第三节 凸函数
- 格式:pptx
- 大小:573.59 KB
- 文档页数:32
凸函数上凸下凸凹函数凸函数、上凸函数、下凸函数和凹函数是数学中常见的函数类型,它们在经济学、物理学、计算机科学等领域中都有广泛的应用。
本文将详细介绍这些函数类型的定义、性质和应用。
一、凸函数的定义和性质凸函数是定义在实数区间上的一类函数,它具有很好的几何性质。
具体来说,如果函数f在定义域上的一些区间上满足以下条件,那么它就是凸函数:1. 对于区间上的两个点a和b,以及任意介于a和b之间的数t∈[0,1],都有f(ta+(1-t)b)≤tf(a)+(1-t)f(b)。
这个条件称为凸函数的Jensen不等式。
从几何上来看,Jensen不等式意味着函数图像上任意两点之间的连线位于函数图像的下方。
这个性质被称为凸函数的上凸性。
凸函数的性质包括以下几个方面:1.凸函数的上凸性。
对于凸函数f,任意两点a和b以及他们之间的连线位于函数图像的下方。
2.凸函数的上确界性质。
如果函数f在一些区间上凸且上有界,那么在该区间上必存在一个唯一的点c,使得f(x)≤f(c),对于任意的x∈区间。
3.凸函数的导数性质。
凸函数的导函数是非递减的。
也就是说,如果函数f在一些区间上凸,那么它的导函数f'(x)在该区间上非负。
凸函数有许多应用,特别是在经济学和运筹学中。
经济学家和决策者常常使用凸函数来描述效用函数、成本函数、收益函数等。
在运筹学中,凸函数被广泛应用于线性规划、非线性规划和凸优化等问题的建模和求解。
二、上凸函数和下凸函数的定义和性质上凸函数和下凸函数是凸函数的两个特殊情况。
上凸函数是指函数f在定义域上的一些区间上满足以下条件:1. 对于区间上的两个点a和b,以及任意介于a和b之间的数t∈[0,1],都有f(ta+(1-t)b)≥tf(a)+(1-t)f(b)。
上凸函数的性质包括:1.上凸函数是凸函数的一种特殊情况。
也就是说,任何一个上凸函数都是凸函数。
2.上凸函数的导数是非递增的。
也就是说,如果函数f在一些区间上上凸,那么它的导函数f'(x)在该区间上非正。
凸函数,是数学函数的一类特征。
凸函数就是一个定义在某个向量空间的凸子集C(区间)上的实值函数。
凸函数是一个定义在某个向量空间的凸子集C(区间)上的实值函数f,而且对于凸子集C中任意两个向量, f((x1+x2)/2)>=(f(x1)+f(x2))/2,则f(x)是定义在凸子集c中的凸函数(该定义与凸规划中凸函数的定义是一致的,下凸)。
凸函数的主要性质有:1.若f为定义在凸集S上的凸函数,则对任意实数β≥0,函数βf 也是定义在S上的凸函数;2.若f1和f2为定义在凸集S上的两个凸函数,则其和f=f1+f2仍为定义在S上的凸函数;3.若fi(i=1,2,…,m)为定义在凸集S上的凸函数,则对任意实数βi≥0,函数βifi也是定义在S上的凸函数;4.若f为定义在凸集S上的凸函数,则对每一实数c,水平集Sc={x|x∈S,f(x)≤c}是凸集微积分如果f和g是凸函数,那么m(x) = max{f(x),g(x)}和h(x) = f(x) + g(x)也是凸函数。
如果f和g是凸函数,且g递增,那么h(x) = g(f(x))是凸函数。
凸性在仿射映射下不变:也就是说,如果f(x)是凸函数,那么g(y) = f(Ay + b)也是凸函数。
初等运算1、如果f和g是凸函数,那么m(x)=max{f(x),g(x)}和h(x)=f(x)+g(x)也是凸函数。
2、如果f和g是凸函数,且g递增,那么h(x)=f(g(x))是凸函数。
3、凸性在仿射映射下不变:也就是说,如果f(x)是凸函数,那么g(y)=f(Ay+b)也是凸函数举例函数f(x) = x²;处处有,因此f是一个(严格的)凸函数。
绝对值函数f(x) = | x | 是凸函数,虽然它在点x = 0没有导数。
当1 ≤p时,函数f(x) = | x | p是凸函数。
定义域为[0,1]的函数f,定义为f(0)=f(1)=1,当0函数x3的二阶导数为6x,因此它在x ≥0的集合上是凸函数,在x ≤0的集合上是凹函数。
一、凹凸函数的代数定义容易理解,若函数 f(x)为凸函数,那么 -f(x)为凹函数。
所以,讨论清楚了凸函数,等价于讨论清楚了凹函数。
现在我们来讨论凸函数,现设一函数 f(x)。
在该函数定义域的凸区内任取两点x1、x2(x1<x2)。
设一点x=q1x1+q2x2(q1,q2>0 ,且q1+q2=1)那么易得,该点必包含于x1,x2之间。
凸函数,是数学函数的一类特征。
凸函数就是一个定义在某个向量空间的凸子集C(区间)上的实值函数。
凸函数是一个定义在某个向量空间的凸子集C(区间)上的实值函数f,而且对于凸子集C中任意两个向量, f((x1+x2)/2)≤(f(x1)+f(x2))/2,则f(x)是定义在凸子集c中的凸函数(该定义与凸规划中凸函数的定义是一致的,下凸)。
注意:中国大陆数学界某些机构关于函数凹凸性定义和国外的定义是相反的。
Convex Function在某些中国大陆的数学书中指凹函数。
Concave Function指凸函数。
但在中国大陆涉及经济学的很多书中,凹凸性的提法和其他国家的提法是一致的,也就是和数学教材是反的。
举个例子,同济大学高等数学教材对函数的凹凸性定义与本条目相反,本条目的凹凸性是指其上方图是凹集或凸集,而同济大学高等数学教材则是指其下方图是凹集或凸集,两者定义正好相反。
在函数可导的情况下,如果一阶导娄在区间内是连续增大的,它就是凹函数; 在图形上看就是"开口向上" ,反过来,就是凸函数; 由于一阶导数连续增大,所以凹函数的二阶导数大于0; 由于一阶导数连续减小,所以凸函数的二阶导数小于0,凸函数就是:缓慢升高,快速降低; 凹函数就是:缓慢降低,快速升高.。
凸函数的判定与应用凸函数是数学中一种常见的函数类型。
它在优化问题、经济学、工程和自然科学等领域中得到广泛应用。
本文将介绍凸函数的判定准则,以及凸函数在各个领域中的应用。
一、凸函数的定义与性质在数学中,凸函数可以通过其定义和性质来进行判定。
定义:设函数f在区间[a, b]上连续,在(a, b)内可导。
如果对于任意x1、x2∈[a, b],以及任意0≤t≤1,都满足f(tx1+(1-t)x2)≤tf(x1)+(1-t)f(x2),则称函数f为[a, b]上的凸函数。
性质:凸函数具有以下性质:1. 对于凸函数f(x),若f''(x)存在且恒大于等于0,则f(x)是凸函数。
2. 若函数f(x)在[a,b]上是凸函数且在(a,b)内可导,则在(a,b)内f'(x)是递增函数。
二、凸函数与判定方法凸函数的判定方法包括一阶导数、二阶导数和Jensen不等式等。
1. 一阶导数判定法若函数f(x)在区间[a,b]上可导,且对于任意x1、x2∈(a,b),有f'(x)在[a,b]上单调递增,则f(x)是在[a,b]上的凸函数。
2. 二阶导数判定法若函数f(x)在区间[a,b]上两次可导,且对于任意x∈(a,b),有f''(x)≥0,则f(x)是在[a,b]上的凸函数。
3. Jensen不等式对于凸函数f(x),若λ1、λ2、...、λn为非负实数,且满足λ1+λ2+...+λn=1,以及x1、x2、...、xn为任意n个区间[a,b]上的数,则有以下不等式成立:f(λ1x1+λ2x2+...+λnxn)≤λ1f(x1)+λ2f(x2)+...+λnf(xn)三、凸函数的应用领域凸函数广泛应用于各个领域,包括优化问题、经济学、工程和自然科学。
1. 优化问题在优化问题中,凸函数常被用来描述目标函数或约束条件。
由于凸函数具有良好的性质,如弱凹性和全局极小值,因此可以通过凸优化算法来求解各种优化问题。
凸函数的定义凸函数是数学中一种非常基础且重要的概念,其在优化理论、微观经济学等领域都有着广泛的应用。
本文就来介绍凸函数的定义及其一些基本性质。
一、凸函数的定义在介绍凸函数之前,我们先来了解一下凸集的概念。
凸集是指对于该集合中任意两个点,它们之间的连线上的所有点也都属于该集合。
例如,一个圆形就是一种凸集,而一条线段则不是。
有了凸集的定义,我们就可以引出凸函数的定义了。
如果函数f 的定义域上的任意两点构成的线段都落在函数的上方,则该函数被称为凸函数。
反之,如果这些线段都落在函数的下方,则该函数被称为上凸函数。
这里需要注意的是,对于凸函数来说,图形上的“上方”指的是函数图像的上面,即函数值更大的区域。
而对于上凸函数,则是函数图像的下面,即函数值更小的区域。
二、凸函数的基本性质1.一阶导数单调递增对于凸函数来说,其一阶导数具有单调性。
也就是说,如果 f是一个凸函数,则其一阶导数 f' 是单调递增的。
反之,如果 f 的一阶导数是单调递增的,则 f 是凸函数。
这个性质非常重要,因为它可以用来证明很多凸函数的性质。
例如,如果我们知道了某个函数的一阶导数的单调性,就可以进一步证明该函数的二阶导数不小于零,从而证明该函数是凸函数。
2.上凸函数和下凸函数的判定对于一个函数 f,如果其一阶导数 f' 单调递减,则该函数是上凸函数。
反之,如果其一阶导数 f' 单调递增,则该函数是下凸函数。
这个判定方法可以用来判断很多函数的凸性。
例如,如果我们知道某个函数的一阶导数的单调性,并且该函数的一阶导数单调递增,则该函数是下凸函数。
3.凸函数的次导数函数的次导数是指它的 n 阶导数。
对于凸函数来说,它的次导数也具有一定的性质。
如果 f 是一个凸函数,则其次导数都不小于零。
这个性质可以用于推断一个函数是否是凸函数。
例如,如果我们知道某个函数的一阶和二阶导数都不小于零,则可以推断该函数是凸函数。
三、凸函数应用实例凸函数在优化理论、微观经济学等领域都有着广泛的应用。
§3.2.6如果任取曲线上两点,则两点构成的都在此曲线弧的上方,我们称这样的曲线对应的函数为凸函数,如图21便是凸函数的图像,严格定义的话,如果D 是一个实轴上的区间,或者更为一般的向量空间上的凸集,则函数:f D R →是凸函数,如果其满足:()()()()1()1f x y f x f x λλλλ+-≤+-,对所有(),,0,1x y D λ∈∈这里我们注意集合D 叫做凸集,如果对于任意,x y D ∈和()0,1λ∈,()1x y λλ+-也在D 中,其几何意义是D 是这些半空间的交点。
如果f -是凸函数,则f 叫做凹函数,如果f 既凸又凹,则f 是一条直线。
例如:()f x ax b =+,,a b 是常数。
定理:函数f 在(),a b 内二阶可导,f 是凸函数当且仅当()''0f x ≥ 一般地,定义在n 维实空间上的凸环上的二阶可导函数是凸的,如果它的海塞矩阵是半正定型的,对于()12,,n f x x x 。
若f 所有的二阶导数都存在,那么f 的海塞矩阵即()22221121222221222222120n n n n n ff f x x x x x f f f H f x x x x x f f f x x x x x ⎡⎤∂∂∂⎢⎥∂∂∂∂∂⎢⎥⎢⎥∂∂∂⎢⎥=≥∂∂∂∂∂⎢⎥⎢⎥⎢⎥⎢⎥∂∂∂⎢⎥∂∂∂∂∂⎣⎦,这是对坐标的求模的一种说法,在f的每一点都有形式22121212(,,)(,,)n n k f x x x x x x x xx φ=+++ ,这里k n ≤,12(,,)n x x x φ 是线性的。
作为凸函数的应用,我们利用其性质来证明Holder 不等式。
Holder 不等式:如果()():0,,l n f R f x x+∞→=,其中1212,,,,,n n x x x y y y p q 都是正数,且111p q+=,则11111nnnpqp q i i i i i i i x y x x ===⎛⎫⎛⎫≤+ ⎪ ⎪⎝⎭⎝⎭∑∑∑等号成立当且仅当两向量12(,)n x x x 和12(,)n y y y 共线。