<x-xn ,ei>=0 (i=1,2,…,n). x-xnMn x-xn,e1,…,en两两正交, 且x-xnxn. ||xn||2=||<x,e1>e1+…+<x,en>en||2
=||<x,e1>e1||2 +…+||<x,en>en||2=|<x,e1>|2+…+|<x,en>|2
||x||2=||(x-xn)+xn||2=||x-xn||2+||xn||2 ||x-xn||2= ||x||2- ||xn||2
e1,…,en线性无关{e1,…,en,…}是线性独立系。
定理8 (Gram-Schmidt正交化定理)设H是内积空间,{x1,x2,..,xn,…}H 是H中任一个线性独立系,则可将其进行标准正交化,得到一个标准 正交系。
定理8 设H是内积空间,{e1,e2,..,en,…}H是标准正交系, 记 Mn=span{e1,…,en}.
注:1)在一般的内积空间中,若xy,则有勾股定理 ||x+y||2=||x||2+||y||2成立,但反之不然。 事实上, ||x+y||2=||x||2+||y||2+2Re(x,y)
2)在实内积空间中,xy||x+y||2=||x||2+||y||2,即勾股定理成立
定义6 (正交补) 设H是内积空间,MH, 称集合 M={x| xy, yM} 为M在H中的正交补。
(1) 若
则
(2) 若
则
(3) 即为x在Mn上的正交投影。
(最佳逼近定理)
证 (1) <x,ei> =<1e1+…+nen, ei> =i<ei,ei> =i