CBTC使得国产地铁列车自动控制
- 格式:docx
- 大小:11.13 KB
- 文档页数:3
城市轨道交通信号CBTC系统控制探讨随着城市化进程的加速,城市交通问题日益突出,城市轨道交通作为重要的交通方式,承担着越来越重要的角色。
作为城市轨道交通的一项重要技术,CBTC系统控制在保障列车运行安全、提高线路运行效率方面发挥着重要作用。
本文将对CBTC系统控制进行深入探讨,从技术原理、应用场景、优势及发展趋势等方面进行分析和总结。
一、技术原理CBTC系统控制主要包括列车控制、线路监控、故障诊断等功能,通过实时采集和处理列车运行状态数据、线路情况数据等信息,确保列车在线路上安全高效地运行。
其基本原理可以概括为:通过无线通信技术实现列车与地面控制中心之间的实时数据交换和信息传输;通过自动控制技术实现对列车的实时监控和调度;通过数据处理技术实现对列车运行状态数据、线路情况数据等信息的实时采集和处理,确保列车的安全运行和线路的高效运行。
二、应用场景CBTC系统控制主要应用于地铁、轻轨等城市轨道交通系统,包括地面线路、高架线路和地下线路。
在地铁系统中,CBTC系统控制可以实现列车的自动驾驶和智能调度,提高列车的运行安全性和线路的运行效率。
在轻轨系统中,CBTC系统控制可以实现列车的精准控制和调度,提高线路的运行稳定性和运行能力。
三、优势CBTC系统控制相比传统的列车控制系统具有以下几个优势:1、提高列车运行安全性。
CBTC系统采用无线通信、自动控制、数据处理等技术手段,实现列车的精准监控和调度,能够及时发现并应对列车运行中的各种异常情况,确保列车的安全运行。
2、提高线路运行效率。
CBTC系统通过实时采集和处理列车运行状态数据、线路情况数据等信息,实现列车的智能调度和线路的自动监控,提高了线路的运行稳定性和运行能力。
3、降低运营成本。
CBTC系统可以实现列车的自动驾驶和智能调度,减少了人为操作对列车运行的影响,提高了列车的运行效率,降低了运营成本。
四、发展趋势随着城市轨道交通的不断发展和城市化进程的加速,CBTC系统控制将会迎接更多的发展机遇。
cbtc系统列车追踪原理随着城市人口密度的逐渐增加,城市轨道交通也变得越来越重要。
CBTC系统(无人驾驶列车控制系统)在城市轨道交通中扮演着重要的角色。
CBTC系统可以实现列车的自动驾驶,并且确保列车间距的安全性。
本文主要介绍CBTC系统列车追踪原理以及其运作原理。
CBTC系统列车追踪原理CBTC系统的主要任务是减少列车行驶的时间、增加载客量以及提升运输效率。
为了实现这些目标,CBTC系统采用了列车追踪技术。
列车追踪原理分为两种:一种是基于信标的列车追踪原理,一种是无信标的列车追踪原理。
采用基于信标的列车追踪原理时,CBTC系统会在地下铁道上安装大量的反射器或者无线电台。
反射器或无线电台发射出信号,这些信号被列车上的接收器所接收,然后发送回CBTC系统。
CBTC系统会精确计算出列车的速度和位置,并根据列车所处的位置发出指令控制列车。
由于反射器或无线电台的数量很多,这种列车追踪原理可以准确地掌握列车的位置和速度。
无信标的列车追踪原理则是利用地铁车站和列车之间的通信来完成列车的追踪。
当列车驶进一个车站时,CBTC 系统会向列车发送一个指令,告诉列车它要到达的下一个站台的位置。
列车上的GPS接收器和惯性导航系统会根据这个位置信息预测列车的位置,并将这些数据回传给CBTC 系统。
CBTC系统将GPS位置和惯性导航信息结合起来,计算出列车的速度和位置,并根据列车所处的位置发出指令来实现列车的控制。
CBTC系统的实现CBTC系统的基本原理是通过无线通信实现列车与CBTC 系统之间的信息交换,并根据高精度传感器将列车的位置信息和速度信息回传给CBTC系统。
CBTC系统可以将地下铁道划分为数百个小区域,每个区域内有一组发射器和接收器,这些发射器和接收器是制定CBTC系统构成的一部分。
当列车驶入某个区域时,CBTC 系统可以收到列车所处的位置信息,并根据这个位置信息对列车进行控制。
CBTC系统不仅可以控制列车在同一线上运行,还可以控制列车在不同车站之间转移,第三号线上的列车可以在第二号线上进行必要的停留和倒转。
中国轨道交通列车运行控制技术及应用宁滨;刘朝英【摘要】中国的轨道交通在近十年中获得了飞速发展,城市轨道交通有效解决了市内交通供需矛盾,高速铁路的发展则给城市间的交通带来了同城效应和零换乘的理念.但无论如何,轨道交通的安全运营是其发展的重中之重.列车运行控制系统是确保轨道交通安全的关键技术之一,在我国得到了快速地自主创新发展.本文详细介绍了中国铁路列车运行控制系统(CTCS)技术和城市轨道交通基于通信的列车运行控制系统(CBTC)技术.为实现综合轨道交通网络的互联互通,轨道交通的低碳节能运营、自动化和智能化运营,实现资源共享的网络化运营模式,轨道交通列车运行控制系统将向着系统化、网络化、智能化、通信信号一体化和标准化、开放化的方向发展,通过降低系统复杂性、缩短列车追踪间隔、提高系统防护水平等技术降低成本,提高运能和旅客满意度,保证轨道交通的安全性和可靠性,最终实现安全、高效、绿色出行.%With the rapid development of rail transit system in China in recent ten years , the problem of heavy traffic in cities has been solved effectively . The development of high-speed railway in China has resulted in none-transfer between the cities and changed the traditional concepts of time and space . However , safe opera-tion is the most important for the development of rail transit . The train control system ,as one of the key tech-nologies to ensure the safety of the rail transit , has beenunder rapid development in China through independent innovation . The train operation control system used in China railway (CTCS) and the communication-based train control system used in China urban rail transit (CBTC) were described in this paper . In order to satisfy the requirementsof connectivity for integrated rail transit network , low carbon energy efficient , automated and intelligent operation of rail transit system , and the network operation mode based on resource sharing , the train operation control system of the rail transit will developtowards systematization ,information networking , intelligence ,communication & signal integration , standardization andopenness . The reduction of the com-plexity of the system , the shortening of the train tracking interval , and the improvement of system protection level will lead to the reduction of the cost and carbon footprint and the improvement of transport capacity and passenger satisfaction ,which will ensure the safety and reliability of rail transit ,and ultimatelyachieve safe , efficient and green travel .【期刊名称】《铁道学报》【年(卷),期】2017(039)002【总页数】9页(P1-9)【关键词】高速铁路;城市轨道交通;列车运行控制系统【作者】宁滨;刘朝英【作者单位】北京交通大学,北京 100044;中国铁路总公司,北京 100844【正文语种】中文【中图分类】U284中国的轨道交通在近十年中获得了飞速发展,城市地铁、轻轨等轨道交通系统有效解决了市内交通供需矛盾,高铁成网、同城效应、高铁零换乘理念等给旅客出行带来了极大方便,拉近了城市间的距离,加快推进了城乡一体化发展,提升了中国的现代化水平。
地铁CBTC信号系统北京地铁通号公司赵炜概述:移动闭塞是基于通信技术的列车控制(简称CBTC)ATC系统是利用通信技术实现“车地通信”并实时地传递“列车定位”信息。
系统通过建立车地之间连续、双向、高速的通信,使列车命令和状态可以在车辆和地面之间进行实时可靠的交换,并确定列车的准确位置及列车间的相对距离,保证列车的安全间隔。
地铁CBTC信号系统技术交流北京地铁通号公司总工赵炜2010年5月地铁CBTC信号系统地铁信号系统是地铁运输系统中,保证行车安全、提高区间和车站通过能力的手动控制、自动控制及远程控制技术的总称,是地铁行车调度依据行车计划或运力需求组织行车,并按一定的闭塞方式指挥列车安全、正点运行的重要设备系统,具有下达行车指令、办理列车进路、开放信号并指挥行车的基本功能。
北京地铁信号系统随着核心技术的不断进步,其设备构成、主要功能均不断得到了完善和提高,尤其是列车运行控制方式和信号系统闭塞方式发生了根本性的变革。
• 简介CBTC信号系统构成及原理• 目前面临的问题及对策• CBTC信号系统的优点北京地铁2009年运营线路图地铁CBTC信号系统列车自动控制系统城市轨道交通信号系统通常由列车自动控制系统(Automatic Train Control,简称ATC)组成,ATC系统包括三个子系统:—列车自动监控系统(Automatic Train Supervision,简称ATS)—列车自动防护子系统(Automatic Train Protection,简称ATP)—列车自动运行系统(Automatic Train Operation,简称ATO)三个子系统通过信息交换网络构成闭环系统,实现地面控制与车上控制结合、现地控制与中央控制结合,构成一个以安全设备为基础,集行车指挥、运行调整以及列车驾驶自动化等功能为一体的列车自动控制系统1.列车自动监控系统ATS2.列车自动防护子系统ATP3.列车自动运行系统ATO列车自动控制系统构成图地铁CBTC信号系统介绍移动闭塞是基于通信技术的列车控制(简称CBTC—Communication Based Train Control)ATC系统,该系统不依靠轨道电路向列控车载设备传递信息,而是利用通信技术实现“车地通信”并实时地传递“列车定位”信息。
城市轨道交通信号CBTC系统控制探讨一、 CBTC系统的基本原理CBTC系统是一种通过无线通信技术实现列车与控制中心之间实时通信和数据交换的轨道交通信号控制系统。
相比传统的固定区间信号系统,CBTC系统具有更高的列车运行密度、更快的调度响应速度和更精确的列车位置控制能力。
其基本原理是通过在列车上安装车载设备和轨道设备,实现两者之间的实时通信和信息交换。
控制中心通过对列车位置、速度和运行状态的监控,动态调整列车运行方式,实现更加智能化的列车调度和运行控制。
二、 CBTC系统的关键技术与挑战CBTC系统是一个包含多种技术和设备的复杂系统,其设计与实现需要克服诸多技术挑战。
CBTC系统需要实现列车和控制中心之间的高效无线通信,确保数据传输的实时性和可靠性。
CBTC系统需要配备高精度的列车位置检测与控制装置,确保对列车位置和速度的准确监测和控制。
CBTC系统还需要具备自动列车控制、故障自愈和安全保护等技术功能,以应对各种突发情况和安全风险。
这些技术问题的解决对于CBTC系统的设计和应用具有重要意义,也是当前CBTC系统研究与发展的重点方向。
三、 CBTC系统的控制策略和应用效果CBTC系统的控制策略是保证其安全性和效率的关键。
其控制策略包括列车调度算法、故障自动恢复机制、安全保护策略等内容。
列车调度算法是CBTC系统的核心,其目的是通过动态调整列车运行速度和间距,最大限度地提高轨道交通系统的运行效率。
故障自动恢复机制则是CBTC系统的安全保障之一,通过对列车设备和通信设备的实时监测和故障诊断,及时发现和处置设备故障,确保轨道交通系统的安全运行。
目前,CBTC系统在许多国家和地区都得到了广泛应用,取得了显著的效果,为城市轨道交通的安全和运营效率提供了重要保障。
通过CBTC系统的应用,大大提高了列车运行的安全性和精确度,同时也提升了城市轨道交通系统的整体运行效率和服务水平。
随着智能化技术的发展和应用,CBTC系统在未来将有更广阔的空间和更深远的影响。
发展中的国产CBTC系统本刊记者吴献龙在轨道交通的发展历史上,信号系统的作用十分重要,它是列车运行的凭证。
尽管整个信号系统在整个工程中所占的投资额比例不高,但对于提高列车通过能力、提高运能、保证行车安全有着至关重要的作用。
在城市轨道交通的信号发展史上,列车自动控制系统(ATC)是当前最常用的一种信号系统。
ATC系统有多种模式,其技术性能各有不同。
主要有三种。
第一,单纯使用轨道电路的固定闭塞模式。
这种模式下,系统无法知道列车在分区内的具体位置。
第二,综合使用轨道电路+应答器的准移动闭塞模式。
这种模式下,系统可以告知后续列车继续前行的距离,后续列车可根据这一距离合理地采取减速或制动,从而可改善列车速度控制,缩小列车安全间隔,提高线路利用效率。
但准移动闭塞中后续列车的最大目标制动点仍必须在先行列车占用分区的外方,因此它并没有完全突破轨道电路的限制。
第三,基于通信的移动闭塞模式。
这种模式下,需要列车实时的向列控中心汇报自己的位置和速度等运行参数,列控中心必须实时的为列车计算运行参数并发送给列车,此种机制的实现,需要连续式双向车-地通信系统支持,一般将这种列车控制方式,称为基于通信的列车控制系统,既CBTC系统。
这是当前城市轨道交通信号发展的最新技术,也是其未来发展的最主要方向。
CBTC系统的发展历史在采用CBTC作为ATC的主要制式之前,基于数字轨道电路和应答器的准移动闭塞是ATC的主要模式。
由于这种制式具有较高的可靠性、合理的性价比,已经具有充分的运行经验,其列车运行间隔(100-150s)已能满足绝大多数轨道交通运营部门的要求,因此,这类系统至今仍是轨道交通建设的首选制式。
然而,随着轨道交通的发展,这类制式的弊病也已日益凸显。
首先,由于目前世界上各种准移动闭塞的信息传输频率、通信协议等均不一致,导致了在一个城市或一个地区的轨道交通网中各条线路的列车不能实现联通联运;其次,大多数基于数字轨道电路的准移动闭塞,为了实现调谐和电平调整,不得不在钢轨旁侧设置轨旁设备,而这对于轨道交通的日常维护工作是非常不利;再次,由于以钢轨作为信息传输通道,因此传输频率受到很大的限制,导致车-地之间通信的信息量较低,而且传输性能也不稳定;最后:“准移动闭塞”距真正意义上的“移动闭塞”还有差距,因此,列车运行间隔的进一步缩短和列车运行速度的提高都将受到限制。
城市轨道交通信号CBTC系统控制探讨
CBTC系统的主要目标是实现列车的高效运行和运营安全。
在实际运行中,CBTC系统可以通过计算列车运行速度和间隔,以最优的方式调度列车,提高线路的运营能力。
CBTC系统还能够实现列车的自动控制,减少人为操作的干扰,提高运行的可靠性。
通过CBTC系统,列车之间可以进行实时通信,可以根据实际情况进行灵活调度,确保列车之间的安全间
隔。
CBTC系统的控制主要包括两个方面:列车控制和信号控制。
列车控制是指CBTC系统
对列车的运行速度和间隔进行控制,使得列车能够按照排定的计划运行,并根据实际情况
进行调整。
信号控制是指CBTC系统对信号设备的控制,通过无线通信传输信号信息,使得列车能够按照信号设备的指令运行。
CBTC系统的控制还需要考虑到轨道交通的复杂性和实时性。
轨道交通系统通常包括多个线路和多个车站,每个车站之间都有大量的列车运行,这就需要CBTC系统能够实时处理大量的数据,并进行快速的决策和控制。
CBTC系统还需要具备高度的可靠性和安全性,以应对各种故障和紧急情况。
CBTC 使得国产地铁列车自动控制
风河(Wind River)宣布,由北京交控科技有限公司研发的首套国产基于
通信的列车控制系统(CommunicaTIon-Based Train Control,简称CBTC)已在亦庄线、昌平线投入运营。
这套我国自主创新、100%自主知识产权的列
车自动控制系统,可以满足90 秒的列车设计行车间隔,标志着中国已经成为
全球第四个成功掌握该项核心技术并顺利开通实际应用的国家。
这套拥有完全自主知识产权的CBTC 是以Wind River 的VxWorks 实时操作系统为基础建构而成,其系统装备经历了实验室研制、试车线试验、运营
线中试验等多个环节才正式投入工程应用。
整个项目是政府部门、产业界、
学术界、研究单位和用户单位紧密结合的成功典范,为我国核心技术自主创
新探索出了一条成功的道路。
其中,风河公司除了提供软件基础平台之外,
还提供了大量的专业服务与技术支持。
CBTC 系统使轨道列车系统摆脱了用地面轨道电路设备判别列车占用闭塞
分区与否的束缚,突破了固定闭塞的局限性,实现了移动闭塞。
在CBTC 系
统中可实时或定时地进行列车与地面间的双向通信联络,使后续列车可以及
时了解前方列车运行实际间隔距离,通过计算后续列车即可给出最佳制动曲线,提高了区间列车的通行能力,大大提高了列车运行的安全性。