测量系统GR&R分析
- 格式:ppt
- 大小:277.00 KB
- 文档页数:22
计数型GRR-KAPPA(MSA第四版-测量系统分析)全公式380.0%312.5%508.8%0.5
(+0.05/
-0.05)Ppk:0.5
0.77评价⼈A
评价⼈B
评价⼈C
######(苏州)有限公司
#### TECHNOLOGY CO .,LTD GAGE R & R CHART
量规/量仪:尺⼨编号:⼯件机种:测量⼈数:实验次数:样品数量:评定结果:
评估⽇期:统计⼈员:GR&R值:24%
最⼩有效率:最⼤漏失率:最⼤误判率:最⼩KAPPA值:⽬标尺⼨:
变差来源
总检查数
相配数
错误的拒收
错误的接受
不相配
95%UCI
计算所得结果
95%LCI
总检查数
⼀致的数量
95%UCI
计算所得结果
95%LCI
样本:
补充:
kappa⼤于0.75表⽰有很好的⼀致
对于产品控制的情况下,当测量结果与决定准则是确定“符合或不
符合某特性的规范”(如:100%检验或抽样),样品(或标准)必须被选择,但不需要包括整个过程范围。
测量系统的评估是以特性公差为基础(如对公差的%GRR)。
在过程研究情况下,当测量结果与决定准则是确定“过程稳定性、
⽅向以及是否符合⾃然的过程变差”(如:SPC、过程控制、能⼒及过程改进),在整个作业过程范围的样本可获得性变得⾮常重要。
当评估⼀测量系统对过程控制的适⽤性时(如对过程变差
的%GRR),推荐采⽤过程变差的独⽴估计法(过程能⼒研究)。
如果Ppk⼤于1,则将测量系统与过程进⾏⽐较
如果Ppk⼩于1,则将测量系统与公差进⾏⽐较。
MSAGRR计算方法详细算法MSA(Measurement Systems Analysis)GR&R(Gauge Repeatability and Reproducibility)是一种衡量测量系统准确性和可再现性的方法。
它主要用于评估测试设备(例如测量工具,仪器等)和测试员之间的差异,以确定测量系统的可靠性和稳定性。
下面将详细介绍MSA GR&R的计算方法。
1. 推导总变异(Total Variation):首先,收集所需测量数据。
这些数据通常由多名测试员对同一物品进行多次测量而得到。
然后计算每次测量结果的平均值,并计算所有平均值的总平均值。
然后计算每个测量结果与总平均值之间的差异,并将这些差异平方相加得到总变异。
2. 推导工件变异(Part Variation):对测量数据中的每个测量值,计算其与其所属工件的平均值之间的差异,并将这些差异平方求和得到工件变异。
3. 推导重复性变异(Repeatability Variation):对于每个测试员进行的多次测量,计算其测量结果与其自身平均值之间的差异,并将这些差异平方求和得到重复性变异。
4. 推导再现性变异(Reproducibility Variation):对于每个工件,计算不同测试员进行的测量结果之间的差异,并将这些差异平方求和得到再现性变异。
5. 计算GR&R可靠性指标:首先计算测量系统误差的平均值,即重复性变异和再现性变异之和。
然后计算测量系统误差与总变异的比值,得到可再现性(Reproducibility)指标。
最后,计算测量系统误差与工件变异的比值,得到重复性(Repeatability)指标。
6.评估和改进:通过对可再现性和重复性指标的分析,评估测量系统的可靠性和稳定性。
如果得到较高的指标值,则说明测量系统的误差较小,系统较为可靠。
如果得到较低的指标值,则需要对测量系统进行改进或调整以提高其准确性和稳定性。
GRR计算方法参考GRR(Gage R&R)是用于评估测量系统能力的一种方法。
它是一种能够衡量测量设备和测量操作员之间的变异性的指标。
GRR测试可以帮助制造商在过程控制或产品开发过程中选择合适的测量设备和操作员,并评估测量系统的稳定性和可靠性。
1.随机化试验设计在进行GRR测试之前,首先需要使用随机化试验设计来确定测量系统的相关因素。
这样可以将变异性的源头随机分配到每个因素中,以便有效地评估它们的影响。
2.方差分析(ANOVA)一旦完成随机化试验设计,就可以进行方差分析来估计每个因素的变异性和相对影响。
通过方差分析,可以将整体测量系统的变异性分解为几个组成部分,从而了解每个因素对总体变异性的贡献程度。
3.测量系统的变异性计算在进行GRR测试时,需要计算两个主要的变异性指标:测量系统的变异性(GR)和关于产品变异性的变异性(RR)。
- 测量系统的变异性(GR):可以通过计算总变异性减去产品变异性来得到。
总变异性由三个因素构成:设备(Equipment)的变异性、操作员(Operator)的变异性和它们的交互影响(Equipment x Operator)的变异性。
-关于产品变异性的变异性(RR):评估了测量操作员测量同一产品时的变异性。
RR是由操作员的变异性和操作员与产品之间的交互影响组成的。
4.GRR计算有几种不同的方法可以计算GRR指标- Gage R&R(%):即GRR的百分比。
可以通过计算GR和RR的比值,并乘以100来计算。
GRR(%)越低,说明测量系统的稳定性和可靠性越高。
- Gage R&R(Value):以测量单位为单位的GRR值。
可以通过计算GR和RR之和来得到。
5.结果解读和改进措施根据GRR测试的结果,可以对测量系统的稳定性和可靠性进行评估。
较低的GRR值表示测量系统的可靠性较高,并且对测量结果的变异性贡献较小。
如果GRR值较高,说明测量系统存在问题,需要采取相应的改进措施,例如更换测量设备、培训操作员等。
GRR管理办法GRR(GR&R)是指测量系统重复性与再现性(Gage Repeatability and Reproducibility)的能力,即评估测量工具或设备的稳定性和一致性。
GRR管理办法则是指在实施GRR评估过程中的一些具体管理措施和步骤,旨在确保评估结果的准确性和可靠性。
本文将介绍GRR管理办法的基本概念、主要步骤和注意事项。
一、概述GRR管理办法是在进行GRR评估时所需遵循的一系列管理规定和操作流程,旨在确保评估结果的可靠性和可重复性。
通过对测量系统的重复性和再现性进行评估,可以判断该系统在不同操作者和环境下的测量误差情况,从而选择合适的测量系统和优化测量过程,以提高产品质量和生产效率。
二、GRR管理办法的步骤1.确定评估目标:在进行GRR评估前,需要明确评估的目标和标准,即确定测量系统的可接受误差范围以及评估结果的判定标准。
2.选择评估方法:根据实际情况选择合适的GRR评估方法,常用的方法包括ANOVA法、均值偏移法和范围法等。
在选择评估方法时,需要考虑测量数据的特点和评估的目的,确保评估结果的准确性和可靠性。
3.确定评估样本:根据评估目标和方法,确定评估所需的样本数量和样本组成。
样本的选择应具有代表性,能够全面反映实际的测量情况。
4.进行评估实验:按照评估方法和样本要求,进行评估实验。
在实验过程中,不同的操作者应按照统一的操作流程进行测量,以确保实验的可比性和公正性。
同时,要注意记录实验所需的关键参数和数据,以便后续的数据分析和结果判定。
5.数据分析和结果判定:对实验中得到的测量数据进行分析和处理,计算得到评估指标和结果。
根据评估指标和判定标准,对测量系统的重复性和再现性进行评估和判定。
评估结果应以可视化的方式呈现,便于理解和使用。
6.制定改进措施:根据评估结果,对存在的问题和不足进行分析,并提出相应的改进措施。
改进措施可以包括优化测量设备、改进测量方法或调整工艺流程等,旨在提高测量系统的稳定性和一致性。
372371.41012345678910Total 1.A 1#####################71.70371.682#####################71.70371.682717.00182.2#####################71.698971.6821#####################71.698971.6821716.9913.3#####################71.702971.6834#####################71.702971.6834716.99584.均值Mean 71.7240371.6859071.7040771.7016071.6825071.7240371.6859071.7040771.7016071.6825071.699620Sum A 215.1721215.0577215.1122215.1048215.0475215.1721215.0577215.1122215.1048215.04752150.98865. 极差Rang0.00170.00060.00290.00410.00140.00170.00060.00290.00410.00140.0021406.B 171.723371.689171.704671.703371.68371.723371.689171.704671.703371.683717.00667.271.725671.688571.704371.7034#######71.725671.688571.704371.7034#######11.3048.3#######71.691771.704671.703971.6829#######71.691771.704671.703971.6829717.01649.均值Mean 71.7246771.6897771.7045071.7035371.6834771.7246771.6897771.7045071.7035371.6834771.701187Sum B 215.174215.0693215.1135215.1106215.0504215.174215.0693215.1135215.1106215.05042151.035610. 极差Rang0.00320.00030.00060.00160.00230.00320.00030.00060.00160.00152211.C 1#######71.690171.701871.704471.6824#######71.690171.701871.704471.6824717.008812.2#######71.689671.701971.704571.6834#######71.689671.701971.704571.6834717.006213.371.724771.690471.702571.70471.684271.724771.690471.702571.70471.6842717.011614.均值Mean71.7247071.6900371.7020771.7043071.6833371.7247071.6900371.7020771.7043071.6833371.700887Sum C 215.1741215.0701215.1062215.1129215.05215.1741215.0701215.1062215.1129215.052151.026615. 极差Rang0.00200.00080.00070.00050.00180.00200.00080.00070.00050.00180.00116071.72446771.68856771.70354471.70314471.68310071.72446771.68856771.70354471.70314471.6831071.700564645.520200645.197100645.331900645.328300645.147900645.520200645.197100645.331900645.328300645.1479006453.05080.0413670.00160723D4 3.27 2.57571.7022090.004139D30071.698920.000000A2 1.88 1.02312345678910UCLx 71.702271.702271.702271.702271.702271.702271.702271.702271.702271.7022LCLx 71.698971.698971.698971.698971.698971.698971.698971.698971.698971.6989UCL R0.00410.00410.00410.00410.00410.00410.00410.00410.00410.0041LCLR0.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000公差:6σpp变差PV PV 0.013014PV TVTV#DIV/0!TV基于公差base%#DIV/0!基于零件变差%#DIV/0!基于过程变差%#DIV/0!基于过程能力%#DIV/0!公式A Formula ndc 14.77027381公式B FormulaX^2/nkr 462687.3847462687.3847462687.403462687.4035462687.4035Source DF SS MS F P Source DF SS MS F P Parts 90.018640.00207524.016570.0000090.018640.002071166.10.0000020.000040.00002 5.247340.0160220.000040.0000211.6770.00003180.000070.00000 3.519300.00013600.000070.00000780.000140.00000Total 890.01882890.01882Source VarComp Stdev %Contributi %TV %Tolerance Source VarComp Stdev %Contribut %TV %Tolerance0.000000.00162 1.13%10.63% 1.62%0.000000.00155 1.04%10.18% 1.55%0.000000.001060.48% 6.95% 1.06%0.000000.001330.76%8.74% 1.33%0.000000.001230.65%8.04% 1.23%0.000000.000800.27% 5.22%0.80%0.000000.000750.24% 4.91%0.75%0.000000.000800.27% 5.22%0.80%0.000000.000970.41% 6.37%0.97%0.000230.0151698.87%99.43%15.16%0.000230.0151798.96%99.48%15.17%测试日期Test Tate 量具编号Equipment NO.基件编号P/N 测量人员Operator BB平价人数Appraisers 测量系统分析MSA GR&R---数据记录表 Data Worksheet报告编号Report NO.量具名称Equipment Name 产品类型Description 测量人员Operator AA试验次数Trials 单位UnitMM 规格下限LSL过程变差/过程能力Process Variation(σ/PP)样 品 数Samples参数规格Dimension规格上限USL 测量人员Operator CC71.69958071.70066071.70126071.70164071.70088071.700620分析时机Analytical Occasion零件编号PartsNO.平均值Average 71.70018071.699100sumSQ(sum(men))/nr SUMSQ(sum(1-10part))/kr 71.701160零件均值Parts Mean Total试验次数Trials 0.001567Part - To - Part Part - To - Part 注:当分析结果超出要求后,利用均值极差图分析原因When analysis result is out of spec,need analyse the root cause by mean and range chart 。
380.0%312.5%508.8%0.5
(+0.05/
-0.05)Ppk:0.5
0.77评价人A
评价人B
评价人C
最小KAPPA值:目标尺寸:
评定结果:
评估日期:统计人员:GR&R值:24%
最小有效率:最大漏失率:最大误判率:量规/量仪:尺寸编号:工件机种:测量人数:实验次数:样品数量:######(苏州)有限公司
#### TECHNOLOGY CO .,LTD GAGE R & R CHART
变差来源
总检查数
相配数
错误的拒收
错误的接受
不相配
95%UCI
计算所得结果
95%LCI
总检查数
一致的数量
95%UCI
计算所得结果
95%LCI
样本:
补充:
kappa大于0.75表示有很好的一致
对于产品控制的情况下,当测量结果与决定准则是确定“符合或不
符合某特性的规范”(如:100%检验或抽样),样品(或标准)必
须被选择,但不需要包括整个过程范围。
测量系统的评估是以特性
公差为基础(如对公差的%GRR)。
在过程研究情况下,当测量结果与决定准则是确定“过程稳定性、
方向以及是否符合自然的过程变差”(如:SPC、过程控制、能力及
过程改进),在整个作业过程范围的样本可获得性变得非常重要。
当评估一测量系统对过程控制的适用性时(如对过程变差
的%GRR),推荐采用过程变差的独立估计法(过程能力研究)。
如果Ppk大于1,则将测量系统与过程进行比较
如果Ppk小于1,则将测量系统与公差进行比较。
331012345678910Total 1.A 10.29-0.56 1.340.47-0.80.020.59-0.31 2.26-1.36 1.942.20.41-0.681.170.5-0.92-0.110.75-0.21.99-1.251.663.30.64-0.58 1.270.64-0.84-0.210.66-0.17 2.01-1.31 2.114.均值Mean0.44667-0.60667 1.260000.53667-0.85333-0.100000.66667-0.22667 2.08667-1.306670.190333Sum A 1.34-1.82 3.78 1.61-2.56-0.32-0.68 6.26-3.92 5.71005. 极差Rang0.350.120.170.170.120.230.160.140.270.110.1840006.B 10.08-0.47 1.190.01-0.56-0.20.47-0.63 1.8-1.680.017.20.25-1.220.941.03-1.20.220.550.082.12-1.6211.3048.30.07-0.68 1.340.2-1.280.060.83-0.34 2.19-1.50.899.均值Mean0.13333-0.79000 1.156670.41333-1.013330.026670.61667-0.29667 2.03667-1.600000.068333Sum B0.4-2.37 3.47 1.24-3.040.08 1.85-0.89 6.11-4.8 2.050010. 极差Rang0.180.750.4 1.020.720.420.360.710.390.180.51300011.C 10.04-1.380.880.14-1.46-0.290.02-0.46 1.77-1.49-2.2312.2-0.11-1.131.090.2-1.07-0.670.01-0.56 1.45-1.77-2.5613.3-0.15-0.960.670.11-1.45-0.490.21-0.491.87-2.16-2.8414.均值Mean-0.07333-1.156670.880000.15000-1.32667-0.483330.08000-0.50333 1.69667-1.80667-0.254333Sum C -0.22-3.47 2.640.45-3.98-1.450.24-1.515.09-5.42-7.6315. 极差Rang0.19000.42000.42000.09000.39000.38000.20000.10000.42000.67000.3280000.168889-0.851111.0988890.366667-1.06444-0.185550.454444-0.34222 1.940000-1.571110.0014441.520000-7.660009.890000 3.300000-9.58000-1.67000 4.090000-3.0800017.460000-14.14000.13 3.5111110.34166723D4 3.27 2.5750.3509690.879792D300-0.348080.00000A2 1.88 1.02312345678910UCLx0.35100.35100.35100.35100.35100.35100.35100.35100.35100.3510LCLx-0.3481-0.3481-0.3481-0.3481-0.3481-0.3481-0.3481-0.3481-0.3481-0.3481UCL R 0.87980.87980.87980.87980.87980.87980.87980.87980.87980.8798LCL R0.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000公差:6σpp变差PV PV 1.104596PV TVTV#DIV/0!TV基于公差base%#DIV/0!基于零件变差%#DIV/0!基于过程变差%#DIV/0!基于过程能力%#DIV/0!公式A Formulandc 5.0936924公式B FormulaX^2/nkr 0.0001878 3.167450088.362122291.88836694.647300Source DF SS MS F P Source DF SS MS F PParts 988.361939.81799492.291420.00000988.361939.81799245.610.000002 3.16726 1.5836379.406050.000002 3.16726 1.5836339.6170.00000180.358980.019940.433720.9741160 2.758930.0459878 3.117920.03997Total 8994.647118994.64711Source VarComp Stdev %Contribu %TV %Toleranc Source VarComp Stdev %Contribut %TV%Tolerance 0.098110.313228.27%28.75%#DIV/0!0.091430.302377.76%27.86%#DIV/0!0.045980.21443 3.87%19.68%#DIV/0!0.039970.19993 3.39%18.42%#DIV/0!0.052120.22830 4.39%20.96%#DIV/0!0.051460.22684 4.37%20.90%#DIV/0!0.052120.22830 4.39%20.96%#DIV/0!0.051460.22684 4.37%20.90%#DIV/0!0.000000.000000.00%0.00%#DIV/0!1.08867 1.0433991.73%95.78%#DIV/0! 1.08645 1.0423392.24%96.04%#DIV/0!Reproducibility Reproducibility Operator Operator Operators*Part 极差图Range chartSUMSQ(sum(men-part))/r sumSQ(all)n=part k=men ANOVA Table With Operator*Part Interaction ANOVA Table Without Operator*Part InteractionParts Operators Gauge R&R With Operator*Part Interaction Gauge R&R Without Operator*Part InteractionTotal Gauge R&R Total Gauge R&R Repeatability Repeatability Operators Operators*Part Repeatability Repeatability Total Part - To - Part Part - To - Part 注:当分析结果超出要求后,利用均值极差图分析原因When analysis result is out of spec,need analyse the root cause by mean and range chart 。