•枣庄)实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )
A .ac >bc
B .|a ﹣b|=a ﹣b
C .﹣a <﹣b <c
D .﹣a ﹣c >﹣b ﹣c
【答案】D ;
【解析】
解:∵由图可知,a <b <0<c ,
∴A 、ac <bc ,故A 选项错误;
B 、∵a <b ,
∴a ﹣b <0,
∴|a ﹣b|=b ﹣a ,故B 选项错误;
C 、∵a <b <0,
∴﹣a >﹣b ,故C 选项错误;
D 、∵﹣a >﹣b ,c >0,
∴﹣a ﹣c >﹣b ﹣c ,故D 选项正确.
故选:D .
【总结升华】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.
类型三、实数的运算
4、化简:
(1) 1.4| (2)4|| (3)|12|
【答案与解析】
解: 1.4| 1.4=
4|| 4
|12|121==.
【总结升华】有理数关于相反数和绝对值的意义同样适合于实数.有理数的运算法则及运算性质等同样适用.
5
、若2|2|(4)0a c --=,则a b c -+=________.
【思路点拨】由有限个非负数之和为零,则每个数都应为零可得到方程中a ,b ,c 的值.
【答案】3;
【解析】
解:由非负数性质可知:203040a b c -=⎧⎪-=⎨⎪-=⎩,即234a b c =⎧⎪=⎨⎪=⎩
,∴ 2343a b c -+=-+=.
【总结升华】初中阶段所学的非负数有|a |
,2,a ,非负数的和为0,只能每个非负数分别为0 .
举一反三:
【变式】已知2(16)|3|0x y +++
【答案】 解:由已知得1603030x y z +=⎧⎪+=⎨⎪-=⎩,解得1633x y z =-⎧⎪=-⎨⎪=⎩
.
12=.
类型四、近似数和有效数字
6、下列各数有几个有效数字,分别是什么?
(1)0.01020 ;(2)1.50万;(3)15000; (4)4
2.3010-⨯
【答案与解析】
解:由有效数字的定义可得:
(1)0.01020有4个有效数字,分别为:1,0,2,0;
(2)1.50万有3个有效数字,分别为:1,5,0;
(3)15000有5个有效数字,分别为:1,5,0,0,0;
(4)42.3010-⨯有3个有效数字,分别是:2,3,0
【总结升华】带有文字单位或用科学记数法10n a ⨯表示的数,有效数字的个数与文字单位或10n 没有关系.。