广州大学流体输配管网流体输配管网复习知识点
- 格式:pdf
- 大小:274.54 KB
- 文档页数:3
1流体输配管网:将流体输送并分配到各相关设备或空间,或者从个接收点将流体手机起来输送到指定点,承担这一功能的管网系统称为流体说配管网。
2通风工程的风管系统分为两类:排风系统和送风系统排风系统的基本功能是排除室内的污染空气,送风系统的基本功能是将清洁空气送入室内。
空调系统具有两个基本功能:控制室内空气污染物浓度和热环境质量3几种常用的空调系统形式有:一次回风系统,二次回风系统,双风道系统,变风量系统4风阀是空气输配管网的控制调节机构,基本功能是断开或开通空气流通的管道,调节或分配管道的流量。
①同时具有控制和调节的风阀有:(1)蝶式调节阀,(2)菱形单叶调节阀,(3)插板阀;(4)平行多叶调节阀,(5)对开式多叶调节阀,(6)菱形多叶调节阀,(7)复式多叶调节阀,(8)三通调节阀。
(1)∽(3)主要用于小断面风管。
(4)∽(6)主要用于大断面风管(7)(8)两种风阀用于管网分流或合流或旁通处的各支路风量调节。
蝶式,平行,对开式多叶调节阀靠改变角度调节风量。
平行式多叶调节阀的叶片转动方向相同;对开式多叶调节阀的相邻两叶转动方向相反。
插板阀靠插板插入管道的深度调节风量;菱形调节阀靠改变叶片张角调节风量。
这类风阀的主要特性是流量特性,全开时的阻力性能和全关闭时的漏风性能②只具有控制功能的风阀有:逆止阀:阻止气体逆向流动,气体正向流动的阻力性能和逆向流动的漏风性能。
防火阀:平常全开,火灾时关闭并切断气流。
排烟阀:平常关闭,排烟是全开,排除室内烟气。
5我国城市燃气管道按设计表压力分为7级:①高压管道A:2.5<P≤4.0 ②高压管道B:1.6<P ≤2.5 ③次高压管道A:0.8<P≤1.6 ④次高压管道B:0.4<P≤0.8 ⑤中压管道A:0.2<P ≤0.4 ⑥中压管道B:0.01<P≤0.1 ⑦低压管道:P<0.016城市燃气输配管网根据所采用的压力级制不同,可分为:一级系统,二级系统,三级系统,多级系统。
流体输配管网知识点整理一、管网基本组成:P1①+P40①流体的源和汇、动力装置、调控装置、末端装置、其他附属设备1、从“源”取得流体,通过管道输送,按照要求将流量分配给用户的末端装置;2、从末端装置处按照要求收集流体,通过管道,将其输送到“汇”。
二、环状和支状管网:P42④三、重力管网和机械管网:P41②四、同程和异程管网:P43⑥五、开式和闭式管网:P42③六、定流量和变流量系统:P11③定流量:水系统中循环水量保持定值,负荷变化时,改变供回水温度调节优点:系统简单,操作方便,不需复杂的自控设备变流量:水系统中供回水温度保持定值,负荷变化时,改变供水量调节优点:其输送能耗随负荷减少而降低,水泵容量和电耗小缺点:系统需配备一定的自控装置七、单相流和多相流管网:P41①八、直接连接和间接连接:P43⑦直接连接的上下级管网是水力相关的,间接连接则水力无关。
九、高层建筑给水管网特点:P26—P28建筑高度超过24m的公共建筑或工业建筑均为高层10层及10层以上的住宅(包括首层设置商业服务网点的住宅)为高层住宅建筑。
整幢高层建筑若采用同一给水系统供水,则垂直方向管线过长,下层管道中的静水压力很大特点:集中式各区热水配水循环管网自成系统,加热设备、循环水泵集中设在底层或地下设备层,各区加热设备的冷水分别来自各区冷水水源。
其优点是:各区供水自成系统,互不影响,供水安全、可靠;设备集中设置,便于维修、管理。
其缺点是高区水加热器需承受高压,耗钢量较多,制作要求和费用较高分散式备区热水配水循环管网自成系统,但各区的加热设备和循环水泵分散设置在各区的设备层中。
其优点是:供水安全可靠,且加热设备承压均衡,耗钢量少,费用低。
其缺点是:设备分散设置不但要占用一定的建筑面积,维修管理也不方便,且热媒管线较长(1)对于裙房和塔楼组成的高层建筑,将裙房划为下区、塔楼划为上区。
为上、下区服务的冷热源、水泵等主要设备都集中布置在裙房屋顶上,分别与上、下区管道组成相互独立的管网。
水力失调管网中的管段实际流量与设计流量不一致,称为水力失调汽蚀余量指泵入口处液体所具有的总水头与液体汽化时的压力头之差虚拟管路连接开式管网出口和进口的虚拟管路,管径无限大,流速无限小,流动阻力为零官网水力工况官网水力工况是指管网流量和压力分布状况允许吸上真空高度水泵吸入口断面的真空度称为吸上真空高度汽蚀余量是水泵吸入口的总水头距离泵内压力最低点发生汽化尚剩余的水头当量直径与矩形风管有相同单位长度摩擦阻力的圆形风管直径垂直失调同一竖向的各层房间的室温不符合设计要求,出现上下层冷热不均的现象由于各层散热器的传热系数K随各层散热器平均计算温度差的变化程度不同而引起的压损平衡水力计算中,需要通过调整管径,设置调节阀等技术手段,使管路在设计流量下的计算压力损失与其作用压力相等,称为压损平衡或平衡压力损失有效功率:单位时间内从泵与风机中获得的总能量内功率:实际消耗于流体的功率轴功率:泵与风机的输入功率内效率:有效功率与内功率之比机械传动效率:内功率与轴功率之比全压效率:有效功率与轴功率之比最佳工作区:指其运行得既稳定又经济的工作区域,一般是指设备最高效率的90%-95%以上范围内的区域作为最佳工作区独用管路压损平衡:独用管路的流动阻力与其获得的资用动力相等的,这是流体力学基本规律的表现。
在设计中通过对管路几何参数(主要是管道断面尺寸)的调整,改变管内流速,使独用管路在要求的流量下,流动阻力等于资用动力,从而保证管网运行时,独用管路的流量达到要求值比转数比转数又称比转速,在设计风机或水泵时,为了反映泵与风机的性能,采用比转数来表明不同类型泵与风机其主要参数流量,压力,转速之间的综合特性。
汽蚀现象水泵的汽蚀是指水泵运行时,由于某些原因而使泵内局部位置水的压力降低到工作温度下水的值和汽化压力时,水就会汽化,并产生大量汽泡。
从水中离析出来的大量汽泡随着水流向前运动,流人叶轮中压力较高部位时,汽泡受到周围液体的挤压而迅速溃灭,又重新凝结成水,这种现象称为水泵的汽蚀现象。
复习重点第一章:1.流体输配管网的基本功能与组成流体输配管网的基本功能是将从源取得的流体,通过管道输送,按照流量要求,分配给各末端装置;或者按流量要求从各末端装置收集流体,通过管道输送到汇。
末端装置、源或汇、管道是流体输配管网的基本组成。
动力装置、调控装置和其他附属设备是管网系统的重要组成。
2.流体输配管网的分类1)重力驱动管网与压力驱动管网2)开式管网与闭式管网3)枝状管网与环状管网4)异程管网与同程管网第二章:一、流体输配管网水力计算的基本原理和方法1、流体输配管网水力计算目的根据要求的流量分配,确定管网的各段管径(或断面尺寸)和阻力。
对枝状管外,求得管网特性曲线,为匹配管网动力设备准备好条件,进而确定动力设备(风机、水泵等)的型号。
2、流体输配管网水力计算的基本原理(1)水力计算的基本理论依据流体力学一元流动连续性方程、能量方程及串、并联管路流动规律。
(2)管网中流体稳定流动的条件管网的流动动力等于管网流动总阻力。
3、常用的水力计算方法假定流速法;压损平均法;静压复得法。
4、全压的来源与性质•来源于风机水泵等流体机械。
•来源于压力容器。
•来源于上级管网。
性质:•在一个位置上提供,沿整个环路中起作用。
•提供动力的位置在共用管段上,则共用该管路的所有环路都获得相同大小的全压动力。
与此相反:重力产生的环路动力是在整个环路上形成的。
它作用在整个环路上。
第三章一、闭式液体管网的水力特征和水力计算1.串、并联管路的水力特征第五章1.离心式泵与风机的工作原理2.离心式泵与风机的性能参数3.离心式泵与风机的基本方程—欧拉方程(基本假定、分析、修正、物理意义)4.泵与风机的功率与效率5.叶形对泵与风机性能的影响6.相似率与比转数第六章1.泵、风机在管网系统中的工作状态点2.泵、风机的工况调节第七章1. 液体管网压力分布图----水压图2.水力失调度(概念、计算公式)3.管网的水力工况分析(计算)。
1、风管系统分为两类:排风系统和送风系统;主要功能:室内外空气交换。
排风系统:排除室内的污染空气。
送风系统:将清洁的空气送入室内。
2、空调系统的基本功能:控制室内空气污染物浓度和热环境质量。
两个系统为:控制室内污染物浓度的新风系统(送风系统)和控制室内热环境的系统(如冷热风系统)主要组成管道:送风管道、回风管道、新风管道和排风管道。
主要装配:风机、风阀、风口、三通、弯头、变径管和新风处理设备。
风机:空气输配管网的动力装置。
风阀:空气输配管网的控制、调节机构,截断或开通空气流通的管路,调节或分配管路流量。
风口:将气体吸入或排出官网,分为新封口,排风口,送风口,回风口。
空气处理设备:对空气惊醒净化处理和热湿处理。
3、冷热水管网分类按循环动力可分为:重力(自然)循环系统和机械循环系统;按水流路径可分:同程式和异程式系统;按流量变化可分为:定流量和变流量系统;按水泵设置可分:单式泵和复式泵系统;按与大气接触情况分:开式和闭式系统。
4、采暖空调冷热水管网装置(1)膨胀水箱:用来储存冷热水系统水温上升时的膨胀水量,另一个作用是恒定水系统的压力。
安装位置:在重力循环系统中,接在供水总立管的顶端;机械循环系统中,接至循环水泵吸入口前。
其循环管应接到系统定压点前的水平回水干管上。
(2)排气装置:系统的水被加热时会分离出空气,如系统中存积空气,就会形成气塞,影响水的正常循环。
常见形式的有集气罐,自动排气阀和冷风阀。
位置:设在系统各环路供水干管末端的最高处。
(3)散热器温控阀:是一中自动控制散热器散热量的设备,当室内温度高于给定温度值时,感温元件受热,将阀口关小;进入散热器的水流量减小,散热器散热量减小,室温下降当室内温度下降到低于设定温度时,感温元件开始收缩,阀孔开大,水流量怎大,散热器散热量增加,室内温度开始升高,保证室温处在设定的温度上。
(4)分水器、集水器:为了便于连接同乡各各环路的许多并联管道而设置的,也能起到一定程度的均压作用,有利于流量分配和调节、维修和操作。
1流体输配管网的组成:流体的源和汇,管道,末端装置(基本组成);动力装置,调节装置,其他附属设备。
2流体输配管网的基本功能:将从源取得的流体,通过管道输送,按照流量要求,分配给各末端装置;或者按流量要求从各末端装置收集流体,通过管道输送给汇。
3采暖热水管网组成:膨胀水箱(作用:①用来贮存冷热水系统水温上升时的膨胀水量,②在重力循环上供下回系统中有排气作用,③恒定水系统的压力。
在重力循环系统中应接在供水立管顶端;在机械循环系统中一般接在循环水泵入口前。
),排气装置(应设在系统各环路供水干管末端最高处),散热器温控阀,分水器集水器,换热器,阀门,换热装置。
4疏水器的作用①自动阻止蒸汽溢漏②迅速排走用热设备及管道中的凝水③能排除系统中积留的空气和其他不凝性气体。
疏水器用在蒸汽供热管网中,一般装在散热器或换热器后的凝结水管路上。
5常用水力计算方法:①假定流速法:先按技术经济要求选定管内流速,再结合所需输送的流量确定管道断面尺寸,进而计算管道阻力,得出需用动力(适用于动力未知的情况)②压损平均法:将已定的总资用动力按干管长度平均分配给每一管段,以此确定管段阻力再根据每一管段的流量确定管段断面尺寸(动力设备型号已知或对分支管路进行压损平衡计算)③静压复得法:通过改变断面尺寸降低流速克服管道阻力维持所需要的管内静压(维持保证要求的风口风速)6并联管段的阻力平衡:①调整支管管径②阀门调节7均匀送风管道设计四项基本措施:①送风管断面积F和孔口面积f。
不变时,管道内静压会不断增大,可根据静压变化在孔口上设置不同阻体使孔口具有不同阻力②孔口面积f。
和u值不变时,可采用锥形送风改变送风管断面积,使管内静压保持不变③送风管断面积及孔口u值不变时,可根据管内静压变化改变孔口面积④增大送风断面积F减小孔口面积f。
,对于条缝送风当f。
/F《0.4时可近似认为分布均匀8垂直失调:在采暖建筑物内,同一竖向各层房间的室温不符合设计要求,出现上下层冷热不均匀的现象称为垂直失调。
流体输配管网智慧树知到课后章节答案2023年下广州大学广州大学第一章测试1.建筑环境与能源应用工程的基本任务是为人类的生存和发展提供必要的建筑环境,同时高效应用各种能源,保护城市环境和全球生态环境。
A:错 B:对答案:对2.空气处理设备在建筑内一般分散布置,而空气处理设备所需的冷热水由主机集中生产,因此需要()将冷热水从冷、热源输送分配到各空气处理设备。
A:空调风系统 B:建筑给水系统 C:建筑排水系统 D:空调冷热水系统答案:空调冷热水系统第二章测试1.流体输配管网的基本构成包括()。
A:末端装置B:动力 C:源/汇D:管道答案:末端装置;动力;源/汇;管道2.流体输配管网按管内流体的相态,可分为()。
A:多相流管网B:单相流管网C:压力驱动管网D:重力驱动管网答案:多相流管网;单相流管网3.空调系统的空气输配管网中,将循环使用的一部分室内空气称为()。
A:回风B:送风C:排风D:新风答案:回风4.()各末端环路的水流阻力较为接近,有利于水力平衡,因此系统的水力稳定性好,流量分配均匀。
A:异程式系统B:同程式系统C:闭式系统D:开式系统答案:同程式系统5.按流量是否变化,空调冷热水输配管网可分为()。
A:二级泵系统B:一级泵系统C:定流量系统D:变流量系统答案:定流量系统;变流量系统6.空调冷热水循环系统的定压,一般可通过()来完成。
A:膨胀水箱B:膨胀阀C:膨胀管D:恒压阀答案:膨胀水箱7.供暖空调冷热水管网中,为排除系统积存的空气,必须设置()。
A:分水器B:阀门C:过滤器D:排气装置答案:排气装置8.上下级管网之间的压力、流量等水力参数相互影响,工程上称()。
A:水力无关B:热力相关C:热力无关D:水力相关答案:水力相关9.请问下列两个管网按流动路径的确定性,分别为:()A:枝状,环状 B:环状,环状 C:环状,枝状 D:枝状,枝状答案:环状,枝状10.请问下列两个管网按管内流体与外界环境空间的联系,分别为:()A:闭式、闭式 B:开式,开式 C:开式,闭式 D:闭式,开式答案:开式,闭式第三章测试1.气体管流中,()共同作用,克服流动阻力,维持管内流体流动。
第一章流体输配管网的功能与类型1.1空气输配管网的装置及管件有风机、风阀、风口、三通、弯头、变径管等还有空气处理设备。
它们是影响官网性能的重要因素。
1.2燃气输配管网由分配管道、用户引入馆和室内管道三部分组成。
居民和小型公共建筑用户一般由低压管道供气。
1.3冷热水输配管网系统:按循环动力可分为重力循环系统和机械循环系统;按水流路径可分为同程式和异程式系统;按流量变化可分为定流量和变流量系统;按水泵设置可分为单式泵和复式泵系统;按与大气解除情况可分为开示和闭式系统。
1.4采暖空调冷热水管网装置:膨胀水箱;排气装置;散热器温控阀;分水器、集水器;过滤器;阀门;换热装置。
1.5膨胀水箱的作用与安装方式:(1)是用来储存冷热水系统水温上升时的膨胀水量。
在重力循环上供下回式系统中,它还起着排气作用。
膨胀水箱的另一个作用是恒定水系统压力。
(2)膨胀水箱的膨胀管与水系统管路的连接,在重力循环系统中,应接在供水总立管的顶端;在机械循环中,一般接至循环水泵吸入口前。
连接点处的压力,无论在系统不工作或运行时,都是恒定的。
此点为定压点。
(3)膨胀水箱的循环管应接到系统定压点前的水平回水干管上。
该点与定压点之间保持1.5-3m的距离。
1.6采暖用户与热网的连接方式:可分为直接连接(1无混合装置的直接连接2装水喷射器的直接连接3装混合水泵的直接连接)和间接连接两种。
1.7补偿器及不同类型的原理:(1)为了防止供热管道升温时,由于热伸长或温度应力而引起管道变形或破坏,需要在管道上设置补偿器,以补偿管道的热伸长,从而减少管壁的应力和作用在阀件或支架结构上的作用力。
(2)自然补偿、方形补偿器、波纹管补偿器是利用补偿器材料的变形来吸热伸长,套筒补偿器、球形补偿器是利用管道的位移来吸热伸长。
1.8建筑给水管网的功能和类型:(1)功能:建筑给水系统将城镇给水管网或自备水源给水管网的水引入室内,经支管配水管送至用水的末端装置,满足各用水点对水量、水压和水质的需求。
(2):类型:直接给水管网、设水箱的给水管网、设水泵的给水管网、设水泵和水箱的给水管网、气压给水管网、分区给水管网、分质给水管网。
1.9消防水箱的安装高度应满足室内最不利点消火栓所需的水压的要求,且应储存有室内10min的消防用水量。
1.10高层建筑液体输配管网特点:(1)高层建筑热水管网特点:可采用竖向分区的供水方式,尽管冷、热水分区相同,混合龙头出冷水压力大、热水压力小。
(2)高层建筑采暖空调冷热水管网特点:当循环水泵在官网底部时,水泵出口处是官网压力的最高点。
在水泵启动的瞬间,管内流动尚未形成,此时,水泵出口处压力等于管网静水压力和水泵全压之和。
所以,承压能力富裕不足的冷、热源不宜连接在水泵出口处,而宜在水泵入口处。
1.11疏水器的作用于功能:阻止蒸汽逸漏,迅速排走用热设备及管道中的凝水,同时能排除系统中积留的空气和其他不凝性气体。
1.12减压阀:减压阀通过调节阀孔大小,对蒸汽进行节流而达到减压目的,并能自动地将阀后压力维持在一定范围内。
1.13凝结水管网的类型:非满管流的凝结水回收系统、两相流的凝结水回收系统、重力式满管流凝结水回收系统、闭式余压凝结水回收系统、闭式满管凝结水回收系统、加压回水系统。
1.14建筑排水管网的类型:生活排水管网、工业废水排水管网、屋面雨水排除管网。
1.15流体输配管网的分类:单项流与多项流管网、重力驱动和压力驱动管网(重力驱动管网的关键特点额动力不是某个或几个局部位置输出的,而是延程形成的)、开示和闭式管网、枝状与环状管网、异程式与同程式管网。
重力驱动管网的关键点是:动力不是在摸个或几个局部位置输入的,而是沿程形成的。
1.16流体输配管网之间的连接方式:直接连接(水力相关,热力相关),间接连接(无水力相关但热力相关)第二章气体管网水力特征与水利计算2.1流体输配管网水力计算和常用方法有假定流速法、压损平均法和静压复得法。
假定流速法适用于动力未知的情况。
2.1比摩阻:Rm管道单位长度的摩擦阻力。
(Pa/m)Rm=242vRρλ⨯R管道半径,λ摩擦阻力系数。
2.2通风空调管道中,气流大多属于紊流光滑区到粗糙区之间的过渡区。
2.3当量直径:就是与矩形风管有相通单位长度摩擦阻力的圆形风管直径,它有流速当量直径(矩形风管的,Dv=2ab/(a+b))和流量当量直径。
2.4利用当量直径求矩形风管的阻力,必须注意其对应关系,采用流速当量直径时,必须用矩形风管中的流速去查出阻力;采用流量则用流量去查出阻力。
用两种方法求出的阻力应该是相同的。
2.5并联管路阻力平衡的方法:调整支管管径,阀门调节。
在并联环路中,各层散热器的进出水温度是相同的,但循环作用动力相差很大,越在下层,作用动力越小;而在串联环路中,各层散热器循环作用动力是同一个,单进出口水温不相同,越在下层,进水温度越低。
2.6均匀送风管道设计:对于断面不变的矩形送排风管,采用条缝形风口送排风时,风口上的速度分布如图。
在送风管上,从始端到末端管内流量不断减小,动压相应下降,静压增大,使条缝口出口流速不断增大;在排风管上,则是相反,因管内静压不断下降,管内外压差增大,条缝口入口流速不断增大。
第三章液体管网水力特征与水利计算3.1室内热水采暖管网、空调冷冻水管网和给水管网流动几乎都处于紊流过渡区,室外管网大多处于阻力平方区。
3.2液体管网水力计算的主要任务:1已知流量和压力求管径;2已知流量管径求压力;3已知流量求管径和压力;4已知管径和管段压降求流量3.3室内热水供热管网水力计算的主要任务与室内管网相同:1按已知的热媒流量,确定管径,计算压力损失。
2按已知热媒流量和管道直径,计算管道的压力损失。
3按已知管道直径和允许压力损失,计算或校核管道中流量。
第四章多项流管网水力特征与水利计算4.1水封:建筑内部排水管内气压波动,会使有毒有害气体进入房间,影响室内环境卫生,直接危害人体健康。
水封是利用一定高度的静水压力来抵抗排水管内气体进入室内的措施。
水封设在卫生器具、空调机集水盘以及地面等的排水口下,通常用存水弯来实施。
水封损失原因:自虹吸损失、诱导虹吸损失、静态损失4.2横管内水流状态:污水由竖直下落进入横管后,横管中的水流状态可分为急流段,水跃及跃后段、逐渐衰减段。
急流段水流速度大,水较浅,冲刷能力强。
急流段末端由于管壁阻力使流速减小,水深增加形成水跃。
在水流继续向前运动中,由于管壁阻力,能量逐渐减小,趋于均匀流。
4.3排水立管水流特点:断续的非均匀流、水汽两相流、管内压力变化。
4.4排水立管中水流流动状态:附壁螺旋流、水膜流、水塞流。
4.5确保立管内通水能力和防止水封破坏是建筑内部排水系统中的两个最重要的问题。
两问题都与立管内压力有关4.6在进行低压蒸汽供暖系统管路的水力计算时同样先从最不利的管段开始。
进行最不利管路的水力计算是,通常采用压损平均法。
4.7蒸汽供暖系统水平失调具有自调性和周期性的特点。
4.8水平管内的气固两相流将呈现哪些状态:1悬浮流2底密流3疏密流4停滞流5部分流6柱塞流4.9两相流的阻力特征:c点是个临界状态点,此时颗粒群处于完全悬浮状态,阻力最小。
临界状态的流速称为临界流速。
蒸汽供暖系统水力失调具有自调性和周期性的特点。
离心式泵与风机的性能参数:流量、泵的延程与风机的全压、功率(有效功率、轴功率)、效率(有效功率和轴功率之比)、转速。
第五章泵与风机的理论基础5.1叶片出口角大于90°的叫做前向叶片,等于90°的叫做径向叶片,小于90°的叫做后向叶片。
5.2离心式泵与风机的性能参数:1流量(m3/s)(m3/h),2泵的扬程(mH2O)和风机的全压(mmH2O),3功率(W,KW),4效率,5转速(r/min)5.3流体所获得的理论扬程H仅于流体在叶片进出口处的速度三角形有关,而与流动过程无关;流体所获得的理论扬程H与输送流体的种类无关。
5.4离心式泵和风机的损失大致可以分为:流动损失,泄露损失,轮阻损失和机械损失等。
其中流动损失引起泵与风机扬程和全压的降低,泄露损失引起泵与风机流量的减少,轮阻损失和机械损失则必然多耗功。
5.5离心式泵全部采用后向叶轮,在大行风机中,为增效减噪,也几乎都采用后向叶轮。
中小型风机,效率不是主要考虑因素,也有采用前向叶轮的,这是因为叶轮是前向叶型的风机,在相同的压头下,叶轮外径和外形可以做的很小。
5.6在相似条件下,两个泵与风机的比转数是相等的。
但是反过来,比转数相等的两泵与风机就不一定相似。
5.7泵与风机的比转数ns与流量的平方根成正比,与全压的3/4次方成反比,即比转数ns大,反应泵与风机的流量大,压力低;反之,比转数小,则流量小、压力高。
第六章泵、风机与管网系统的匹配6.1管网特定曲线影响因素:影响阻抗S值的参数有:摩擦阻力系数、管段长度l、直径d、局部阻力系数、流体密度6.2由于泵,风机进出口与官网系统的连接方式对泵,风机的性能特性产生的影响,导致泵(风机)性能下降被称为“系统效应”。
系统效应会导致内部能量损失发生变化,使泵和风机的性能下降。
6.3效应管道长度:自风机出口截面不规则的速度分布,到管道内气流速度规则分布的截面之间的管段长度。
6.4泵与风机并联的工作特点:各设备工作压头相同,总流量等于各台设备在该工作压头下的流量之和。
6.5泵与机串联的工作特点:通过各设备的流量相同,而总压头为个设备在该流量下的压头总和。
6.6改变管网特性曲线最常用的方法是改变管网中的阀门开启程度,从而改变管网的阻力特性(S),使管网特性曲线变陡或变缓,从而移动泵与风机的工况点达到调节流量的目的。
6.7在确定水泵安装位置时,实际汽蚀余量应大于必须汽蚀余量。
6.8对于吸水管路的基本要求有3点:1不漏气,2不积气,3不吸气。
6.9离心泵的性能,根据其流量—压头曲线特点的不同分为1平坦类(其流量变化较大时能保持基本恒定的压头),2驼峰类(流量自零增加,达到最高值开始下降,此类泵在一定条件下可能出现不稳定工作的现象,应使工作在驼峰右侧--稳定工作区),3陡降类(当泵的流量变化时,压头变化相对较大,可用于多台并联运行系统中)。
6.10泵与管网的连接:对于吸水管路的3个基本要求:1不漏气2不积气3不吸气6.11泵的综合性能图:将同型号不同规格泵的性能曲线,在高效区(max9.0ηη≥)的部分绘制在一张图上,形成某一类型泵的综合性能图。
图的上下边表示叶轮高效区的Q-H曲线,两侧边是等效率线。
第七章枝状管网水力工况分析与调节7.1动静压转换原理:通一断面,全压一定,静压减少,动压增加;静压增加,动压减少。
7.2常用的定压方式:高位水箱定压方式,补给水泵定压方式,气体定压,蒸汽定压方式。
7.3调节阀的理想流量特性:在调节阀前后压差一定的情况下,相对流量与相对开度的关系。