七年级数学下册期中考试试卷及答案
- 格式:doc
- 大小:238.50 KB
- 文档页数:6
人教版七年级下册数学期中考试试卷一、单选题1.下列数据能确定物体具体位置的是()A .朝阳大道右侧B .好运花园2号楼C .东经103︒,北纬30°D .南偏西55︒2.在0.21)A .0.2BC .﹣1D3.下列各式计算正确的是()A 2=±B 1=-C 2=±D .3=4.下列命题中是假命题的是()A .两直线平行,同位角互补B .对顶角相等C .直角三角形两锐角互余D .平行于同一直线的两条直线平行5.在平面直角坐标系内,将M (5,2)先向下平移2个单位,再向左平移3个单位,则移动后的点的坐标是()A .(2,0)B .(3,5)C .(8,4)D .(2,3)6.如图,直线AB 和CD 相交于点O ,45AOC ∠=︒,射线OE 是BOD ∠的角平分线,则∠BOE 的度数为()A .22.5︒B .23.5︒C .45︒D .40︒7.如图,在下列条件中,能判断AB ∥CD 的是()A .∠1=∠2B .∠BAD =∠BCDC .∠BAD +∠ADC =180°D .∠3=∠48.小明在学习平行线的性质后,把含有60°角的直角三角板摆放在自己的文具上,如图,AD ∥BC ,若∠2=70°,则∠1=()A .22°B .20°C .25°D .30°9.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近)A .点MB .点NC .点PD .点Q10.如图,已知直线AB ,CD 被直线AC 所截,//AB CD ,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC 的度数可能是()A .①②③B .①②④C .①③④D .①②③④二、填空题11.已知点(1,3)M m m ++在x 轴上,则m 等于______.12.如果一个正数a 的两个不同平方根分别是22x -和63x -,则a =______.13.在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是______.14.如图://AB CD ,AE CE ⊥,13EAF EAB ∠=∠,13ECF ECD ∠=∠,则AFC ∠=__.15a ,小数部分是b ,计算a ﹣2b 的值是__.16<x x 的整数有4个;③﹣3⑥对于任意实数a a .其中正确的序号是_____.三、解答题17218.求下列各式中的x :(1)24810x -=;(2)35(1)48x -+=.19.如图,已知AD BC ⊥于点D ,点E 在AB 上,EF BC ⊥于点F ,12∠=∠,试说明//DE AC .20.按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及△ABC 的顶点都在格点上.(1)点A 的坐标为;(2)将△ABC 先向下平移2个单位长度,再向右平移5个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1.(3)△A 1B 1C 1的面积为.21.(1)由8个同样大小的立方体组成的魔方,体积为64,则出这个魔方的棱长是_____.(2)图1正方形EFGH 的边长等于魔方的棱长,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得A 与1-重合,那么D 在数轴上表示的数为______.22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2﹣x 1|或|y 2﹣y 1|.(1)已知A (1,3),B (﹣3,﹣5),试求A ,B 两点间的距离;(2)已知线段MN ∥y 轴,MN =4,若点M 的坐标为(2,﹣1),试求点N 的坐标;(3)已知一个三角形各顶点坐标为D (0,6),E (﹣3,2),F (3,2),你能判定此三角形的形状吗?说明理由.24.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,直接写出A ∠和C ∠之间的数量关系________;(2)如图2,过点B 作BD AM ⊥于点D ,请说明ABD C ∠=∠的理由;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE ,BP 、CF ,BF 平分DBC ∠,BE 平分ABD ∠,若180FCB NCF ∠+∠=︒,3BFC DBE ∠=∠,求EBC ∠的度数.参考答案1.C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:朝阳大道右侧、好运花园2号楼、南偏西55︒都不能确定物体的具体位置,东经103︒,北纬30°能确定物体的具体位置,故选:C.【点睛】此题主要考查了坐标确定位置,要明确,一个有序数对才能确定一个点的位置.2.D【分析】按照无理数的定义逐个来判定即可.【详解】解:A、0.2属于有理数,故A不符合题意;3,为有理数,故B不符合题意;BC、﹣1为有理数,故C不符合题意;D符合题意.D故选:D.【点睛】此题主要考查无理数的识别,解题的关键是熟知无理数的定义.3.B【分析】根据算术平方根、平方根和立方根的定义分别判断即可.【详解】解:A2=,故选项错误;B1=-,故选项正确;C2=,故选项错误;D、3=±,故选项错误;故选B.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.4.A【分析】根据平行线、相交线、三角形内角和等性质,对选项逐个判断即可.【详解】解:A:两直线平行,同位角相等,同旁内角互补,选项错误,符合题意;B:对顶角相等,为真命题,故选项不符合题意;C:直角三角形两锐角相加为90︒,即互余,为真命题,故选项不符合题意;D:平行于同一直线的两条直线平行,为真命题,故选项不符合题意;故选A.【点睛】此题主要考查了真假命题,涉及到平行线、相交线、三角形内角和、平行公理等内容,熟练掌握相关几何性质是解题的关键.5.A【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】因为M点坐标为(5,2),根据平移变换的坐标变化规律可知,向下平移2个单位,再向左平移3个单位后得到的点的坐标是(5−3,2-2),即(2,0).故选:A.【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.6.A【分析】根据对顶角相等可得∠BOD=∠AOC,再根据射线OE是∠BOD的角平分线即可得解.【详解】解:由对顶角相等得,∠BOD=∠AOC=45°,∵射线OE是∠BOD的角平分线,∴∠BOE=12∠BOD=12×45°=22.5°.故选:A.【点睛】本题考查了对顶角的性质和角平分线的定义,熟记概念并求出∠BOD的度数是解题的关键.7.C【分析】利用平行线的判定方法逐一判断即可.【详解】解:A.由∠1=∠2可判断AD∥BC,不符合题意;B.∠BAD=∠BCD不能判定图中直线平行,不符合题意;C.由∠BAD+∠ADC=180°可判定AB∥DC,符合题意;D.由∠3=∠4可判定AD∥BC,不符合题意;故选择:C.【点睛】本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.8.B【分析】过F作FG∥AD,则FG∥BC,即可得到∠2=∠EFG=70°,再根据∠AFE=90°,即可得出∠AFG=90°-70°=20°,进而得到∠1=∠AFG=20°.【详解】解:如图,过F作FG∥AD,则FG∥BC,∴∠2=∠EFG=70°,又∵∠AFE=90°,∴∠AFG=90°-70°=20°,∴∠1=∠AFG=20°,故选:B.【点睛】本题考查了平行线的性质,三角板的知识,比较简单,熟记平行线的性质是解题的关键.9.B【分析】先估算.【详解】∵∴43-<-∴最接近N故答案选择B.【点睛】本题考查的是无理数,正确估算.10.D【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB//CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB//CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.当AE2平分∠BAC,CE2平分∠ACD时,∠BAE2+∠DCE2=12(∠BAC+∠ACD)=12×180°=90°,即α+β=90°,又∵∠AE2C=∠BAE2+∠DCE2,∴∠AE2C=180°﹣(α+β)=180°﹣α﹣β;(3)如图3,由AB//CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB//CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.(5)(6)当点E 在CD 的下方时,同理可得,∠AEC =α﹣β或β﹣α.综上所述,∠AEC 的度数可能为β﹣α,α+β,α﹣β,180°﹣α﹣β,360°﹣α﹣β.故选:D .【点睛】本题主要考查了平行线的性质的运用与外角定理,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.11.3-【分析】当点M 的纵坐标为0时,即可列式求值.【详解】解:由题意得:m+3=0,解得m=-3,故答案为:3-.【点睛】此题主要考查点的坐标;用到的知识点为:x 轴上点的纵坐标为0.12.36【分析】根据平方根的定义,两不同平方根互为相反数,列式求解即可【详解】解:由题意可得()3262x x -=--,即2263x x -=-+,解得4x =,222426x ∴-=⨯-=,36a ∴=故答案为:36【点睛】本题主要考查了平方根的定义,利用正数的平方根有两个且互为相反数列出正确的关系式是解决本题的关键.【分析】根据点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,得到点M 的横纵坐标可能的值,进而根据所在象限可得点M 的具体坐标.【详解】解:设点M 的坐标是(x ,y ).∵点M 到x 轴的距离为5,到y 轴的距离为4,∴|y|=5,|x|=4.又∵点M 在第二象限内,∴x =−4,y =5,∴点M 的坐标为(−4,5),故答案是:(−4,5).【点睛】本题考查了点的坐标,用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值;第二象限(−,+).14.60︒【分析】利用两直线平行,同旁内角互补,垂直的定义,方程的思想求解即可.【详解】解:连接AC ,设EAF x ∠=,ECF y ∠=,3EAB x ∠=,3ECD y ∠=,//AB CD ,180BAC ACD ∴∠+∠=︒,33180CAE x ACE y ∴∠++∠+=︒,180(33)CAE ACE x y ∴∠+∠=︒-+,180(22)FAC FCA x y ∠+∠=︒-+180()AEC CAE ACE ∴∠=︒-∠+∠180[180(33)]x y =︒-︒-+33x y=+3()x y =+,180()AFC FAC FCA ∠=︒-∠+∠180[180(22)]x y =︒-︒-+2()x y =+,AE CE ⊥ ,90AEC ∴∠=︒,22906033AFC AEC ∴∠=∠=⨯︒=︒.故答案为:60︒.【点睛】本题考查了平行线的性质,垂直的定义,方程的思想,熟练应用平行线的性质,科学引入未知数是解题的关键.15.3﹣【分析】a 、b 的值,代入求出即可.【详解】解:∵12,∴a =1,b 1,∴a ﹣2b =1﹣21)=3﹣故答案为:3﹣【点睛】此题主要考查无理数的估算,解题的关键是根据无理数的大小先表示出a 、b ,代入求解.16.②③【分析】根据有理数、无理数、实数的意义逐项进行判断即可.【详解】解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;x x 的整数有﹣1,0,1,2共4个,因此②正确,符合题意;③﹣3是99,因此③正确,符合题意;④π就是无理数,不带根号的数也不一定是有理数,因此④不正确,不符合题意;⑤无限循环小数,是有理数,因此⑤不正确,不符合题意;⑥若a <0|a|=﹣a ,因此⑥不正确,不符合题意;因此正确的结论只有②③,故答案为:②③.【点睛】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提.172++.【分析】先化简绝对值、化简二次根式、立方根、二次根式的乘法,再计算二次根式的加减法即可得.【详解】原式35=+,2+.【点睛】本题考查了化简绝对值、立方根、二次根式的乘法与加减法,熟记各运算法则是解题关键.18.(1)92x =±;(2)12x =-【分析】(1)移项后根据平方根的定义求解;(2)移项后根据立方根的定义求解;【详解】解:(1)∵24810x -=,∴2481x =,∴2814x =,∴92x =±;(2)∵35(1)48x -+=,∴327(1)8x -=-,∴312x -=-,∴12x =-.【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.见解析【分析】先由垂直于同一条直线的两条直线平行,得出∠1=∠3,再用∠1=∠2代换,最后用内错角相等得出结论.【详解】解:如图,∵AD BC ⊥于点D ,EF BC ⊥于点F ,∴//AD EF ,∴13∠=∠,∵12∠=∠,∴23∠∠=,∴//DE AC .【点睛】此题是平行线的判定,主要考查了平行线的性质和判定,用判断垂直于同一条直线的两直线平行,解本题的关键是判断出AD ∥EF .20.(1)(-4,2);(2)见解析;(3)5.5.【分析】(1)根据点A 的的位置和平面直角坐标系求解即可;(2)根据平移规律即可画出△A 1B 1C 1;(3)利用割补法求△A 1B 1C 1的面积,把△A 1B 1C 1补全成一个矩形,然后用矩形的面积减去其他三个三角形的面积,即可求出△A 1B 1C 1的面积.【详解】(1)A (-4,2);(2)如图,△A 1B 1C 1即为所求.(3)11111134231413 5.5222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯= .∴△A 1B 1C 1的面积是5.5.【点睛】此题考查了平移变换以及利用割补法求三角形面积,解题的关键是熟练掌握平移变换以及利用割补法求三角形面积.21.(1)4;(2)阴影部分的面积是8,边长是(3)-1-【分析】(1)根据正方体的体积公式可求这个魔方的棱长.(2)根据魔方的棱长为4,所以小立方体的棱长为2,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.(3)根据两点间的距离公式可得D 在数轴上表示的数.【详解】解:(1=4,答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:12×2×2×4=8,答:阴影部分的面积是8,边长是(3)D 在数轴上表示的数为-1-故答案为:-1-【点睛】本题考查的是立方根在实际生活中的运用,解答此题的关键是根据立方根求出魔方的棱长.22.(1)(0,2);(2)4;(3)(﹣1,1)或(﹣3,﹣1)【分析】(1)利用y 轴上点的坐标特征得到b ﹣2=0,求出b 得到C 点坐标;(2)利用与x 轴平行的直线上点的坐标特征得到a +1=4,求出a 得到A 、B 点的坐标,然后计算两点之间的距离;(3)利用垂直于x 轴的直线上点的坐标特征得到|b |=1,然后求出b 得到C 点坐标.【详解】解:(1)∵点C 在y 轴上,∴20b -=,解得2b =,∴C 点坐标为(0,2);(2)∵AB ∥x 轴,∴A 、B 点的纵坐标相同,∴a +1=4,解得a =3,∴A(﹣2,4),B(2,4),∴A ,B 两点间的距离=2﹣(﹣2)=4;(3)∵CD ⊥x 轴,CD =1,∴|b |=1,解得b =±1,∴C 点坐标为(﹣1,1)或(﹣3,﹣1).【点评】本题考查平面直角坐标系中点坐标的求解,解题的关键是掌握坐标轴上点的坐标特征.23.(1)(2)(2,3)或(2,﹣5);(3)等腰三角形,见解析【分析】(1)直接利用两点间的距离公式计算;(2)利用MN∥y轴得到M、N的横坐标相同,设N(2,t),利用两点间的距离为4得到|t+1|=4,然后求出t即可;(3)利用两点间的距离公式计算出DE、DF、EF,然后根据三角形的分类进行判断.【详解】解:(1)A,B(2)∵线段MN∥y轴,∴M、N的横坐标相同,设N(2,t),∴|t+1|=4,解得t=3或﹣5,∴N点坐标为(2,3)或(2,﹣5);(3)△DEF为等腰三角形.理由如下:∵D(0,6),E(﹣3,2),F(3,2),∴DE5,DF5,EF6,∴DE=DF,∴△DEF为等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.24.(1)∠A+∠C=90°;(2)证明见解析(3)105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)过点B作BG∥DM,证∠DBG=90°,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∴∠D+∠DBG=180°,∵BD⊥AM,∴∠D=90°,∴∠DBG=90°,∴∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,∴∠DBF=∠CBF,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,∵BE平分∠ABD,∴∠DBE=∠ABE,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠ABF=β,∵BG∥DM,∴∠AFB=∠GBF=β,∵∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵BG∥DM,∴∠AFC+∠NCF=180°,∵∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质和三角形内角和,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。
2023-2024学年七年级下册数学期中试卷及答案A 卷北师大版(考试时间:120分钟 试卷满分:120分)一、单选题1.下列由不能判断的是( )12∠=∠a b ∥A .B .C . D .2.下列五道题是小明的作业,那么小明做对的题数为( )(1)若,则; (2); 3,5m n a a ==15m n a +=()202320240.12588-⨯=(3); (4); (5)()222a b ab ab a -÷=()23624a a -=()()2321253x x x x --+=-A .2个 B .3个 C .4个 D .5个3.下列图形中,与是同位角的是( )1∠2∠A .B .C .D .4.如图,在中,边上的高是( )ABC ABA .B .C .D .CE BE AF BD 5.有以下说法:①;②一个三角形中至少有两个锐角;③两条直线被第三条直线所01a =截,同位角相等;④若三条线段的长满足,则以为边一定能构成a b c 、、a b c +>a b c 、、三角形.其中正确的个数为( )A .1个B .2个C .3个D .4个6.南宋数学家杨辉在其著作《详解九章算法》中揭示了为非负整数)展开式的项数及各项系数的有关规律如下,后人也将下表称为“杨辉三角”.则展开式中所有项的系数()8a b +和是( ).A .128B .256C .512D .10247.某品牌的自行车链条每节长为,每两节链条相连部分重叠的圆的直径为,2.5cm 0.8cm 按照这种连接方式,节链条总长度为,则与的关系式是( )n cm y y nA .B .C .D .2.5y n = 1.7y n = 1.70.8y n =+ 2.50.8y n =-8.设 ,,.若,则的值是( )2022a x =-2024b x =-2023c x =-2216a b +=2c A .5 B .6 C .7 D .89.如图,在中,,点D 为边上一点,将沿直线折叠后,点ABC 42B ∠=︒BC ADC △AD C 落在点E 处,若,则的度数为( )DE AB ∥ADE ∠A .B .C .D .111︒110︒97︒121︒10.如图,正方形的边长为2,动点P 从点B 出发,在正方形的边上沿B →C →D 的ABCD 方向运动到点D 停止,设点P 的运动路程为x ,在下列图象中,能表示的面积y 与PAD x 的关系的图象是( )A .B .C .D .11.若,则代数式的值是 .210a a --=321a a -+12.如图,已知∠A =60°,∠B =20°,∠C =30°,则∠BDC 的度数为 .13.如图,将一张矩形纸片ABCD 沿EF 折叠,使顶点C ,D 分别落在点,处,E 交C 'D ¢C 'AF 于点G .若∠CEF=70°,则∠GF = °.D ¢14.一列慢车从地驶往地,一列快车从地驶往地.两车同时出发,各自抵达目的A B B A 地后停止,如图所示,折线表示两车之间的距离(km )与慢车行驶时间(h )之间的关y t 系.当快车到达地时,慢车与地的距离为 km .A B15.如图,于C ,E 是上一点,,平分平分AC BD ⊥AB CE CF ⊥//,DF AB EH ,BEC DH ∠,则:与之间的数量关系为 .BDG ∠H ∠ACF ∠16.(1);()()()2425x x x +-+-(2)先化简,再求值:,其中,. ()()()()2233362a b b a a b b b ⎡⎤+-+--÷-⎣⎦13a =-2b =-17.某学校自主研制了一种椅子(实物如图所示),可适应上课、课间休息、午睡三种状态,该椅子的凳面始终与地面保持平行,小明作出了椅子在不同状态下的主视图.上课时椅背与凳面垂直,腿托与凳面成夹角(如图1),有利于学生坐直听课.按下开关AD 70︒1,轴1(安装在点B 处)可以控制椅背以顺时针旋转,按下开关2,轴2(安装在点9/s ︒A 处)可以控制腿托以顺时针旋转.10/s ︒(1)课间可将椅背稍微调整一定的角度(如图2)作短时休息,此时腿托与椅背平行舒适度更佳,请作出此时腿托所在的直线;(要求:尺规作图,保留作图痕迹)AD (2)如图3,按下开关1,使椅背从与発面垂直时的状态顺时针旋转,此时测得54︒,求的度数;27BCN ∠=︒CNM ∠18.如图,在中,平分交于点D ,平分交于点E .ABC AD BAC ∠BC BE ABC ∠AD(1)若求的度数;8060C BAC ∠=︒∠=︒,,ADB ∠(2)若,求的度数.65BED ∠=︒C ∠19.如图,.12180,3A ∠+∠=︒∠=∠(1)求证:;AB CD (2)若,求的度数.78,23B BDE ∠=︒∠=∠DEA ∠20.如图,这是某学校操场的一角,在长为米,宽为米的长方形场地中()35a b +()4a b -间,有两个并排大小一样的篮球场,两个篮球场中间以及篮球场与长方形场地边沿的距离都为b 米.(1)求这两个篮球场的总占地面积.(2)若篮球场每平方米的造价为200元,其余场地每平方米的造价50元,求整个长方形场地的造价.21.如图,点A 、F 、C 、D 在同一条直线上,,,.求BC EF =AF DC =BCD EFA ∠=∠证:.A D ∠=∠22.九河下梢,芳华天津.小明利用假期来到美丽的天津,已知他入住的酒店、文创馆、某老字号糕点店依次在同一条直线上,糕点店离酒店,文创馆离酒店小明从1.5km 2.5km 酒店骑共享单车到文创馆,在那里逛了后返回,匀速步行了到糕点店10min 20min 15min 买糕点,在糕点店停留了后,散步返回酒店.给出的图象反映了这个过程中10min 30min 小明离开酒店的距离与小明离开酒店的时间之间的对应关系.km y min x请根据相关信息,回答下列问题:(1)①填表: 离开酒店的时间/min57 25 50 60离开酒店的距离/km1.25 1.5 ②填空:小明从蛋糕店返回酒店的速度为__________;km/min ③当时,请直接写出小明离酒店的距离关于时间的函数解析式;1045x ≤≤y x (2)当小明离酒店时,请直接写出他离开酒店的时间.2km 23.在△ABC 中,∠ABC 与∠ACB 的平分线相交于点P .(1)如图①,若∠BPC =α,则∠A = ;(用α的代数式表示,请直接写出结论)(2)如图②,作△ABC 外角∠MBC 、∠NCB 的角平分线交于点Q ,试探究∠Q 与∠BPC 之间的数量关系,并说明理由;(3)如图③,延长线段CP 、QB 交于点E ,△CQE 中,存在一个内角等于另一个内角的2倍,求∠A 的度数.一、单选题1.下列由不能判断的是( )12∠=∠a b ∥A .B .C .D . 【答案】C【分析】本题考查了同位角相等两直线平行,据此即可进行判断.【详解】解:由图可知:A 、B 中,均是直线被第三条直线所截形成的同位角, 12∠∠,,a b 根据同位角相等两直线平行,可得;a b ∥D 中:若,12∠=∠∵23∠∠=∴,13∠=∠根据同位角相等两直线平行,可得;a b ∥而C 中,是另两条直线被直线所截形成的同位角,不能得出;12∠∠,b a b ∥故选:C2.下列五道题是小明的作业,那么小明做对的题数为( )(1)若,则; (2); 3,5m n a a ==15m n a +=()202320240.12588-⨯=(3); (4); (5)()222a b ab ab a -÷=()23624a a -=()()2321253x x x x --+=-A .2个B .3个C .4个D .5个 【答案】B【分析】本题考查了整式的运算问题,分别利用同底数幂的乘法法则、幂的乘方、积的乘方法则、多项式的除法,乘法法则计算各式进行判断即可.【详解】解:(1)若,,则,小明计算正确;3m a =5n a =3515m n m n a a a +==⨯= (2);小明计算错误;()()2023202320240.12580.125888-⨯=-⨯⨯=-(3);小明计算错误; ()222221a b ab ab a b ab ab ab a -÷=÷-÷=-(4);小明计算正确;()23624a a -=(5).小明计算正确; ()()22321263253x x x x x x x -+=+--=--综上分析可知,正确的有3个故选:B .3.下列图形中,与是同位角的是( )1∠2∠A .B .C .D .【答案】D【分析】本题考查了同位角.熟练掌握同位角的定义是解题的关键.根据两条直线被第三条直线所截,在截线的同旁且在被截两直线的同一侧的a b ,c c a b ,角为同位角,进行判断作答即可.【详解】解:由题意知,D 选项中与是同位角,故符合要求;1∠2∠故选:D .4.如图,在中,边上的高是( )ABC ABA .B .C .D .CE BE AF BD 【答案】A 【分析】本题考查三角形的高,根据三角形的高的定义判断即可解答.【详解】∵过点C ,且,CE CE AB ⊥∴边上的高是.AB CE 故选:A5.有以下说法:①;②一个三角形中至少有两个锐角;③两条直线被第三条直线所01a =截,同位角相等;④若三条线段的长满足,则以为边一定能构成a b c 、、a b c +>a b c 、、三角形.其中正确的个数为( )A .1个B .2个C .3个D .4个 【答案】A【分析】根据零指数幂的意义,三角形内角和定理,平行线的性质,三角形三条边的关系逐项分析即可.【详解】①当时,,故原说法不正确;0a ≠01a =②一个三角形中至少有两个锐角,正确;③两条平行直线被第三条直线所截,同位角相等,故原说法不正确;④若三条线段的长满足,则以为边不一定能构成三角形,故原说a b c 、、a b c +>a b c 、、法不正确.故选A .【点睛】本题考查了零指数幂的意义,三角形内角和定理,平行线的性质,三角形三条边的关系,熟练掌握各知识点是解答本题的关键.6.南宋数学家杨辉在其著作《详解九章算法》中揭示了为非负整数)展开式的项数及各项系数的有关规律如下,后人也将下表称为“杨辉三角”.则展开式中所有项的系数()8a b +和是( ).A .128B .256C .512D .1024【答案】B 【分析】本题考查了“杨辉三角”展开式中所有项的系数和的求法,通过观察展开式中所有项的系数和,得到规律是解题的关键.根据“杨辉三角”展开式中所有项的系数和规律确定出(n 为非负整数)展开式的项系数和为,求出系数之和即可.()n a b +2n 【详解】解:当时,展开式中所有项的系数和为,0n =012=当时,展开式中所有项的系数和为,1n =11122+==当时,展开式中所有项的系数和为,2n =212142++==当时,展开式中所有项的系数和为3n =3133182+++==,⋯由此可知展开式的各项系数之和为,()n a b +2n 则展开式中所有项的系数和是,8()a b +82256=故选:B .7.某品牌的自行车链条每节长为,每两节链条相连部分重叠的圆的直径为,2.5cm 0.8cm 按照这种连接方式,节链条总长度为,则与的关系式是( )n cm y y nA .B .C .D .2.5y n = 1.7y n = 1.70.8y n =+ 2.50.8y n =-【答案】C 【分析】本题考查规律型:图形的变化类,从数字找规律是解题的关键.依据题意,先求出节链条的长度,节链条的总长度,节链条的总长度,然后从数字找规律,进行计算123即可解答.【详解】解:由题意得:节链条的长度为,1 2.5cm 节链条的总长度为:,2()()2.5 2.50.8cm +-⎡⎤⎣⎦节链条的总长度为,3()()2.5 2.50.82cm +-⨯⎡⎤⎣⎦⋯⋯∴节链条总长度,n ()()()()2.5 2.50.81 1.70.8cm y n n =+-⨯-=+⎡⎤⎣⎦∴与的关系式是:.y n 1.70.8y n =+故选:C .8.设 ,,.若,则的值是( ) 2022a x =-2024b x =-2023c x =-2216a b +=2cA .5B .6C .7D .8 【答案】C 【分析】根据完全平方公式得出,,进而根据已知条件得出6ab =2a b -=,进而即可求解.2)1()(1c a b =-+【详解】,,,2022a x =- 2024b x =-2023c x =-,,120231a x c b ∴-=-==+2a b -=,2216a b +=,∴26(2)1a b ab -+=,∴6ab =∴2)1()(1c a b =-+1ab a b =+--621=+-,7=故选:C .【点睛】本题考查了完全平方公式变形求值,根据题意得出是解题的关2)1()(1c a b =-+键.9.如图,在中,,点D 为边上一点,将沿直线折叠后,点ABC 42B ∠=︒BC ADC △AD C 落在点E 处,若,则的度数为( )DE AB ∥ADE ∠A .B .C .D .111︒110︒97︒121︒【答案】A 【分析】本题考查了翻折变换(折叠问题),平行线的性质,熟练掌握折叠的性质是解题的关键.根据平行线的性质得到,然后由邻补角得到42BDE B ∠=∠=︒180138EDC BDE ∠=︒-∠=︒10.如图,正方形的边长为2,动点P 从点B 出发,在正方形的边上沿B →C →D 的ABCD 方向运动到点D 停止,设点P 的运动路程为x ,在下列图象中,能表示的面积y 与PAD x 的关系的图象是( )A .B .C .D .11.若,则代数式的值是 .210a a --=321a a -+【答案】2【分析】根据题意推出和,原式进行变形把和分别代21a a -=21a a -=21a a -=21a a -=入求解即可.【详解】解:∵,易知和210a a --=21a a -=21a a -=∴()3221111a a a a -+=--+将代入,则原式21a a -=()11a a =-+原式将代入得,原式21a a =-+21a a -=2=故答案为2.【点睛】本题主要考查了整式的运算,运用到了整体代入的思想,根据题意推出21a a -=和是解答本题的关键.21a a -=12.如图,已知∠A =60°,∠B =20°,∠C =30°,则∠BDC 的度数为 .【答案】110°/110度【分析】延长BD 交AC 于点E ,根据三角形的外角性质计算,得到答案.【详解】延长BD 交AC 于点E ,∵∠DEC 是△ABE 的外角,∠A =60°,∠B =20°,∴∠DEC =∠A+∠B =80°,则∠BDC =∠DEC+∠C =110°,故答案为:110°.【点睛】本题考查了三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和,作辅助线DE 是解题的关键.13.如图,将一张矩形纸片ABCD 沿EF 折叠,使顶点C ,D 分别落在点,处,E 交C 'D ¢C 'AF 于点G .若∠CEF=70°,则∠GF = °.D ¢【答案】40【详解】解:根据折叠的性质,得∠DFE=∠FE.D¢∵ABCD是矩形,∴AD∥BC.∴∠GFE=∠CEF=70°,180∠DFE=-∠CEF=110°.∴∠GF=∠FE-∠GFE=110°-70°=40°.D¢D¢故答案为:40.【点睛】本题考查折叠问题矩形的性质,平行的性质.14.一列慢车从地驶往地,一列快车从地驶往地.两车同时出发,各自抵达目的A B B Ay t地后停止,如图所示,折线表示两车之间的距离(km)与慢车行驶时间(h)之间的关系.当快车到达地时,慢车与地的距离为 km.A B【点睛】本题考查一次函数的应用,理解图象上点表示的具体含义是解答的关键.15.如图,于C ,E 是上一点,,平分平分AC BD ⊥AB CE CF ⊥//,DF AB EH ,BEC DH ∠,则:与之间的数量关系为 .BDG ∠H ∠ACF ∠16.(1);()()()2425x x x +-+-(2)先化简,再求值:,其中,. ()()()()2233362a b b a a b b b ⎡⎤+-+--÷-⎣⎦13a =-2b =-【点睛】本题主要考查整式的混合运算和化简求值,解答的关键是对相应的运算法则的掌握.17.某学校自主研制了一种椅子(实物如图所示),可适应上课、课间休息、午睡三种状态,该椅子的凳面始终与地面保持平行,小明作出了椅子在不同状态下的主视图.上课时椅背与凳面垂直,腿托与凳面成夹角(如图1),有利于学生坐直听课.按下开关AD 70︒1,轴1(安装在点B 处)可以控制椅背以顺时针旋转,按下开关2,轴2(安装在点9/s ︒A 处)可以控制腿托以顺时针旋转.10/s ︒(1)课间可将椅背稍微调整一定的角度(如图2)作短时休息,此时腿托与椅背平行舒适度更佳,请作出此时腿托所在的直线;(要求:尺规作图,保留作图痕迹)AD (2)如图3,按下开关1,使椅背从与発面垂直时的状态顺时针旋转,此时测得54︒,求的度数;27BCN ∠=︒CNM ∠【答案】(1)见解析(2)117︒【分析】本题考查平行线的判定和性质,三角形的外角的性质:(1)以点A 为顶点,作,即可得到所在的直线;BAD ABD ∠=∠AD (2)延长,交于点,利用外角的性质和两直线平行,同位角相等,进行求解即AB CN E 可;熟练掌握相关知识点并灵活运用是解题的关键.【详解】(1)解:(1)如图所示,直线即为所求;AD ,DAB ABC ∠=∠,AD BC ∴∥直线即为所求.∴AD (2)延长,交于点,如图:AB CN E当时,.6t =9096144ABC ∠=︒+︒⨯=︒又,27BCN ∠=︒ ;117CEB ABC BCN ∴∠=∠-∠=︒,AE MN ∥.117CNM CEB ∴∠=∠=︒18.如图,在中,平分交于点D ,平分交于点E .ABC AD BAC ∠BC BE ABC ∠AD(1)若求的度数;8060C BAC ∠=︒∠=︒,,ADB ∠(2)若,求的度数.65BED ∠=︒C ∠【答案】(1)110ADB ∠=︒(2)50C ∠=︒【分析】本题主要考查了三角形外角的性质,三角形内角和定理,角平分线的定义,熟知三角形一个外角等于与其不相邻的两个内角之和是解题的关键.(1)根据角平分线的定义得到,再由三角形外角的性质即可得到30DAC ∠=︒;110ADB C DAC ∠=∠+∠=︒(2)根据角平分线的定义得到.再由三角形外角的性22BAC BAD ABC ABE ∠=∠∠=∠,质得到,即可利用三角形内角和定理得到答案.130BAC ABC ∠+∠=︒【详解】(1)解:∵平分,,AD BAC ∠60BAC ∠=︒19.如图,.12180,3A ∠+∠=︒∠=∠(1)求证:;AB CD (2)若,求的度数.78,23B BDE ∠=︒∠=∠DEA ∠【答案】(1)见解析(2)146DEA ∠=︒【分析】(1)由得到,即可得到,再根据等量代换得12180∠+∠=︒DE AC ∥A DEB ∠∠=到即可证明;3DEB ∠∠=(2)由平行的性质得到,求出即可求出答案.180BDC B ∠+∠=︒334∠=︒【详解】(1),12180∠+∠=︒ ,DE AC ∴∥,∴A DEB ∠∠=,3A ∠∠=,∴3DEB ∠∠=;∴AB CD(2),AB CD ,∴180BDC B ∠+∠=︒,, 78B ∠=︒23BDE ∠=∠,∴23378180∠+∠+︒=︒,∴334∠=︒,AB CD ,∴3180DEA ∠+∠=︒.∴146DEA ∠=︒【点睛】本题主要考查平行的判定与性质,熟练掌握平行的判定与性质是解题的关键.20.如图,这是某学校操场的一角,在长为米,宽为米的长方形场地中()35a b +()4a b -间,有两个并排大小一样的篮球场,两个篮球场中间以及篮球场与长方形场地边沿的距离都为b 米.(1)求这两个篮球场的总占地面积.(2)若篮球场每平方米的造价为200元,其余场地每平方米的造价50元,求整个长方形场地的造价.【答案】(1)这两个篮球场的总占地面积是平方米 ()22126a ab b --(2)整个长方形场地的造价为元 ()2224007001150a ab b +-【分析】本题考查列代数式,能正确根据题意列出代数式是解此题的关键.(1)把篮球场平移为一个长方形,求出这个长方形的长和宽,即可求出面积;(2)根据篮球场每平方米的造价为200元,其余场地每平方米的造价50元,列出代数式即可.【详解】(1)解:()()35342a b b a b b +--- ()()3243a b a b =+-平方米.()22126a ab b =--答:这两个篮球场的总占地面积是平方米.()22126a ab b --(2)平方米,()()()2235412175a b a b a ab b +-=+-()()222212175126aab b a ab b +----222212175126a ab b a ab b =+--++平方米,()218ab b =+()()2222001265018a ab b ab b --++2222400200120090050a ab b ab b =--++元.()2224007001150a ab b =+-答:整个长方形场地的造价为元.()2224007001150a ab b +-21.如图,点A 、F 、C 、D 在同一条直线上,,,.求BC EF =AF DC =BCD EFA ∠=∠证:.A D ∠=∠【答案】见解析【分析】本题主要考查了全等三角形的性质与判定,先证明,,AC DF =ACB DFE ∠=∠进而证明,即可证明. ()SAS ACB DFE ≌A D ∠=∠【详解】证明:∵, AF DC =∴,即, AF CF DC CF +=+AC DF =∵,BCD EFA ∠=∠∴,即, 180180BCD EFA ︒-∠=︒-∠ACB DFE ∠=∠在和中,ACB △DFE △, AC DF ACB DFE BC EF =⎧⎪∠=∠⎨⎪=⎩∴, ()SAS ACB DFE ≌∴.A D ∠=∠22.九河下梢,芳华天津.小明利用假期来到美丽的天津,已知他入住的酒店、文创馆、某老字号糕点店依次在同一条直线上,糕点店离酒店,文创馆离酒店小明从1.5km 2.5km 酒店骑共享单车到文创馆,在那里逛了后返回,匀速步行了到糕点店10min 20min 15min 买糕点,在糕点店停留了后,散步返回酒店.给出的图象反映了这个过程中10min 30min 小明离开酒店的距离与小明离开酒店的时间之间的对应关系.km y min x请根据相关信息,回答下列问题: (1)①填表: 离开酒店的时间/min57 25 50 60离开酒店的距离/km1.251.5②填空:小明从蛋糕店返回酒店的速度为__________;km/min ③当时,请直接写出小明离酒店的距离关于时间的函数解析式; 1045x ≤≤y x (2)当小明离酒店时,请直接写出他离开酒店的时间.2km23.在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如图①,若∠BPC =α,则∠A = ;(用α的代数式表示,请直接写出结论) (2)如图②,作△ABC 外角∠MBC 、∠NCB 的角平分线交于点Q ,试探究∠Q 与∠BPC 之间的数量关系,并说明理由;(3)如图③,延长线段CP 、QB 交于点E ,△CQE 中,存在一个内角等于另一个内角的2倍,求∠A 的度数.∵∠ABC 与∠ACB 的平分线相交于点∴∠BPC=180°﹣(∠=180°(∠ABC+12-=180°(180°﹣∠1-∵外角∠MBC ,∠NCB 的角平分线交于点∴∠QBC+∠QCB (∠MBC+12=(360°﹣∠ABC ﹣∠12=(180°+∠A ) 12==90°∠A ,12+∴∠Q=180°﹣(90°1+一、单选题1.下列各图中,与是同位角的是( )1∠2∠A . B . C . D .2.下列多项式中,可以用平方差公式计算的是( ) A . B . (23)(23)a b a b --+(34)(43)a b b a -+--C .D .()()a b b a --()()a b c a b c ---++3.在学习“认识三角形”一节时,嘉嘉用四根长度分别为的小棒摆三2cm,4cm,5cm,6cm 角形,那么所摆成的三角形的周长不可能是( ) A .B .C .D .11cm 12cm 13cm 15cm4.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .5.如图,观察用直尺和圆规作一个角等于已知角的示意图的作图依据是A O B '''∠AOB ∠( )A .边边边B .边角边C .角边角D .角角边6.下列说法中:①同角或等角的补角相等;②过直线上一点有且只有一条直线垂直于已知直线;③连接直线外一点与直线上各点的所有线段中,垂线段最短;④从直线外一点到这条直线的垂线,叫做点到直线的距离,正确的有( ) A .1个B .2个C .3个D .4个7.如图所示,,,,结论:①;②;90E F ∠=∠=︒B C ∠=∠AE AF =EM FN =CD DN =③;④,其中正确的是有( )FAN EAM ∠=∠ACN ABM ≌A .1个B .2个C .3个D .4个8.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线与地面所成夹角时,要使太阳光线经反射后刚好垂直于地面射入AB CD 50ABC ∠=︒深井底部,则需要调整平面镜与地面的夹角( )EF EBC ∠=A .B .C .D .60︒70︒80︒85︒9.若AB ∥CD ,∠CDE =∠CDF ,∠ABE =∠ABF ,则∠E :∠F =( ) 3434A .1:2B .1:3C .3:4D .2:310.如图所示,已知△ABC 和△BDE 都是等边三角形.则下列结论:①AE=CD ;②BF=BG ;③∠AHC=60°;④△BFG 是等边三角形;⑤HB 平分∠AHD .其中正确的有( )A .2个B .3个C .4个D .5个11.已知,则 .14x x -=24251x x x =-+12.如图,在中,已知点分别为边的中点,且,则ABC ,,D E F ,,BC AD CE 2=4cm BEF S .ABC S = 2cm13.已知,则的值为 .2250x x --=432442000x x x -++14.如图,在中,,,点D 为上一点,连接.过点Rt ABC △90BAC ∠= AB AC =BC AD B 作于点E ,过点C 作交的延长线于点F .若,,则BE AD ⊥CF AD ⊥AD 4BE =1CF =的长度为 .EF15.一副三角板按如图所示(共顶点A )叠放在一起,若固定三角板,改变三角板ABC 的位置(其中A 点位置始终不变),当 时,.ADE BAD ∠=︒DE AB ∥16.阅读理解:我们把称作二阶行列式,规定它的运算法则为,例如a b c da bad bc c d =-,请根据阅读理解解答下列各题: 232534245=⨯-⨯=-________;(2)计算:; 12569798347899100+++ (3)已知实数,满足行列式,则代数式的值. a b 2151aa b a -=-+-2222a b ab +-+17.作图题:(1)在图①中,作过点P 作直线,垂足为H :作直线; PH AB ⊥PQ CD ∥(2)请直接写出图①中三角形的面积是 平方单位;PAB (3)在图②中过点P 作直线(要求:尺规作图,不写作法,但要保留作图痕迹.) PC OA ∥18.阅读下面的解题过程:已知,求的值. 2113x x =+241x x +解:由知,所以,即. 2113x x =+0x ≠213x x+=13x x +=所以,故的值为.2422221112327x x x x x x +⎛⎫=+=+-=-= ⎪⎝⎭241x x +17该题的解法叫做“倒数求值法”,请你利用“倒数求值法”解下面的题目:(1)若,求的值. 2115x x =+241x x +(2)若,求的值. 211x x =-48431x x x -+19.如图1,一条笔直的公路上有A ,B ,C 三地,甲,乙两辆汽车分别从A ,B 两地同时开出,沿公路匀速相向而行,驶往B ,A 两地,甲、乙两车到C 地的距离y 1、y 2(千米)与行驶时间 x (时)的关系如图2所示.(1)A ,B 两地之间的距离为 千米;(2)图中点M 代表的实际意义是什么?(3)分别求出甲,乙两车的速度,并求出他们的相遇点距离点C 多少千米.20.已知:如图,在中,是的平分线,E 为上一点,且于点ABC AD BAC ∠AD EF BC ⊥F .若,,求的度数.35C ∠=︒15DEF ∠=︒B ∠21.如图,已知和,,,,与交于ABC ADE V AB AD =BAD CAE ∠=∠B D ∠=∠AD BC 点P ,点C 在上. DE(1)求证:;BC DE =(2)若,求的度数.3070B APC ∠=︒∠=︒,CAE ∠22.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图,△ABC 中,若AB =8,AC =6,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图,延长AD 到点E ,使DE =AD ,连结BE .请根据小明的方法思考:(1)由已知和作图能得到的理由是( ).ADC EDB ≌△△A .SSS B .SAS C . AAS D .ASA(2)AD 的取值范围是( ).A .B .C .D .68AD <<1216AD <<17AD <<214AD <<(3)【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】如图,AD 是△ABC 的中线,BE 交AC 于点E ,交AD 于F ,且AE =EF .求证:AC =BF .23.(1)问题发现:如图1, 和均为等边三角形,点在同一直线上,连ABC ADE V B D E 、、接.CE ①求证:; ②求的度数.BD CE =BEC ∠(2)拓展探究:如图2, 和均为等腰直角三角形,,点AB C ADE V 90BAC DAE ∠=∠=︒在同一直线上为中边上的高,连接B D E 、、AF ,ADE V DE .CE ①求的度数:BEC ∠②判断线段之间的数量关系(直接写出结果即可).AF BE CE 、、解决问题:如图3,和均为等腰三角形,,点在()3AB ADE V BAC DAE n ∠=∠= B D E 、、同一直线上,连接.求的度数(用含的代数式表示,直接写出结果即可).CE AEC ∠n一、单选题1.下列各图中,与是同位角的是( )1∠2∠A . B . C . D . 【答案】B【分析】根据同位角的意义,结合图形进行判断即可.【详解】解:A .选项中的两个角不是两条直线被一条直线所截出现的角,不符合题意;B .选项中的两个角符合同位角的意义,符合题意;C .选项中的两个角不是两条直线被一条直线所截出现的角,不符合题意;D .选项中的两个角不是两条直线被一条直线所截出现的角,不符合题意;故选:B .选项【点睛】本题考查了同位角、内错角、同旁内角,判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.2.下列多项式中,可以用平方差公式计算的是( )A .B . (23)(23)a b a b --+(34)(43)a b b a -+--C .D .()()a b b a --()()a b c a b c ---++【答案】B【分析】本题考查了平方差公式,熟练掌握平方差公式的特点是解题的关键.平方差公式的形式是,平方差公式的特点是两个数的和乘以两个数的()()22a b a b a b +-=-差,逐一判断四个选项,即可求解.【详解】解:A 、,不可以用平方差公式计算.(23)(23)(23)(23)a b a b a b a b --+=---B 、,可以用平方差公式计算;(34)(43)(34)(34)a b b a a b a b -+--=-+--C 、,不可以用平方差公式计算;()()()()a b b a a b a b --=---D 、,不可以用平方差公式计算.()()()()a b c a b c a b c a b c ---++=-----故选:B .3.在学习“认识三角形”一节时,嘉嘉用四根长度分别为的小棒摆三2cm,4cm,5cm,6cm 角形,那么所摆成的三角形的周长不可能是( )A .B .C .D .11cm 12cm 13cm 15cm 【答案】B【分析】本题考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边,据此逐个分析即可作答.【详解】解:A 、当三边为,则周长为,故该选项不符合题意;2cm,4cm,5cm,11cm B 、当三边为,则周长为,但,不能构成三角形,故2cm,4cm,6cm 12cm 2cm 4cm 6cm +=该选项是符合题意的;C 、当三边为,则周长为,故该选项不符合题意;2cm,5cm,6cm 13cm D 、当三边为,则周长为,故该选项不符合题意;4cm,5cm,6cm 15cm 故选:B4.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D . 【答案】D【详解】三角形的高线的定义可得,D 选项中线段BE 是△ABC 的高.故选:D5.如图,观察用直尺和圆规作一个角等于已知角的示意图的作图依据是A O B '''∠AOB ∠( )A .边边边B .边角边C .角边角D .角角边 【答案】A 【分析】本题考查了全等三角形的判定与性质.由作图过程得,,,得到三角形全等,即可求解.OC O C =''OD O D =''CD C D =''【详解】解:由作图过程得:,,,OC O C =''OD O D =''CD C D ='',()OCD O C D SSS ∴''' ≌(全等三角形的对应角相等).AOB A O B ∴∠∠'''=故选:A .6.下列说法中:①同角或等角的补角相等;②过直线上一点有且只有一条直线垂直于已知直线;③连接直线外一点与直线上各点的所有线段中,垂线段最短;④从直线外一点到这条直线的垂线,叫做点到直线的距离,正确的有( )A .1个B .2个C .3个D .4个 【答案】B【分析】根据补角的性质判定①;根据垂线公理判定②;根据垂线段最短判定③;根据点到直线的距离概念判定④.【详解】解:①同角或等角的补角相等,故①正确;②在同一平面内,过直线上(或直线外)一点有且只有一条直线垂直于已知直线,故②错误;③连接直线外一点与直线上各点的所有线段中,垂线段最短,故③正确;④从直线外一点到这条直线的垂线段长度,叫做点到直线的距离,故④错误; ∴正确的有①③,共2个,故选:B .【点睛】本题考查补角的性质,垂线公理,垂线段最短,点到直线的距离概念.熟练掌握相关性质定理及概念是解题的关键.7.如图所示,,,,结论:①;②;90E F ∠=∠=︒B C ∠=∠AE AF =EM FN =CD DN =③;④,其中正确的是有( ) FAN EAM ∠=∠ACN ABM ≌A .1个B .2个C .3个D .4个 【答案】C 【分析】根据已知的条件,可由AAS 判定△AEB ≌△AFC ,进而可根据全等三角形得出的结论来判断各选项是否正确.【详解】解:∵,90E F B C AE AF ∠∠︒⎧⎪∠∠⎨⎪⎩====∴△AEB ≌△AFC ;(AAS )∴∠FAM=∠EAN ,∴∠EAN-∠MAN=∠FAM-∠MAN ,即∠EAM=∠FAN ;(故③正确)又∵∠E=∠F=90°,AE=AF ,∴△EAM ≌△FAN ;(ASA )∴EM=FN ;(故①正确)由△AEB ≌△AFC 知:∠B=∠C ,AC=AB ;又∵∠CAB=∠BAC ,∴△ACN ≌△ABM ;(故④正确)由于条件不足,无法证得②CD=DN ;故正确的结论有:①③④;故选:C .【点睛】此题考查了全等三角形的性质与判别,考查了学生根据图形分析问题,解决问题的能力.其中全等三角形的判别方法有:SSS ,SAS ,ASA ,AAS 及HL .学生应根据图形及已知的条件选择合适的证明全等的方法.8.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线与地面所成夹角时,要使太阳光线经反射后刚好垂直于地面射入AB CD 50ABC ∠=︒深井底部,则需要调整平面镜与地面的夹角( )EF EBC ∠=A .B .C .D .60︒70︒80︒85︒【答案】B【分析】如图,过作平面镜,可得,B BQ ⊥EF 90QBE QBF ∠=∠=︒。
沪科版七年级下册数学期中考试试卷一、单选题1.下列实数中,属于无理数的是()A .3.1415926B .227C D .()1π-2.下列各式的计算中,正确的是()A .551a a ÷=B .235a a a = C .()239a a =D .235a a a +=3.某生物兴趣小组在恒温箱中培养两种菌种,甲种菌种生长的温度在34~37C C ︒︒之间,乙种菌种生长的温度是3538C C ︒︒ 之间,那么恒温箱的温度t C ︒应该设定的范围是()A .34~38C C︒︒B .35~37C C︒︒C .3435C C︒︒ D .3738C C︒︒ 4.如果a b >,下列各式中不正确的是()A .11a b ->-B .22a b>C .33a b -<-D .1212a b->-5)A .点PB .点QC .点MD .点N6.不等式组102x x ->⎧⎨-≥-⎩的解集正确的是()A .1<x ≤2B .x ≥2C .x <1D .无7.下列关系式中,正确的是()A .()()22333a b a b a b +-=-B .()()22339a b a b a b-+-=--C .()()2233 9a b a b a b---=-+D .()()23339a b a b a b --+=-8.若多项式281x nx ++是一个整式的平方,则n 的值是()A .9B .18C .9±D .18±9.已知3,5a b x x ==,则2a b x -的值为()A .35B .65C .95D .110.如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A .2cm 2B .2acm 2C .4acm 2D .(a 2﹣1)cm 2二、填空题119_____.12. 2.5PM 颗粒物(指大气中直径小于或等于2.5微米的颗粒物)是形成雾霾的罪魁祸首.将2.5微米换算成你熟悉的单位米(1米=1000000微米),用科学记数法表示2.5微米=__________.13.如果不等式组0x a x b ->⎧⎨+<⎩的解集是12x -<<,那么b a =__________.14.计算()2018201980.125⨯-=_____.15.计算:()()321244ab a b ab ⎛⎫÷= ⎪⎝⎭__________.16.若()22a b +加上一个单项式后等于()22a b -,则这个单项式为_____________。
七年级(下)期中数学试卷一、选择题(每小题2分,共20分)下列各小题均有四个答案,其中只有一个是正确的1.下列方程中,不是一元一次方程的是()A.2x﹣3=5B.3a﹣6=4a﹣8C.x=0D.+1=02.方程3x+1=m+4的解是x=2,则m的值是()A.4B.5C.6D.73.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1B.3x﹣x﹣1=1C.3x﹣x﹣1=6D.3x﹣(x﹣1)=64.方程kx+3y=5有一组解是,则k的相反数是()A.1B.﹣1C.0D.25.若单项式2a x﹣2b与﹣3a3b3﹣y是同类项,则x、y分别是()A.5和3B.5和2C.4和3D.4和26.若a<b,则下面可能错误的变形是()A.6a<6b B.a+3<b+4C.ac+3<bc+3D.﹣7.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有()A.6个B.5个C.3个D.无数个8.某班学生分组,若每组7人,则有2人分不到组里;若每组8人,则最后一组差4人,若设计划分x组,则可列方程为()A.7x+2=8x﹣4B.7x﹣2y=8x+4C.7x+2=8x+4D.7x﹣2y=8x﹣49.如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A.3元,3.5元B.3.5元,3元C.4元,4.5元D.4.5元,4元10.在如图的2018年4月的月历表中任意框出表中竖上的三个相邻的数和横排中三个相邻的数.这六个数的和可能是()星期一星期二星期三星期四星期五星期六星期日123456789101112131415161718192021222324252627282930A.98B.99C.100D.101二、填空题(每小题3分,共24分)11.若代数式4x+13的值不小于代数式2x﹣1的值,则x的取值范围是.12.在2x+3y=3中,若用y表示x,则x=.13.不等式5x+14≥0的负整数解是.14.方程mx+ny=10有两组解和,则2m﹣n2=.15.若方程组的解也是x+y=1的一个解,则a=.16.如图所示,8个相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的周长是.17.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身可以和两个盒底可制成一个罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒,根据题意,可列方程组.18.已知方程组和方程组有相同的解,则a2﹣b2的值为.三、解答题(本大题共8小题满分56分)19.(6分)解方程:.20.(6分)解不等式3(x﹣1)<4(x﹣)﹣3,并把它的解集在数轴上表示出来.21.(6分)某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?22.(6分)解方程组:.23.(7分)满足方程组的x和y的值之和是2,求k的值.24.(8分)若不等式5(x﹣2)+8≤6(x﹣1)+7的最小整数解是方程3x﹣ax=﹣3的解,求﹣|10﹣a2|的值.25.(8分)去年,某学校积极组织捐款支援地震灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染看不清楚,请你用所学方程的知识求出捐款2元和5元的人数.26.(9分)合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)下列各小题均有四个答案,其中只有一个是正确的1.下列方程中,不是一元一次方程的是()A.2x﹣3=5B.3a﹣6=4a﹣8C.x=0D.+1=0【分析】根据一元一次方程的定义判断即可;【解答】解:A、该方程符合一元一次方程的定义,故本选项正确;B、该方程化简后符合一元一次方程的定义,故本选项正确;C、该方程符合一元一次方程的定义,故本选项正确;D、该方程为分式方程,故本选项错误;故选:D.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1.2.方程3x+1=m+4的解是x=2,则m的值是()A.4B.5C.6D.7【分析】由x=2为方程的解,将x=2代入方程即可求出m的值.【解答】解:将x=2代入方程得:6+1=m+4,解得:m=6.故选:C.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1B.3x﹣x﹣1=1C.3x﹣x﹣1=6D.3x﹣(x﹣1)=6【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数6,在去分母的过程中注意分数线起到括号的作用,以及去分母时不能漏乘没有分母的项.【解答】解:方程两边同时乘以6得:3x﹣(x﹣1)=6.故选:D.【点评】在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项.4.方程kx+3y=5有一组解是,则k的相反数是()A.1B.﹣1C.0D.2【分析】将x=2、y=1代入kx+3y=5求出k的值,从而得出答案.【解答】解:将x=2、y=1代入kx+3y=5,得:2k+3=5,解得:k=1,所以k的相反数为﹣1,故选:B.【点评】本题主要考查二元一次方程的解,解题的关键是掌握使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.5.若单项式2a x﹣2b与﹣3a3b3﹣y是同类项,则x、y分别是()A.5和3B.5和2C.4和3D.4和2【分析】根据同类项的定义建立方程求解即可得出结论.【解答】解:∵单项式2a x﹣2b与﹣3a3b3﹣y是同类项,∴x﹣2=3,3﹣y=1,∴x=5,y=2,故选:B.【点评】此题主要考查了同类项的意义,解简单的一次方程,建立方程求解是解本题的关键.6.若a<b,则下面可能错误的变形是()A.6a<6b B.a+3<b+4C.ac+3<bc+3D.﹣【分析】根据不等式的基本性质对各选项分析后利用排除法求解.【解答】解:A、不等号的方向不变,故本选项正确;B、不等式小的一边加上3,大的一边加上4,不等号方向改变,故本选项正确;C、对不等式两边都乘以c,再加上3,不等式不一定还成立,故本选项错误;D、不等式两边都除以﹣2,不等号方向改变,故本选项正确.故选:C.【点评】主要考查不等式的基本性质,需要熟练掌握并灵活运用.7.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有()A.6个B.5个C.3个D.无数个【分析】可以设两位数的个位数为x,十位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.【解答】解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选:A.【点评】本题考查了二元一次方程的应用,解题的关键在于根据未知数的整数性质讨论未知数的具体值,注意不要漏掉两位数的个位数可以为0的情况.8.某班学生分组,若每组7人,则有2人分不到组里;若每组8人,则最后一组差4人,若设计划分x组,则可列方程为()A.7x+2=8x﹣4B.7x﹣2y=8x+4C.7x+2=8x+4D.7x﹣2y=8x﹣4【分析】等量关系为:7×组数+2=8×组数﹣4,把相关数值代入即可.【解答】解:若每组有7人,实际人数为7x+2;若每组有8人,实际人数为8x﹣4,∴可列方程为7x+2=8x﹣4.故选:A.【点评】考查列一元一次方程;根据学生的实际人数得到等量关系是解决本题的关键.9.如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A.3元,3.5元B.3.5元,3元C.4元,4.5元D.4.5元,4元【分析】设1听果奶为x元,1听可乐y元,由题意可得等量关系:①1听果奶的费用+4听可乐的费用=17元,②1听可乐的费用﹣1听果奶的费用=0.5元,根据等量关系列出方程组,再解即可.【解答】解:设1听果奶为x元,1听可乐y元,由题意得:,解得:,故选:A.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.10.在如图的2018年4月的月历表中任意框出表中竖上的三个相邻的数和横排中三个相邻的数.这六个数的和可能是()星期一星期二星期三星期四星期五星期六星期日123456789101112131415161718192021222324252627282930A.98B.99C.100D.101【分析】设竖上的三个相邻的数分别为x﹣7,x,x+7,横排中三个相邻的数分别为y﹣1,y,y+1,则这六个数的和为3x+3y,然后对各选项进行判断.【解答】解:设竖上的三个相邻的数分别为x﹣7,x,x+7,横排中三个相邻的数分别为y﹣1,y,y+1,则这六个数的和为3x+3y,即3(x+y),99为3的整数倍,而98,100,101不是,故选:B.【点评】本题考查了一次方程(组)的应用:利用表中数据的排列规律合理设未知数是解决问题的关键.二、填空题(每小题3分,共24分)11.若代数式4x+13的值不小于代数式2x﹣1的值,则x的取值范围是x≥﹣7.【分析】先根据题意列出关于x的不等式,移项,合并同类项,把x的系数化为1即可.【解答】解:∵代数式4x+13的值不小于代数式2x﹣1的值,∴4x+13≥2x﹣1,移项得,4x﹣2x≥﹣1﹣13,合并同类项得,2x≥﹣14,把x的系数化为1得,x≥﹣7.故答案为:x≥﹣7.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.12.在2x+3y=3中,若用y表示x,则x=.【分析】根据移项、系数化为1,可得答案.【解答】解:2x+3y=3,移项,得2x=3﹣3y,系数化为1,得x=.故答案为:.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含y的式子表示x的形式.13.不等式5x+14≥0的负整数解是﹣2,﹣1.【分析】先求出不等式的解集,再求出符合条件的负整数解即可.【解答】解:移项得,5x≥﹣14,系数化为1得,x≥﹣,在数轴上表示为:由数轴上x的取值范围可知,不等式5x+14≥0的负整数解是﹣2,﹣1共两个.【点评】此题比较简单,解答此题的关键是正确求出不等式的解集,借助于数轴便可直观解答.14.方程mx+ny=10有两组解和,则2m﹣n2=﹣80.【分析】把x与y的两对值代入方程得到关于m与n的方程组,求出方程组的解得到m与n的值,代入原式计算即可.【解答】解:根据题意得:,解得:,则2m﹣n2=20﹣100=﹣80.故答案为:﹣80.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.若方程组的解也是x+y=1的一个解,则a=﹣.【分析】利用二元一次方程组的解的定义得到方程组的解也是方程组的解,然后解方程组后把x、y的值代入9﹣2a=10中可求出a的值,【解答】解:∵方程组的解也是x+y=1的一个解,∴方程组的解也是方程组的解,解方程组得,把x=3,y=﹣2代入3x+ay=10得9﹣2a=10,解得a=﹣.故答案为﹣.【点评】本题考查了解二元一次方程组:熟练掌握代入消元法和加减消元法解二元一次方程组.16.如图所示,8个相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的周长是72cm.【分析】设小长方形的长为xcm,宽为ycm,由图形可列方程组,可求出x,y的值,即可求每块小长方形地砖的周长.【解答】解:设小长方形的长为xcm,宽为ycm根据题意可得:解得:∴小长方形地砖的周长=2(27+9)=72cm故答案为:72cm【点评】本题考查了二元一次方程组的应用,根据题意列出正确的方程组是本题的关键.17.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身可以和两个盒底可制成一个罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒,根据题意,可列方程组.【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.18.已知方程组和方程组有相同的解,则a2﹣b2的值为﹣5.【分析】根据方程组同解得出,解之求得x、y的值,代入另外两个方程得出a+b、a﹣b 的值,代入计算可得.【解答】解:根据题意,得:,解得:,则,∴a2﹣b2=(a+b)(a﹣b)=1×(﹣5)=﹣5,故答案为:﹣5.【点评】此题考查了二元一次方程组的解,二元一次方程组的两个方程的公共解叫做二元一次方程组的解.二元一次方程组的解必须同时满足方程组中的两个方程.三、解答题(本大题共8小题满分56分)19.(6分)解方程:.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:3(1﹣3x)=2﹣6x,去括号得:3﹣9x=2﹣6x,移项合并得:﹣3x=﹣1,系数化为1得:得x=.【点评】本题考查了解带分母的一元一次方程.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.20.(6分)解不等式3(x﹣1)<4(x﹣)﹣3,并把它的解集在数轴上表示出来.【分析】去括号、移项、合并同类项,化系数为1,依此求解不等式,再把它的解集在数轴上表示出来即可.【解答】解:3(x﹣1)<4(x﹣)﹣3,去括号:3x﹣3<4x﹣2﹣3,移项得:3x﹣4x<﹣2﹣3+3,合并同类项得﹣x<﹣2,未知数的系数化为1:x>2,所以原不等式的解是:x>2,在数轴上表示为:【点评】考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的性质解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.21.(6分)某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?【分析】设这种书包的进价是x元,其标价是(1+60%)x元,根据“按标价8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元”,列出关于x的一元一次方程,解之即可.【解答】解:设这种书包的进价是x元,其标价是(1+60%)x元,由题意得:(1+60%)x•80%﹣x=14,解得:x=50,答:这种书包的进价是50元.【点评】本题考查一元一次方程的应用,正确找出等量关系,列出一元一次方程是解题的关键.22.(6分)解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,②﹣①得:3y=﹣3,即y=﹣1,把y=﹣1代入②得:x=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(7分)满足方程组的x和y的值之和是2,求k的值.【分析】方程组消去k表示出x+y,代入x+y=2中计算即可求出k的值.【解答】解:,②×2﹣①得:x+y=5﹣5k,代入x+y=2得:5﹣5k=2,解得:k=.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.(8分)若不等式5(x﹣2)+8≤6(x﹣1)+7的最小整数解是方程3x﹣ax=﹣3的解,求﹣|10﹣a2|的值.【分析】解不等式求出x的范围,从而得出不等式的最小整数解,代入方程求得a的值,最后代入代数式求值即可.【解答】解:去括号,得:5x﹣10+8≤6x﹣6+7,移项,得:5x﹣6x≤﹣6+7+10﹣8,合并同类项,得:﹣x≤3,系数化为1,得:x≥﹣3,则该不等式的最小整数解为x=﹣3,根据题意,将x=﹣3代入方程3x﹣ax=﹣3,得:﹣9+3a=﹣3,解得:a=2,则原式=﹣|10﹣4|=﹣6.【点评】本题考查的是解一元一次不等式和一元一次方程及代数式的求值,正确求出每一个不等式解集是基础得出a的值是解答此题的关键.25.(8分)去年,某学校积极组织捐款支援地震灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染看不清楚,请你用所学方程的知识求出捐款2元和5元的人数.【分析】设捐款2元和5元的学生人数分别为x人、y人,根据总人数是55人,捐款数是274元,列出方程组,求出方程组的解即可.【解答】解:设捐款2元和5元的学生人数分别为x人、y人,依题意得:,,解方程组,得,答:捐款2元的有4人,捐款5元的有38人.【点评】此题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组,本题的等量关系是总人数=1元的人数+2元的人数+5元的人数+10元的人数,总钱数=捐1元的总数+捐2元的总数+捐5元的总数+捐10元的总数.26.(9分)合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?【分析】设人数为x,则可得10≤x≤25,从而可得甲旅行社需要花费:200x×0.75,乙旅行社:200(x﹣1)×0.8,让两式相等可求出人数x为何值时两家相等,从而据此讨论x取其他值的情况.【解答】解:设该单位有x人外出旅游,则选择甲旅行社的总费用为0.75×200x=150x(元),选择乙旅行社的总费用为0.8×200(x﹣1)=(160x﹣160)(元).①当150x<160x﹣160时,解得x>16,即当人数在17~25人时,选择甲旅行社总费用较少;②当150x=160x﹣160时,解得x=16,即当人数为16人时,选择甲、乙旅行社总费用相同;③当150x>160x﹣160时,解得x<16,即当人数为10~15人时,选择乙旅行社总费用较少.【点评】本题考查一元一次不等式的应用,与实际结合得比较紧密,解答本题需要先了解两家花费一样的人数的值,这是关键.。
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题)1. 方程3x ﹣1=5的解是( ) A. 43x = B. 53x = C. x =18 D. x =2 2. 下列方程变形中属于移项的是( ) A 由2x =﹣1得x =﹣12 B. 由2x =2得x =4 C. 由5x +b =0得5x =﹣b D. 由4﹣3x =0得﹣3x +4=03. 由132x y -=,可以得到用表示的式子( ) A 223x y =- B. 2133x y =- C. 223x y -= D. 223x y =- 4. 解方程2x =3x 时,两边都除以x ,得2=3,其错误原因是( )A. 方程本身是错的B. 方程无解C. 两边都除以了0D. 2x 小于3x 5. 下列说法正确的是( )A. 方程4+x =8和不等式4+x >8的解是一样的B. x =2不是不等式4x >5的解C. x =2是不等式4x >15的一个解D. 不等式x ﹣2<6的两边都减去3,则此不等式仍成立6. 把方程0.10.20.510.30.4x x ---=的分母化成整数后,可得方程( ) A. 0.10.20.5134x x ---= B. 12510134x x ---= C. 125101034x x ---= D.120.5134x x ---= 7. 不等式325132x x ++≤-的解集表示在数轴上是( )A. B. C. D.8. 每瓶A 种饮料比每瓶B 种饮料少元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A. ()21313x x -+=B. ()21313x x ++=C. ()23113x x ++=D. ()23113x x +-=9. 如图,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为( )A. 18010x y x y +=⎧⎨=+⎩B. 180210x y x y +=⎧⎨=+⎩C. 180102x y x y +=⎧⎨=-⎩D. 180210x y y x +=⎧⎨=-⎩ 10. 小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,那么这个数阵的形式可能是( ) A. B. C. D.二、填空题(每小题3分,共15分)11. 若2x ﹣3与1互为相反数,则x =_____.12. 在公式S =12n (a +b )中,已知S =5,n =2,a =3,那么b 的值是_____. 13. 一个两位数,两个数位上数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是_____.14. 对有理数a ,b 规定运算“*”的意义为a *b =a +2b ,比如:5*7=5+2×7,则方程3x *14=2﹣x 的解为_____. 15. 如图,足球的表面是有一些黑颜色五边形和白颜色六边形的皮块缝合而成的,共计有32块,请观察图形,根据黑块五边形和白块六边形的边数之间的关系计算黑颜色五边形和白颜色六边形的皮块数分别是_____.三、解答题(本大题有8个小题,满分55分)16. 解方程:3(2x﹣1)﹣2(1﹣x)=0.17. 解不等式52x+﹣1<322x+,小兵的解答过程是这样的.解:去分母,得x+5﹣1<3x+2①.移项,得x﹣3x<2﹣5+1②.合并同类项,得﹣2x<﹣2③.系数化1,得x<1④.(1)请问:小兵同学的解答是否正确?如果错误,请指出错误步骤的标号,简述原因?(2)给出正确的解答过程.18. 用加减消元法解方程组:433 3215x yx y+=⎧⎨-=⎩.19. 已知关于x的方程a﹣5x=﹣6与方程3x﹣6=4x﹣5有相同的解,求a的值.20. 如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20.求图2中第Ⅱ部分的面积.21. 小明在解方程21134x x m-+=-,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m的值和原方程正确的解.22. 阅读以下例题:解方程:|3x|=1,解:①当3x≥0时,原方程可化为一元一次方程3x=1,解这个方程得x=13;②当3x<0时,原方程可化一元一次方程﹣3x=1,解这个方程得x=﹣13.所以原方程的解是x=13或x=﹣13.(1)仿照例题解方程:|2x+1|=3.(2)探究:当b为何值时,方程|x﹣2|=b+1满足:①无解;②只有一个解;③有两个解.23. 某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)答案与解析一、选择题(共10小题)1. 方程3x ﹣1=5的解是( ) A. 43x = B. 53x = C. x =18 D. x =2[答案]D[解析][分析]先移项,再合并同类项,最后系数化为1即可得出答案.[详解]3x -1=5,移项得,3x =5+1,合并同类项得,3x =6,系数化为1得,x =2.故选D.[点睛]本题考查了一元一次方程的解法.熟练掌握解一元一次方程的步骤是解题的关键.2. 下列方程变形中属于移项的是( )A. 由2x =﹣1得x =﹣12B. 由2x =2得x =4 C. 由5x +b =0得5x =﹣bD. 由4﹣3x =0得﹣3x +4=0 [答案]C[解析][分析]根据一元一次方程的解法直接进行排除选项即可.[详解]A 、由2x =﹣1得:x =12-,不符合题意; B 、由2x =2得:x =4,不符合题意; C 、由5x +b =0得5x =﹣b ,符合题意;D 、由4﹣3x =0得﹣3x +4=0,不符合题意.故选:C .[点睛]本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.3. 由132x y -=,可以得到用表示的式子( ) A. 223x y =- B. 2133x y =- C. 223x y -= D. 223x y =- [答案]A[解析][分析] 只需把含有y 的项移到方程的左边,其它的项移到另一边,然后合并同类项、系数化为1就可用含x 的式子表示y .[详解]解:移项,得123y x =-, 系数化为1,得223x y =-. 故选:A .[点睛]本题考查的是方程的基本运算技能,移项、合并同类项、系数化为1等.4. 解方程2x =3x 时,两边都除以x ,得2=3,其错误原因是( )A. 方程本身是错的B. 方程无解C. 两边都除以了0D. 2x 小于3x[答案]C[解析][分析]出错的地方为:方程两边除以x ,没有考虑x 为0的情况,据此判断即可.[详解]解:错误的地方为:方程两边都除以x ,没有考虑x 是否为0,正确解法为:移项得:2x ﹣3x =0,合并得:﹣x =0,系数化为1得:x =0.故选:C .[点睛]本题考查了解一元一次方程,熟练掌握运算法则是解题的关键.5. 下列说法正确的是( )A. 方程4+x =8和不等式4+x >8的解是一样的B. x =2不是不等式4x >5的解C. x=2是不等式4x>15的一个解D. 不等式x﹣2<6的两边都减去3,则此不等式仍成立[答案]D[解析][分析]根据不等式的解法及不等式解集的概念直接进行排除选项即可.[详解]A、方程的解只有一个,而不等式的解有无数个;故本选项不合题意.B、不等式4x>5的解集是x>54,故本选项不合题意.C、不等式4x>15的解集是x>154不包括2,故本选项不合题意.D、不等式x﹣2<6的两边都减去3,则此不等式仍成立,正确,依据是不等式的基本性质.故选:D.[点睛]本题主要考查一元一次不等式的解集及解法,熟练掌握一元一次不等式的解集及解法是解题的关键.6. 把方程0.10.20.510.30.4x x---=的分母化成整数后,可得方程( )A. 0.10.20.5134x x---= B.12510134x x---=C. 125101034x x---= D.120.5134x x---=[答案]B[解析][分析]本题方程两边都含有分数系数,在变形的过程中,利用分数的性质将分数的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程,把含分母的项的分子与分母都扩大原来的10倍.[详解]解:把原方程的分母化为整数得,12510134x x ---=故选B.[点睛]分母化成整数的过程的依据是分数的性质,掌握相关知识是解题的关键.7. 不等式325132x x++≤-的解集表示在数轴上是( )A. B.C.D.[答案]B[解析][分析] 根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.[详解]解:去分母,得,2(3x +2)≤3(x +5)﹣6,去括号,得6x +4≤3x +15﹣6,移项、合并同类项,得3x ≤5,系数化为1,得,x ≤53, 在数轴上表示为:故选:B .[点睛]本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.8. 每瓶A 种饮料比每瓶B 种饮料少元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A. ()21313x x -+=B. ()21313x x ++=C. ()23113x x ++=D. ()23113x x +-=[答案]C[解析][分析]设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,由买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,列方程即可得到答案.[详解]解:设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,所以:()23113x x ++=,故选C .[点睛]本题考查的是一元一次方程的应用,掌握利用相等关系列一元一次方程是解题的关键.9. 如图,射线OC 端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为( )A. 18010x y x y +=⎧⎨=+⎩B. 180210x y x y +=⎧⎨=+⎩C. 180102x y x y +=⎧⎨=-⎩D. 180210x y y x +=⎧⎨=-⎩[答案]B[解析][分析]根据∠AOC 的度数比∠BOC 的2倍多10°,得方程x =2y +10;然后由平角可建立方程组,则问题得解.[详解]解:根据∠AOC 的度数比∠BOC 的2倍多10°,得方程x =2y +10;根据∠AOC 和∠BOC 组成了平角,得方程x +y =180.列方程组为180210x y x y +=⎧⎨=+⎩. 故选:B .[点睛]本题主要考查二元一次方程组的应用,熟练掌握二元一次方程组的应用是解题的关键.10. 小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,那么这个数阵的形式可能是( ) A.B. C. D. [答案]C[解析][分析]可设第一个数为x ,根据已知对每个选项计算讨论得出.[详解]设第一个数为x,根据已知:A:得x+x+6+x+7+x+8=36,则x=6.25不是整数,故本选项不可能.B:得x+x+1+x+8+x+9=36,则x=4.5不是整数,故本选项不可能.C:得x+x+1+x+7+x+8=36,则x=5,为正数符合题意.D:得x+x+1+x+6+x+7=36,则x=5.5不是整数,故本选项不可能.故选C.[点睛]此题考查的是一元一次方程的应用,关键是根据题意对每个选项列出方程求解论证.二、填空题(每小题3分,共15分)11. 若2x﹣3与1互为相反数,则x=_____.[答案]1.[解析][分析]根据互为相反数的关系直接进行求解即可.[详解]解:根据题意得:2x﹣3+1=0,移项合并得:2x=2,解得:x=1.故答案:1.[点睛]本题主要考查相反数的定义,熟练掌握相反数的定义是解题的关键.12. 在公式S=12n(a+b)中,已知S=5,n=2,a=3,那么b的值是_____.[答案]2.[解析][分析]求公式中的一个字母b的值,把已知其它字母的值代入,转化为关于b大的方程,解之即可.[详解]∵S=12n(a+b)中,且S=5,n=2,a=3,∴5=12×2×(3+b),解得:b=2.故答案为:2.[点睛]本题考查从公式中求某个字母值问题,关键是把给的已知字母的值代入,转化为某字母为未知数的方程.13. 一个两位数,两个数位上的数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是_____.[答案]36[解析][分析]设十位数字为x ,个位数字为y ,由题意可进行列方程组进行求解即可.[详解]解:设十位数字为x ,个位数字为y ,由题意得:2101027y x y x x y =⎧⎨+=++⎩, 解得:36x y =⎧⎨=⎩, 原两位数是36,即:原两位数是36.故答案是:36.[点睛]本题主要考查二元一次方程组的应用,熟练掌握二元一次方程组的应用是解题的关键.14. 对有理数a ,b 规定运算“*”的意义为a *b =a +2b ,比如:5*7=5+2×7,则方程3x *14=2﹣x 的解为_____. [答案]38. [解析][分析]已知等式利用题中的新定义化简,计算即可求出解.[详解]解:根据题中的新定义化简得:3x +12=2﹣x , 去分母得:6x +1=4﹣2x ,解得:x =38. 故答案为:38. [点睛]本题考查了解一元一次方程,以及有理数的混合运算,弄清题中的新定义是解题的关键.15. 如图,足球的表面是有一些黑颜色五边形和白颜色六边形的皮块缝合而成的,共计有32块,请观察图形,根据黑块五边形和白块六边形的边数之间的关系计算黑颜色五边形和白颜色六边形的皮块数分别是_____.[答案]12和20[解析][分析]足球缝合规律:五边形的5条边都与六边形缝合,六边形只有3条边与五边形缝合,所以五边形的个数乘以5应该等于六边形的个数乘以3,据此设足球有黑色五边形皮块x 个,列方程求解即可[详解]设足球有黑色五边形皮块x 个,则有白色六边形皮块(32-x)个,由题意得,5x=3(32-x)解得:x=12所以白色皮块数为20,黑色皮块数为12.故答案为:12和20.[点睛]本题主要考查一元一次方程应用,熟练掌握一元一次方程的应用是解题的关键.三、解答题(本大题有8个小题,满分55分)16. 解方程:3(2x ﹣1)﹣2(1﹣x )=0.[答案]x =58 [解析][分析]先去括号合并同类项,然后直接解一元一次方程即可.[详解]解:()()321210x x ---=去括号,得6x ﹣3﹣2+2x =0,移项,得6x +2x =3+2,合并同类项,得8x =5,系数化为1,得x =58. [点睛]本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.17. 解不等式52x +﹣1<322x +,小兵的解答过程是这样的. 解:去分母,得x +5﹣1<3x +2①.移项,得x ﹣3x <2﹣5+1②.合并同类项,得﹣2x <﹣2③.系数化为1,得x<1④.(1)请问:小兵同学的解答是否正确?如果错误,请指出错误步骤的标号,简述原因?(2)给出正确的解答过程.[答案](1)解法错误,①去分母时,漏乘了没有分母的项,④系数化为1时不等号的方向没有改变,(2)正确的解答过程见解析,x>12.[解析][分析](1)根据解一元一次不等式的步骤,逐一判断即可得出结论;(2)根据解一元一次不等式的步骤,解不等式即可.[详解](1)解法错误,①去分母时,漏乘了没有分母的项,④系数化为1时不等号的方向没有改变,(2)正确的解答是:去分母得(x+5)﹣2<3x+2,移项,得x﹣3x<2+2﹣5,合并同类项,得﹣2x<﹣1,系数化为1,得x>12.[点睛]此题考查的是解一元一次不等式,掌握解一元一次不等式的步骤是解题关键.18. 用加减消元法解方程组:433 3215x yx y+=⎧⎨-=⎩.[答案]33 xy=⎧⎨=-⎩.[解析][分析]先把方程组标号①②,把两个方程同一未知数的系数变绝对值相等的数,同号两式相减,异号两式相加,消去一个未知数,转化为一元一次方程,得解后再代入①或②,求另一未知数,把两个解联立起来即可.[详解]433 3315x yx y+=⎧⎨-=⎩①②,①×2得:8x+6y=6③,②×3得:9x﹣6y=45④,③+④得:17x=51,解得:x=3,把x=3代入①,得4×3+3y=3, 解得:y=﹣3,所以原方程组的解是33 xy=⎧⎨=-⎩.[点睛]本题考查加减消元法解方程组,关键是要变方程一未知数系数绝对值相等,同号两式相减,异号两式相加.19. 已知关于x的方程a﹣5x=﹣6与方程3x﹣6=4x﹣5有相同的解,求a的值.[答案]a=﹣11.[解析][分析]两个方程中,有一个只有一个未知数,先解这个方程,求出后,代入第二个方程解之即可.[详解]解方程.3x﹣6=4x﹣5,移项,得3x﹣4x=﹣5+6,合并同类项,得﹣x=1,系数化为1得:x=﹣1,把x=﹣1代入方程a﹣5x=﹣6,得a﹣5×(﹣1)=﹣6.解得a=﹣11.[点睛]本题考查用方程确定参数问题,关键是观察两个方程中有一个方程直接求解.20. 如图1,在边长为a大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20.求图2中第Ⅱ部分的面积.[答案]图2中第Ⅱ部分的面积为100.[解析][分析]根据在边长为a的大正方形中剪去一个边长为b的小正方形,以及长方形的长为30,宽为20,得出a+b=30,a-b=20,进而得出答案.[详解]解:根据题意得出:3020b a a b +=⎧⎨-=⎩, 解得:255a b =⎧⎨=⎩, 故图2中Ⅱ部分的面积是:5×20=100, 答:第Ⅱ部分的面积为100.[点睛]本题考查了正方形的性质以及二元一次方程组的应用,根据已知得出a+b=30,a-b=20是解题的关键. 21. 小明在解方程21134x x m -+=-,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x =3,请你帮助小明求出m 的值和原方程正确的解.[答案]m =4,x =45 [解析][分析]根据题意进行“将错就错”,即把方程的解是x =3代入()()42131x x m -=+-中求解m 的值,最后代入原方程进行求解即可.[详解]解:根据题意,x =3是方程()()42131x x m -=+-的解,将x =3代入得4×(2×3﹣1)=3(3+m )﹣1,解得m =4, 所以原方程为214134x x -+=-, 解方程得x =45. [点睛]本题主要考查分式方程的解及分式方程的解法,熟练掌握分式方程的解及分式方程的解法是解题的关键.22. 阅读以下例题:解方程:|3x |=1,解:①当3x ≥0时,原方程可化一元一次方程3x =1,解这个方程得x =13;②当3x<0时,原方程可化为一元一次方程﹣3x=1,解这个方程得x=﹣13.所以原方程的解是x=13或x=﹣13.(1)仿照例题解方程:|2x+1|=3.(2)探究:当b为何值时,方程|x﹣2|=b+1满足:①无解;②只有一个解;③有两个解.[答案](1)x=1或x=﹣2;(2)当b<﹣1时,方程无解;当b=﹣1时,方程只有一个解;当b>﹣1时,方程有两个解.[解析][分析](1)仿照例题分情况讨论:①当2x+1≥0时,②当2x+1<0时,化简绝对值,解关于x的一元一次方程即可求解;(2)|x﹣2|≥0恒成立,①若无解,则b+1<0,解不等式即可求解;②若只有一个解,则b+1=0,求解即可;③若有两个解,则b+1>0,解不等式即可求解.[详解]解:(1)①当2x+1≥0时,原方程可化为一元一次方程2x+1=3,解这个方程得x=1;②当2x+1<0时,原方程可化为一元一次方程﹣2x﹣1=3,解这个方程得x=﹣2;所以原方程的解是x=1或x=﹣2;(2)因为|x﹣2|≥0,所以①当b+1<0,即b<﹣1时,方程无解;②当b+1=0,即b=﹣1时,方程只有一个解;③当b+1>0,即b>﹣1时,方程有两个解.[点睛]本题考查解绝对值方程,理解题意是解题的关键.23. 某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)[答案](1)甲组工作一天商店应付300元,乙组工作一天商店应付140元;(2)单独请乙组,商店所付费用较少;(3)安排甲、乙两个装修组同时施工更有利于商店.[解析][分析](1)设甲组工作一天商店应付元,乙组工作一天商店应付元,根据“若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元”,即可得出关于,的二元一次方程组,解之即可得出结论;(2)根据总费用每天需支付的费用工作时间,可分别求出单独请甲组和单独请乙组施工所需费用,比较后即可得出结论;(3)分单独请甲组施工、单独请乙组施工和请甲、乙两组合做施工三种情况考虑,利用损失的总钱数施工费用因装修损失收入,分别求出三种情况下损失的钱数,比较后即可得出结论.[详解](1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,依题意,得:883520 6123480x yx y+=⎧⎨+=⎩,解得:300140xy=⎧⎨=⎩.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组需要的费用为300×12=3600(元);单独请乙组需要的费用为140×24=3360(元).∵3600>3360,∴单独请乙组,商店所付费用较少.(3)单独请甲组施工,需费用3600元,少盈利200×12=2400(元),相当于损失6000元;单独请乙组施工,需费用3360元,少盈利200×24=4800(元),相当于损失8160元;请甲、乙两组合做施工,需费用3520元,少盈利200×8=1600(元),相当于损失5120元.∵5120<6000<8160,∴甲、乙合做损失费用最少.答:安排甲、乙两个装修组同时施工更有利于商店.[点睛]本题考查了二元一次方程组的应用,解题的关键是找准等量关系,正确列出二元一次方程组.。
人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。
20232024学年全国初中七年级下数学人教版期中考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 3/4D. 1.52.下列各数中,是负数的是()A. 0B. 3C. 2D. 1/23.下列各数中,是正数的是()A. 3B. 0C. 1/2D. 1.54.下列各数中,是正分数的是()A. 3/4B. 0C. 1/2D. 1.55.下列各数中,是负分数的是()A. 3/4B. 0C. 1/2D. 1.56.下列各数中,是正整数的是()A. 2B. 0C. 1/2D. 37.下列各数中,是负整数的是()A. 2B. 0C. 1/2D. 38.下列各数中,是正无理数的是()A. √2B. 0C. √3D. 1.59.下列各数中,是负无理数的是()A. √2B. 0C. √3D. 1.510.下列各数中,是分数的是()A. √2B. 0C. 3/4D. 1.5二、填空题(每题2分,共20分)1.若a是正数,b是负数,则a+b的值()2.若a是正数,b是负数,则ab的值()3.若a是正数,b是负数,则ab的值()4.若a是正数,b是负数,则a/b的值()5.若a是正数,b是负数,则a+b的绝对值()6.若a是正数,b是负数,则ab的绝对值()7.若a是正数,b是负数,则ab的绝对值()8.若a是正数,b是负数,则a/b的绝对值()9.若a是正数,b是负数,则a+b的平方()10.若a是正数,b是负数,则ab的平方()三、解答题(每题5分,共30分)1.解方程:3x5=2x+72.解方程:2x+3=5x43.解方程:4x3=2x+94.解方程:5x+4=3x85.解方程:6x5=4x+76.解方程:7x+6=5x9四、应用题(每题10分,共20分)1.某水果店有苹果和香蕉两种水果,苹果每斤5元,香蕉每斤3元。
小明想买3斤苹果和2斤香蕉,一共需要多少钱?2.某学校组织了一次运动会,参加跑步的学生有男生和女生两种,男生有20人,女生有15人。
苏教版七年级下册期中考试数学学试题一、选择题每小题3分,共18分.1.2﹣1等于A.2 B.C.﹣2 D.﹣2.下列运算正确的是A.a+a=a2B.a2a3=a6C.﹣2a22=4a4D.a﹣22=a2﹣43.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是A.15°B.25°C.30°D.35°4.803﹣80能被整除.A.76 B.78 C.79 D.825.如图所示,分别以n边形的顶点为圆心,以1cm为半径画圆,则图中阴影部分的面积之和为A.πcm2B.2πcm2C.4πcm2D.nπcm26.二元一次方程2x+5y=32的正整数解有组.A.3 B.4 C.5 D.6二、填空题每小题3分,共30分7.已知某种植物花粉的直径为0.00035cm,将数据用科学记数法表示为.8.分解因式:a2﹣ab=.9.等腰三角形的两边长分别是3cm和6cm,则它的周长是.10.已知是二元一次方程kx﹣y=3的一个解,那么k的值是.11.若代数式x2+mx+9m为常数是一个完全平方式,则m的值为.12.如图,已知△ABC中,DE∥BC,将△ADE沿DE翻折,点A落在平面内的A′处,∠B=50°,则∠BDA′的度数是.13.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为3a+b,宽为a+2b的大长方形,则需要C类卡片张.14.若3x=4,9y=7,则3x﹣2y的值为.15.若m﹣n=3,mn=﹣2,则m2+n2=.16.如图①:MA1∥NA2,图②:MA1∥NA3,图③:MA1∥NA4,图④:MA1∥NA5,…,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1=°用含n的代数式表示.17.计算:12a3a23÷a2x+2yx﹣y18.先化简,再求值:xx﹣4y+2x+y2x﹣y﹣2x﹣y2,其中x=﹣2,.19.因式分解:1a2+4a+429x+y2﹣x﹣y2.20.解方程组:12.22.如图,AB∥DC,AD∥BC,E为BC延长线上一点,连结AE与CD相交于点F,若∠CFE=∠E.试说明AE平分∠BAD.23.试用方程组解决问题:某校七年级1班45名同学为“支援灾区”共捐款1800元,捐款情况如表:捐款元102040100人数67表中捐款20元和40元的人数不小心被墨水污染,看不清楚,请你确定表中的数据.24.如图,△ABC中,AD是BC边上的中线,AE是BC边上的高.1若∠ACB=100°,求∠CAE的度数;2若S△ABC=12,CD=4,求高AE的长.25.已知△ABC 中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM 上一点.1如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.2若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.26.已知关于x、y的方程组1当x=y时,求a的值;2求代数式22x4y的值;3若x y=1,求a的值.参考答案与试题解析一、选择题每小题3分,共18分.1.2﹣1等于A.2 B.C.﹣2 D.﹣考点负整数指数幂.分析根据负整数指数幂与正整数指数幂互为倒数,可得答案.解答解:原式=,故选:B.2.下列运算正确的是A.a+a=a2B.a2a3=a6C.﹣2a22=4a4D.a﹣22=a2﹣4考点完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析根据合并同类项法则、幂的运算、完全平方式分别计算可得答案.解答解:A、a+a=2a,此选项错误;B、a2a3=a5,此选项错误;C、﹣2a22=4a4,此选项正确;D、a﹣22=a2﹣4a+4,此选项错误;故选:C.3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是A.15°B.25°C.30°D.35°考点平行线的性质.分析直接利用平行线的性质结合等腰直角三角形的性质得出答案.解答解:如图所示:由题意可得:∠1=∠3=15°,则∠2=45°﹣∠3=30°.故选:C.4.803﹣80能被整除.A.76 B.78 C.79 D.82考点提公因式法与公式法的综合运用.分析先提取公因式80,再根据平方查公式进行二次分解,即可得803﹣80=80×81×79,继而求得答案.解答解:∵803﹣80=80×=80×80+1×80﹣1=80×81×79.∴803﹣80能被79整除.故选C.5.如图所示,分别以n边形的顶点为圆心,以1cm为半径画圆,则图中阴影部分的面积之和为A.πcm2B.2πcm2C.4πcm2D.nπcm2考点扇形面积的计算;多边形内角与外角.分析由于多边形的外角和为360°,则所有阴影的扇形的圆心角的和为360度,故阴影部分的面积=π×12=π.解答解:∵多边形的外角和为360°,∴S A1+S A2+…+S An=S圆=π×12=πcm2.故选A..6.二元一次方程2x+5y=32的正整数解有组.A.3 B.4 C.5 D.6考点二元一次方程的解.分析把方程用含x的式子表示出y,再根据x、y均为正整数进行讨论即可求得答案.解答解:方程2x+5y=32可变形为y=,∵x、y均为正整数,∴32﹣2x>0且为5的倍数,当x=1时,y=6,当x=6时,y=4,当x=11时,y=2,∴方程2x+5y=32的正整数解有3组,故选A.二、填空题每小题3分,共30分7.已知某种植物花粉的直径为0.00035cm,将数据用科学记数法表示为×10﹣4.考点科学记数法—表示较小的数.分析绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答解:将数据用科学记数法表示为×10﹣4,故答案为:×10﹣4.8.分解因式:a2﹣ab=aa﹣b.考点因式分解﹣提公因式法.分析直接把公因式a提出来即可.解答解:a2﹣ab=aa﹣b.9.等腰三角形的两边长分别是3cm和6cm,则它的周长是15cm.考点等腰三角形的性质;三角形三边关系.分析题目给出等腰三角形有两条边长为3cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故答案为:15cm.10.已知是二元一次方程kx﹣y=3的一个解,那么k的值是2.考点二元一次方程的解.分析根据方程的解满足方程,可得关于k的方程,根据解方程,可得答案.解答解:由是二元一次方程kx﹣y=3的一个解,得2k﹣1=3,解得k=2,故答案为:2.11.若代数式x2+mx+9m为常数是一个完全平方式,则m的值为±6.考点完全平方式.分析利用完全平方公式的结构特征判断即可确定出m的值.解答解:∵代数式x2+mx+9m为常数是一个完全平方式,∴m=±6,故答案为:±612.如图,已知△ABC中,DE∥BC,将△ADE沿DE翻折,点A落在平面内的A′处,∠B=50°,则∠BDA′的度数是80°.考点翻折变换折叠问题.分析由两直线平行,同位角相等推知∠ADE=∠B=50°;由折叠的性质知∠ADE=∠A′DE,所以∠BDA′=180°﹣2∠B=80°.解答解:∵DE∥BC,∴∠ADE=∠B=50°两直线平行,同位角相等;又∵∠ADE=∠A′DE,∴∠A′DA=2∠B,∴∠BDA′=180°﹣2∠B=80°故答案为:80°.13.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为3a+b,宽为a+2b的大长方形,则需要C类卡片7张.考点多项式乘多项式.分析根据长方形的面积=长×宽,求出长为3a+b,宽为a+2b的大长方形的面积是多少,判断出需要C类卡片多少张即可.解答解:长为3a+b,宽为a+2b的长方形的面积为:3a+ba+2b=3a2+7ab+2b2,∵A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,∴需要A类卡片3张,B类卡片2张,C类卡片7张.故答案为:7.14.若3x=4,9y=7,则3x﹣2y的值为.考点同底数幂的除法;幂的乘方与积的乘方.分析根据3x﹣2y=3x÷32y=3x÷9 y即可代入求解.解答解:3x﹣2y=3x÷32y=3x÷9 y=.故答案是:.15.若m﹣n=3,mn=﹣2,则m2+n2=5.考点完全平方公式.分析直接利用完全平方公式将原式变形进而将已知代入求出答案.解答解:∵m﹣n=3,mn=﹣2,∴m2+n2=m﹣n2+2mn=32+2×﹣2=5.故答案为:5.16.如图①:MA1∥NA2,图②:MA1∥NA3,图③:MA1∥NA4,图④:MA1∥NA5,…,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1=180n°用含n的代数式表示.考点平行线的性质.分析分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.解答解:如图①中,∠A1+∠A2=180°=1×180°,如图②中,∠A1+∠A2+∠A3=360°=2×180°,如图③中,∠A1+∠A2+∠A3+∠A4=540°=3×180°,…,第个图,∠A1+∠A2+∠A3+…+∠A n+1学会从=n180°,故答案为180n三、解答题本大题共102分17.计算:12a3a23÷a2x+2yx﹣y考点整式的混合运算.分析1原式利用幂的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;2原式利用多项式乘以多项式法则计算,合并即可得到结果.解答解:1原式=3a9÷a=2a8;2原式=x2﹣xy+2xy﹣2y2=x2+xy﹣2y2.18.先化简,再求值:xx﹣4y+2x+y2x﹣y﹣2x﹣y2,其中x=﹣2,.考点整式的混合运算—化简求值.分析原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答解:原式=x2﹣4xy+4x2﹣y2﹣4x2+4xy﹣y2=x2﹣2y2,当x=﹣2,y=﹣时,原式=4﹣=.19.因式分解:1a2+4a+429x+y2﹣x﹣y2.考点因式分解﹣运用公式法.分析1直接利用完全平方公式进行分解即可;2首先利用平方差公式进行分解,再合并同类项后,利用提公因式法再次进行分解即可.解答解:1原式=a+22;2原式=3x+y﹣x﹣y3x+y+x﹣y=42x+yx+2y.20.解方程组:12.考点解二元一次方程组.分析1方程组利用加减消元法求出解即可;2方程组整理后,利用加减消元法求出解即可.解答解:1,①×2﹣②得:﹣4y=﹣21,即y=3,把y=3代入①得:x=6,则方程组的解为;2方程组整理得:,①+②得:8x=16,即x=2,把x=2代入①得:y=3,则方程组的解为.21.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.1请在图中画出平移后的△A′B′C′;2若连接BB′,CC′,则这两条线段的关系是平行且相等;3△ABC在整个平移过程中线段AB扫过的面积为12.考点作图﹣平移变换.分析1利用网格特点和平移的性质分别画出点A、B、C的对应点A′、B′、C′即可得到△A′B′C′;2根据平移的性质求解;3由于线段AB扫过的部分为平行四边形,则根据平行四边形的面积公式可求解.解答解:1如图,△A′B′C′为所作;2BB′∥CC′,BB′=CC′;3线段AB扫过的面积=4×3=12.故答案为平行且相等;12.22.如图,AB∥DC,AD∥BC,E为BC延长线上一点,连结AE与CD相交于点F,若∠CFE=∠E.试说明AE平分∠BAD.考点平行线的性质.分析根据平行线的性质得到∠1=∠CFE,∠2=∠E,等量代换即可得到结论.解答解:∵AB∥DC,∴∠1=∠CFE,∵AD∥BC,∴∠2=∠E,∵∠CFE=∠E,∴∠1=∠2.∴AE平分∠BAD.23.试用方程组解决问题:某校七年级1班45名同学为“支援灾区”共捐款1800元,捐款情况如表:捐款元102040100人数67表中捐款20元和40元的人数不小心被墨水污染,看不清楚,请你确定表中的数据.考点二元一次方程组的应用.分析直接捐款20元的有x人,捐款40元的有y人,利用七年级1班45名同学得出关于x,y的等式,再利用共捐款1800元,得出等式组成方程组求出答案.解答解:设捐款20元的有x人,捐款40元的有y人,根据题意可得:,解得:,答:捐款20元的有12人,捐款40元20人.24.如图,△ABC中,AD是BC边上的中线,AE是BC边上的高.1若∠ACB=100°,求∠CAE的度数;2若S△ABC=12,CD=4,求高AE的长.考点三角形的面积;三角形的外角性质.分析1根据∠ACB是△ACE的外角进行计算即可;2根据CD的长求得BC的长,再根据△ABC的面积为12,求得AE的长.解答解:1∵AE是BC边上的高,∴∠E=90°,又∵∠ACB=100°,∴∠CAE=100°﹣90°=10°;2∵AD是BC上的中线,DC=4,∴D为BC的中点,∴BC=2DC=8,=12,∵AE是BC边上的高,S△ABC=BCAE,∴S△ABC即×8×AE=12,∴AE=3.25.已知△ABC 中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E 为射线BM上一点.1如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.2若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.考点平行线的性质.分析1①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE=ABC=40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD=180°﹣∠ACB=140°,根据角平分线的定义得到∠CBE=ABC=40°,∠ECD=ACD=70°,根据三角形的外角的性质即可得到结论;2①当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.解答解:1①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°﹣∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=ABC=40°,∠ECD=ACD=70°,∴∠BEC=∠ECD﹣∠CBE=30°;2①如图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°﹣40°﹣40°﹣90°=10°.26.已知关于x、y的方程组1当x=y时,求a的值;2求代数式22x4y的值;3若x y=1,求a的值.考点解二元一次方程组.分析1把x=y代入方程组,求出a的值即可;2把a看做已知数表示出方程组的解,将原式变形后代入计算即可求出值;3将表示出的x与y代入已知等式,确定出a的值即可.解答解:1把x=y代入方程组得:,解得:a=;2,①﹣②得:3y=6﹣3a,即y=2﹣a,把y=2﹣a代入①得:x=a﹣3,∴x+y=a﹣3+2﹣a=﹣1,则22x4y=22x22y=22x+y=2﹣2=;3由x y=1,得到a﹣32﹣a=1,若2﹣a=0,即a=2时,等式成立;若a﹣3=1,即a=4时,等式成立,综上,a的值为2或4.2017年3月4日。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.下列说法正确的是()A .4的平方根是2B .16的平方根是±4C .25的平方根是±5D .﹣36的算术平方根是62.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )A .B .C .D .3.如果(),P a b 在第三象限,那么点(),Q a b ab +在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中假命题有( )①两条直线被第三条直线所截,同位角相等②如果两条直线都与第三条直线平行,那么这两条直线也互相平行③点到直线的垂线段叫做点到直线的距离④过一点有且只有一条直线与已知直线平行⑤若两条直线都与第三条直线垂直,则这两条直线互相平行.A .5个B .4个C .3个D .2个5.如图,直线AB 、CD 相交于点E ,//DF AB .若70D ∠=︒,则CEB ∠等于( )A .70°B .110°C .90°D .120°6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③33mn π-+是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A .①② B .①③ C .①②③ D .①②④ 7.直角三角板与两边平行的纸条如图所示放置,下列结论不一定正确的是( )A .12∠=∠B .34∠=∠C .2490∠+∠=D .14∠=∠8.如图,在平面直角坐标系中有点()2,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A ,…依照此规律跳动下去,点A 第2020次跳动至2020A 的坐标为( )A .()1011,1010B .()1012,1010C .()1010,1009-D .()2020,2021二、填空题9.若,则()m a b +的值为10.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.11.如图,已知AB //DE ,BC ⊥CD ,∠ABC 和∠CDE 的角平分线交于点F ,∠BFD =__________°.12.如图,//AB CD ,CE 平分ACD ∠,交AB 于E ,若50ACD ∠=︒,则1∠的度数是______°.13.如图,把一张长方形纸片ABCD 沿EF 折叠后,D 、C 分别落在D ,C '的位置上,ED '与BC 交于G 点,若56EFG ∠=︒,则AEG ∠=______.14.如图,在纸面上有一数轴,点A 表示的数为﹣1,点B 表示的数为3,点C 表示的数为3B 为中心折叠,然后再次折叠纸面使点A 和点B 重合,则此时数轴上与点C 重合的点所表示的数是_______.15.下列四个命题:①直角坐标系中的点与有序实数对一一对应;②若a 大于0,b 不小于0,则点(),P a b --在第三象限;③过一点有且只有一条直线与已知直线平行;④若()214=--+y x ,则x y 的算术平方根是12.其中,是真命题的有______.(写出所有真命题的序号) 16.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0),…,按这样的规律,则点A 2021的坐标为 ____________.三、解答题17.计算:(1)232643--(2)()21418329⎛⎫-+⨯- ⎪⎝⎭18.求下列各式中的x .(1)x 2-81=0(2)(x ﹣1)3=819.已知:如图,DB ⊥AF 于点G ,EC ⊥AF 于点H ,∠C =∠D .求证:∠A =∠F . 证明:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),∴∠DGH =∠EHF =90°( ).∴DB ∥EC ( ).∴∠C = ( ).∵∠C =∠D (已知),∴∠D = ( ).∴DF ∥AC ( ).∴∠A =∠F ( ).20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:A →B (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A →C ( , ),B →D ( , ),C → (+1, );(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置.21.已知21a -的平方根是3,31a b ±+-的立方根是2,c -是46的整数部分,求2a b c ++的算术平方根.22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.23.已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.【参考答案】一、选择题1.C解析:C【分析】根据平方根和算术平方根的定义判断即可.【详解】解:A.4的平方根是±2,故错误,不符合题意;B16的平方根是±2,故错误,不符合题意;C.25的平方根是±5,故正确,符合题意;D.-36没有算术平方根,故错误,不符合题意;故选:C.【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.2.B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C解析:B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;故选B.【点睛】本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.3.B【分析】根据第三象限内点的横坐标是负数,纵坐标是负数确定出a、b的正负情况,再求出a+b,ab的正负情况,然后确定出点Q所在的象限,即可得解.【详解】解:∵点P(a,b)在第三象限,∴a<0,b<0,∴a+b<0,ab>0,∴点Q(a+b,ab)在第二象限.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据平行线的性质和判定,点到直线距离定义一一判断即可.【详解】解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件;②如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;③点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度;④过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;⑤若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内.故选B.【点睛】本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义.5.B【分析】先根据平行线的性质得到70BED D ∠=∠=︒,然后根据平角的定义解答即可.【详解】解:∵//DF AB ,∴70BED D ∠=∠=︒,∵180BED BEC ∠+∠=︒,∴18070110CEB ∠=︒-︒=︒.故选:B .【点睛】本题主要考查了平行线的性质定理和平角的性质,灵活运用平行线的性质成为解答本题的关键.6.A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可.【详解】①两个无理数的和可能是有理数,说法正确(0=,0是有理数②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确③3327mn mn ππ=-+-+是二次二项式,说法错误④立方根是本身的数有0和±1,说法错误综上,说法正确的是①②故选:A .【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键.7.D【分析】直接利用平行线性质解题即可【详解】解:∵直尺的两边互相平行,∴∠1=∠2,∠3=∠4,∵三角板的直角顶点在直尺上,∴∠2+∠4=90°,∴A ,B ,C 正确.故选D .【点睛】本题考查平行线的基本性质,基础知识扎实是解题关键8.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,观察发现,第2次跳动至点2A 的坐标是(2,1),第4次跳动至点4A 的坐标是(3,2),第6次跳动至点6A 的坐标是(4,3),第8次跳动至点8A 的坐标是(5,4),⋯第2n 次跳动至点2n A 的坐标是(1,)n n +,则第2020次跳动至点2020A 的坐标是(1011,1010),故选:A .【点睛】本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.二、填空题9.-1【解析】解:有题意得,,,,则解析:-1【解析】 解:有题意得,,,,则()m a b + 10.1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=解析:1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m+n)2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.11.135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°解析:135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.【详解】解:连接BD,∵∠C+∠CBD+∠CDB=180°,BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=90°.∵AB∥DE,∴∠ABD+∠BDE=180°,∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.∵∠ABC 和∠CDE 的平分线交于点F ,∴∠CBF+∠CDF=12×270°=135°, ∴∠BFD=360°-90°-135°=135°.故答案为135.【点睛】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.12.25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD=50°,∴=25°,∴∠1=25°,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD =50°,∴12ECD ACD ∠=∠=25°, ∴∠1=25°,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.13.68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD//BC ,,∴∠DEF=∠EFG=56°,由折叠可得,∠GEF解析:68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD //BC ,56EFG ∠=︒,∴∠DEF =∠EFG =56°,由折叠可得,∠GEF =∠DEF =56°,∴∠DEG =112°,∴∠AEG =180°-112°=68°.故答案为:68°.【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.14.4+或6﹣或2﹣.【分析】先求出第一次折叠与A 重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C 点重合的点表示的数即可.【详解】解:第一次折叠后与A 重合的点表示的数是:3+解析:62【分析】先求出第一次折叠与A 重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C 点重合的点表示的数即可.【详解】解:第一次折叠后与A 重合的点表示的数是:3+(3+1)=7.与C 重合的点表示的数:3+(36 第二次折叠,折叠点表示的数为:12(3+7)=5或12(﹣1+3)=1.此时与数轴上的点C 重合的点表示的数为:5+(5﹣11)=2故答案为:62【点睛】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键.15.①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若大于0,不小于0,则>0,≥0,点在第三象限解析:①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若a 大于0,b 不小于0,则a >0,b ≥0,点(),P a b --在第三象限或x 轴的负半轴上;故此命题是假命题;③过直线外一点有且只有一条直线与已知直线平行;故此命题是假命题;④若4=y ,则x =1,y =4,则x y的算术平方根是12,正确,故此命题是真命题.故答案为:①④【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键. 16.(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解解析:(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A 6的坐标及2021÷6所得的整数及余数,可计算出点A 2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵A 6(6,0),∴OA 6=6,∵2021÷6=336…5,∴点A 2021的位于第337个循环组的第5个,∴点A 2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A 2021的坐标为(2021,﹣2).故答案为:(2021,﹣2).【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解.三、解答题17.(1)-3;(2)-11.【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.【详解】(1)解:原式=(2)解解析:(1)-3;(2)-11.【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.【详解】(1)解:原式=443-+-3=-(2)解:原式()()()214181818329=⨯--⨯-+⨯- =1298-+-=11-.【点睛】本题考查的是乘法的分配律的应用,乘方运算,求一个数的立方根,求一个数的绝对值,掌握以上知识是解题的关键.18.(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(解析:(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(2)方程整理得:(x-1)3=8,开立方得:x-1=2,解得:x=3.【点睛】本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键.19.垂直的定义;同位角相等,两直线平行;∠DBA;两直线平行,同位角相等;∠DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】先证DB∥EC,得∠C=∠DBA,再证∠D=∠DB解析:垂直的定义;同位角相等,两直线平行;∠DBA;两直线平行,同位角相等;∠DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】先证DB∥EC,得∠C=∠DBA,再证∠D=∠DBA,得DF∥AC,然后由平行线的性质即可得出结论.【详解】解:∵DB⊥AF于点G,EC⊥AF于点H(已知),∴∠DGH=∠EHF=90°(垂直的定义),∴DB∥EC(同位角相等,两直线平行),∴∠C=∠DBA(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠D=∠DBA(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:垂直的定义;同位角相等,两直线平行;∠DBA,两直线平行,同位角相等;∠DBA,等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.20.(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C( 3解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C( 3,4),B→D(3﹣2),C→D(+1,﹣2);故答案为3,4;3,﹣2;D,﹣2;(2)这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.21.【分析】首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+2b+c,根据算术平方根的求法可得答案.【详解】解:根据题意,3【分析】首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估46c的值;进而可得a+2b+c,根据算术平方根的求法可得答案.【详解】解:根据题意,可得2a−1=9,a+3b−1=-8;解得:a=5,b=-4;又∵6<46<7,可得c=6;∴a+2b+c=3;∴a+2b+c的算术平方根为3.【点睛】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法.22.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(1)2,2-;(2)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴5在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为5-0.5的N点在M点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.23.(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒.【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CFDE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE ,CF DE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠,BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE ,CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒,F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠,ABC F BCF ∴∠-∠=∠,CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE ,GM DE ∴,MGN DFG ∴∠=∠, BH 平分ABC ∠,FN 平分CFD ∠,11,22ABH AB D C CF DFG ∴∠=∠∠∠=, 由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒,又BGD MGH MGDCGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩,45MGHBGD GF MGNC∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.。
2008-2009学年度赣榆县实验中学第二学期期中质量检测七年级数学试卷友情提示:请你仔细审题,认真答卷,放松一点,相信自己的实力,祝你成功!(本卷满分150分,共4页,考试时间100分钟)题号 一 二 三 四 五 六 七 八 总分 合分人 核分人得分一、认真选,你一定能选对!(每小题只有一个正确答案,每小题4分,共40分)1.如图,下列说理中,正确的是………………………………………………………………( )A .因为∠A+∠D=180°,所以AD ∥BCB .因为∠C+∠D=180°,所以AB ∥CDC .因为∠A+∠D=180°,所以AB ∥CD D .因为∠A+∠C=180°,所以AB ∥CD 2.在5×5方格中将图①中的图形N 平移后的位置如图②中所示,那么正确的平移方法是( )A .先向下移动1格,再向左移动1格B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格D .先向下移动2格,再向左移动2格第1题 第2题 第8题3.三角形的两边长分别为2cm 和7cm ,另一边长a 为偶数,则这个三角形的周长为…( ) A .13cm B .15 cm C .17 cm D .15cm 或17cm 4.如果一个多边形的内角和与外角和相等,那么这个多边形是……………………………( )A .四边形B .五边形C .六边形D .七边形5.下列运算中,结果正确的是…………………………………………………………………( )A .a 2+a 2=a 4B .a 8÷a 2=a 4C .(a 3)2=a 5D .2x·3x 5=6x 66.计算(x -y)(-y -x)的结果是…………………………………………………………………( )A .-x 2-y 2B .-x 2+y 2C .x 2+y 2D .x 2-y 27.a 2+4a+k 是一个完全平方式,k 应为………………………………………………………( ) A .2 B .4 C .±4 D .-4baabbbNN命题人:刘乃杰、孙玉梅整合人:孙玉梅 审核人:苏春高8.如图,在边长为a 的正方形中,挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一个长方形,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是…( )A .(a+2b)(a -b)=a 2+ab -2b 2B .(a+b)2=a 2+2ab+b 2C .(a -b)2=a 2-2ab+b 2D .a 2-b 2=(a+b)(a -b)9.如图,以三角形三个顶点为圆心画半径为2的圆,则阴影部分的面积为…………( ) A .π B .2π C .3π D .4π10.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为………………………………………………………( ) A .5 B .4 C .3 D .2第9题 第10题二、你能填得又快又准吗?(每小题4分,共32分) 11.计算(-p 2) (-p)3= (-21a 2b)3= 12.-2ab(a -b)=(a+1)(a -3)=13.在全球金融风暴中,我国政府为促进经济增长,宣布将在20XX 年底之前,投资四万亿元以拉动内需,促进经济平稳快速增长,请你用科学记数法表示四万亿 14.当s=t+21时,代数式s 2-2st+t 2的值为. 15.某宾馆在重新装修后,考虑在大厅内的主楼梯铺设地毯,已知楼梯宽3m ,如图,请计算一下,铺此楼梯需购m 2的地毯.第15题 第18题16.一个人从A 点出发向北偏东30°方向走到B 点,再从B 点出发向南偏东15°方向走到C点,那么∠ABC 等于.17.若等腰三角形的两边长分别是3cm ,7cm ,则它的周长为cm . 18.用等腰直角三角板画∠AOB=45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的夹角α为° 三、计算题:(每小题7分,共14分)19.-2-(-21)-2÷(π-3.14)0 20.2(m+1)2-(2m+1)(2m -1)认真作答,你很棒的!四、因式分解:(每小题7分,共14分)21.2x 2-12x+18 22.a 2(x -y)+b 2(y -x)五、解方程组:(每题7分,共14分) 23.⎩⎨⎧-==+y1x 54y 2x24.⎩⎨⎧-=-=-53y 2x 42y 5x六、心灵手巧——动手画一画:(每题6分,共12分)25.将图中三角形沿着MN 方向平移,平移的距离为MN 的长,画出平移后的新图形。
26.将下面的三角形分成面积相等的4个三角形,至少画出两种不同的画法七、探索与研究:(数学活动充满着探索性和创造性,相信你一定会积极探索,体验数学的价值)(本题共12分)27.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等。
(1)如图,一束光线m 射到平面镜上,被a 反射到平面镜b 上,又被b 镜反射,若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2=°,∠3=°(2)在(1)中,若∠1=55°,则∠3=°,若∠1=40°,则∠3=° (3)由(1)、(2)请你猜想:当两平面镜a 、b 的夹角∠3=°时,可以使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行?请说明理由。
八、操作设计:(本题12分)28.如图a 是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图b 的形状,拼成一个正方形。
(1)图b 中的阴影部分面积为.(2)观察图b ,请你写出三个代数式(m+n)2,(m -n)2,mn 之间的等量关系是. (3)若x+y=-6,xy=2.75,利用(2)提供的等量关系计算:x -y=. (4)实际上有许多代数恒等式可以用图形的面积来表示,如图C,它表示了2m 2+3mn+n 2=(2m+n)(m+n),试画出一个几何图形的面积是a 2+4ab+3b 2,并能利用这个图形将a 2+4ab+3b 2进行因式分解。
赣榆县实验中学2008-2009学年度第二学期期中质量检测七年级数学试卷参考答案一、选择题(每小题4分,共40分)1-5 C C D A D 6-10 B B D D A 二、填空(每题4分,共32分)11.P 5,36b a 8112.-2a 2b+2ab 2,a 2-2a-3认真读题,弄懂题意再作答哟!图c图b 图a n m n m m m nm nn n m m 祝贺你已经做好试卷,别忘了认真检查! n m b a 213<>13.4×1012 14.41 15.10.8 16.45° 17.17 18.220三、计算题(每题7分,共14分)19.解:-2-()023.14π21-÷⎪⎭⎫ ⎝⎛--=-2 -4÷1 ………………………4分 =-6………………………………7分 20.解:2(m+1)2-(2m+1)(2m-1)=2(m 2+2m+1)-(4m 2-1)………………………4分 =2m 2+4m+2-4m 2+1…………………………6分 =-2m 2+4m+3………………………………7分 四、因式分解(每小题7分,共14分)21.解:2x 2-12x+18=2(x 2-6x+9)…………………………………4分 =2(x -3)2……………………………………7分 22.解:-a 2(x -y)+b 2(y -x)= a 2(x -y)-b 2(x -y)……………………………2分 = (x -y)(a 2-b 2)………………………………4分 = (x -y)(a+b)(a -b)…………………………7分 五、解方程组(每题7分,共14分)23.⎩⎨⎧-==+(2)y 1x (1)54y 2x解:将(2)代入(1)得:2(1-y)+4y=5………………………………………2分 解得:y=23………………………………………4分 将y=23代入(2)得: x=21-………………………………………………6分∴原方程组的解为⎪⎪⎩⎪⎪⎨⎧=-=23y 21x …………………………7分 24.⎩⎨⎧-=-=-(2) 53y 2x (1)42y 5x解:(1)×3得:15x-16y=12(3)…………………………1分 (2)×3得:4x-6y=-10(4)……………………………2分 (3)-(4)得:11x=22,得x=2…………………………4分 将x=2代入(2)得:y=3………………………………6分 ∴原方程组的解为⎩⎨⎧==3y 2x ………………………………7分六、心灵手巧(每题6分,共12分)25.图略 26.(供参考)画对一个图给3分七、探索与研究(本题12分)(1)100°90°…………………(每空2分,共4分)(2)90°90°…………………(每空2分,共4分)(3)90°…………………(2分)理由:因为∠3=90°所以∠4+∠5=90°又由题意知∠1=∠4,∠5=∠6所以∠2+∠7=180°-(∠5+∠6)+180°-(∠1+∠4)=360°-2∠4-2∠5=360°-2(∠4+∠5)=180°由同旁内角互补两直线平行可知:m∥n……………(2分)八、操作设计(本题共12分)(1)m2-2mn+n2或(m-n)2……………………………(2分)(2)(m+n)2=(m-n)2+4mn…………………(2分)(3)±5……………………………………(2分)(4)a23分)nmba2134 765。