污垢热阻及导热系数数据
- 格式:xls
- 大小:17.50 KB
- 文档页数:3
介质不同,传热系数各不相同我们公司的经验是:1、汽水换热:过热部分为800~1000W/m2.℃饱和部分是按照公式K=2093+786V(V是管内流速)含污垢系数0.0003。
水水换热为:K=767(1+V1+V2)(V1是管内流速,V2水壳程流速)含污垢系数0.0003实际运行还少有保守。
有余量约10%冷流体热流体总传热系数K,W/(m2.℃)水水 850~1700水气体 17~280水有机溶剂 280~850水轻油 340~910水重油60~280有机溶剂有机溶剂115~340水水蒸气冷凝1420~4250气体水蒸气冷凝30~300水低沸点烃类冷凝 455~1140水沸腾水蒸气冷凝2000~4250轻油沸腾水蒸气冷凝455~1020不同的流速、粘度和成垢物质会有不同的传热系数。
K值通常在800~2200W/m2·℃范围内。
列管换热器的传热系数不宜选太高,一般在800-1000 W/m2·℃。
螺旋板式换热器的总传热系数(水—水)通常在1000~2000W/m2·℃范围内。
板式换热器的总传热系数(水(汽)—水)通常在3000~5000W/m2·℃范围内。
1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。
(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。
(3) 压强高的流体宜走管内,以免壳体受压。
(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。
(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。
(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。
(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。
常用材料导热系数一、常用墙体材料序号类别名称容重(Kg/m 3)导热系数(W/m·K)蓄热系数2W/(m·K)备注1 粘土多孔砖KP1-190/24014000.587.922 粘土多孔砖KM1-190/24014000.587.923灰砂砖24019001.1012.724炉渣砖24017000.8110.435煤矸石烧结砖17000.639.056煤矸石多孔砖14000.547.607粉煤灰烧结砖16000.507.828粉煤灰蒸养砖16000.628.719混凝土双排孔砌块19013000.686.00 10混凝土单排孔砌块19012001.025.8811 混凝土多孔砖(240×115×90)15000.808.7812 混凝土多孔砖(240×190×90)13 混凝土砌块内填膨胀珍珠岩(单排孔)13000.331.2814 煤矸石砌块内填膨胀珍珠岩13000.273.2515ALC加气混凝土砌块5000.203.60 用于墙体修正系数1.35;用于屋面修正系数1.45;16粉煤灰加气混凝土砌块7000.223.59 用于墙体修正系数1.35;用于屋面修正系数1.45;17烧结淤泥普通砖17000.507.82修正系数1.15 18烧结淤泥多孔砖13000.486.74修正系数1.15 19页岩模数烧结砖13000.456.60修正系数1.15二、常用保温材料序号类别名称容重(Kg/m 3)导热系数(W/m·K)蓄热系数2W/(m·K)备注20水泥基复合保温砂浆(W4000.081.56用于屋面修正系数1.30;用于型)墙体修正系数1.25;21 水泥基复合保温砂浆(L型)用于屋面修正系数1.35;用于墙体修正系数1.25;22 水泥基无机矿物轻集料保温砂浆4500.0851.80适用于内保温23粉刷石膏保温砂浆5000.0854.00适用于内保温24挤塑聚苯板(XPS)25~350.030.54 用于屋面修正系数1.25;用于墙体修正系数1.15;25模塑聚苯板(EPS)18~220.0410.36用于墙体修正系数1.20;26聚氨酯(外墙外保温)300.0240.36用于墙体修正系数1.20;27聚氨酯(屋面保温)35~500.0240.54用于屋面修正系数1.35;注:保温装饰板根据所选保温材料不同,选用相应的热工性能参数及修正系数。
各种材料导热系数速查1、导热系数:导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用°C代替)。
2、通常把导热系数较低的材料称为保温材料,而把导热系数在0.05瓦/米?度以下的材料称为高效保温材料。
一、金属导热系数表(W/mK):银429铜401金317铝237铁80锡67铅34.8二、常用材料导热系数(20℃)——λ(w/m.k)聚苯乙烯0.04PVC0.14~0.15PP0.21~0.26PE0.42有机玻璃0.14~0.20石墨:热导率129 w/(m·k)碳:热导率:129 w/(m·k)特氟龙teflon 0.256 ,填充石墨制品16-128 (来源于厂家数据)泡沫0.045 木材(横) 0.14~0.17(纵) 0.38散珍珠岩0.042~0.08水泥珍珠岩0.07~0.09石棉0.15混凝土 1.2885%MgO0.07玻璃0.52~1.01水垢 1.3~3.1搪瓷0.87~1.16耐火砖 1.06普通砖0.7~0.8银419锌112钛14.63锡64铅35镍90钢36~54铸铁42~90钝铜381黄铜118青铜71纯铝218铸铝138~147不锈钢17三、空气:温度[10^-2(w/m.k)]100K0.93150K 1.38200K 1.80250K 2.21300K 2.62350K 3.00400K 3.38 四、水: 温度w/m.k0℃0.5010℃0.5820℃0.6030℃0.6240℃0.6450℃0.6560℃0.6670℃0.6780℃0.68水蒸汽0.023 五、硫酸: 5~25%0.51~0.4725~50%0.47~0.41。
常用材料的导热系数表 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】材料的导热率傅力叶方程式:Q=KA△T/d,R=A△T/QQ: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值导热率K是材料本身的固有性能参数,用于描述材料的导热能力。
这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。
所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。
将上面两个公式合并,可以得到 K=d/R。
因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。
也就说材料越厚,热阻越大。
但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。
这是因为导热材料大都不是单一成分组成,相应会有非线性变化。
厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。
根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。
但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。
实际这是不可能的条件。
所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。
因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。
所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTMD5470。
这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。
大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。
通过测试得出的热阻R值,并不完全是真实的热阻值。
物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。
各种材料导热系数速查1、导热系数:导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用°C代替)。
2、通常把导热系数较低的材料称为保温材料,而把导热系数在0.05瓦/米?度以下的材料称为高效保温材料。
一、金属导热系数表(W/mK):银429铜401金317铝237铁80锡67铅34.8二、常用材料导热系数(20℃)——λ(w/m.k)聚苯乙烯0.04PVC0.14~0.15PP0.21~0.26PE0.42有机玻璃0.14~0.20石墨:热导率129 w/(m·k)碳:热导率:129 w/(m·k)特氟龙teflon 0.256 ,填充石墨制品16-128 (来源于厂家数据)泡沫0.045 木材(横) 0.14~0.17(纵) 0.38散珍珠岩0.042~0.08水泥珍珠岩0.07~0.09石棉0.15混凝土 1.2885%MgO0.07玻璃0.52~1.01水垢 1.3~3.1搪瓷0.87~1.16耐火砖 1.06普通砖0.7~0.8银419锌112钛14.63锡64铅35镍90钢36~54铸铁42~90钝铜381黄铜118青铜71纯铝218铸铝138~147不锈钢17三、空气:温度[10^-2(w/m.k)]100K0.93150K 1.38200K 1.80250K 2.21300K 2.62350K 3.00400K 3.38 四、水: 温度w/m.k0℃0.5010℃0.5820℃0.6030℃0.6240℃0.6450℃0.6560℃0.6670℃0.6780℃0.68水蒸汽0.023 五、硫酸: 5~25%0.51~0.4725~50%0.47~0.41。
传热过程: 热量从壁一侧的高温流体通过壁传给另一侧的低温流体的过程。
导热系数: 物体中单位温度降单位时间通过单位面积的导热量。
热对流: 只依靠流体的宏观运动传递热量的现象称为热对流。
表面传热系数: 单位面积上,流体与壁面之间在单位温差下及单位时间内所能传递的能量。
保温材料: 国家标准规定,凡平均温度不高于350度导热系数不大于0.12w/(m.k )的材料。
温度场: 指某一时刻空间所有各点温度的总称。
热扩散率: a=cρλ 表示物体被加热或冷却时,物体内各部分温度趋向均匀一致的能力。
临界热绝缘直径c d :对应于总热阻l R 为极小值的保温层外径称为临界热绝缘直径。
集中参数法: 当1.0B i 时,可以近似的认为物体的温度是均匀的,这种忽略物体内部导热热阻,认为物体温度均匀的分析方法。
辐射力: 单位时间内,物体的每单位面积向半球空间所发射全波长的总能量。
单色辐射力: 单位时间内,物体的每单位面积,在波长λ附近的单位波长间隔内,向半球空间发射的能量。
定向辐射力: 单位时间内,物体的每单位面积,向半球空间的某给定辐射方向上,在单位立体角内所发射全波长的能量。
单色定向辐射力: 单位时间内,物体的每单位面积,向半球空间的某给定辐射方向上,在单位立体角内所发射在波长λ附近的单位波长间隔内的能量。
辐射强度: 单位时间内,在某给定辐射方向上,物体在与发射方向垂直的方向上的每单位投影面积,在单位立体角内所发射全波长的能量称为该方向的辐射强度。
有效辐射:单位时间离开单位面积表面的总辐射能。
辐射隔热:为减少表面间辐射换热而采用高反射比的表面涂层,或在表面加设遮热板,这类措施称为辐射隔热。
黑体: 能全部吸收外来射线,即1=α的物体。
白体: 能全部反射外来射线,即1=ρ的物体,不论是镜面反射或漫反射。
透明体: 能被外来射线全部透射,即1=τ的物体。
热流密度: 单位时间单位面积上所传递的热量。
肋片效率: 衡量肋片散热有效程度的指标,定义为在肋片表面平均温度m t 下,肋片的实际散热量φ与假定整个肋片表面处在肋基温度o t 时的理想散热量o φ的比值。
---------- 污垢热阻法是最传统、最经典的污垢监测模型,其基本定义见下式。
清洁和污染的换热面热阻分布如图1所示。
首先测量洁净状态下的总传热系数Kc,然后在相同工况下,监测污染状态的总传热系数Kf,即可由式(8)和(12 计算得出对应工况下的污垢热阻。
如果可以在线测得K 随时间变化的关系,就可以得到污垢热阻随时间的变化特性。
4.2 压降测量法压降测量法是所有污垢监测方法中操作最为简便而又行之有效的一种监测手段。
只需测量换热管进、出口或换热器进、出口的压差,就可以通过污染前后压降的变化来反映污垢的积聚情况。
换热管进、出口的压差包括沿程阻力和局部阻力。
如图2所示,在一般的壳管式换热器中,污垢使换热管内径减小,粗糙度增加,分析式(13),(14)可得:1)由于管内侧的表面粗糙度增加,使得沿程阻力系数加大,引起沿程阻力增加;2)由于换热管内径减小而引起沿程阻力增加; 3)由于污物在管内进出口处的长期积聚,使得局部阻力系数加大,引起局部阻力增加。
5 换热器污垢监测的实验方法如前所述,污垢热阻的求取公式为式(8),式中污染状态下的总传热系数Kf可由设计工况下的传热方程求得。
由式(18)可以看出,只要测出流体的质量流量,冷热流体进、出口温度,便可以计算出换热器内的传热系数,也就可以得出换热器内的污垢热阻。
根据以上监测原理结合实验数据对实际工程中的换热器结构情况进行了监测。
6 实验过程及实验分析6.1 实验过程管内污垢生长特性实验的总体方案包括实验工况的确定、系统的运行和数据采集两个方面。
1)实验工况的确定本实验在实际工程中进行,污水流量为110 m3/h。
2)系统运行和数据采集系统全天间歇运行,实验数据的采集由测量仪器定期自动记录。
数据监测系统的采样周期为30 min,这样每30 min就可以计算出一个Kf,从而绘制出传热系数的变化曲线。
在实验后期由于污垢厚度已经趋于稳定,变化较缓慢, 所以将测量频率变为每2 min测量一次温度,以验证污垢是否达到稳态。
水冷式冷水机组冷凝器污垢热阻的动态试验研究摘要本文提出了污垢热阻研究的动态试验方法,以珠江水(猎德段)作为冷却水并通过一系列试验得出了不同流速下的污垢热阻试验数据,并观察到了污垢老化现象。
这些数据比HTRI/TEMA推荐的数值更具体,可为冷水机组冷凝器的设计、监控和清洗提供参考。
关键词污垢热阻冷却水冷凝器冷水机组换热表面的污垢会使传热恶化,且随着强化换热技术的应用,污垢热阻对传热过程的影响更加明显,因此冷凝器冷却水侧污垢热阻值的选取便成了水冷式冷水机组优化设计的主要问题之一。
冷却水污垢热阻的数值通常是根据经验数值或是文献、规范等确定,如根据HTRI/TEMA Joint Committee 推荐的污垢热阻[1],河水的污垢热阻值是3.52× 10-4~5.28×10-4 m2·℃/W,而根据《工业循环水处理设计规范》(GB50050-95)[2],敞开式循环水系统的污垢热阻值为1.71× 10-4~3.44×10-4 m2·℃/W。
由于不同参考资料给出的污垢热阻的数值变化较大,给实际的设计工作带来了困难。
另外不同河流、不同区段、在不同季节时冷却水所形成的污垢也有所不同,因此我们拟采用试验方法,选用在珠江三角洲地区被广泛用作冷却水的珠江水为试验工质进行冷却水污垢热阻的试验,试验是在6月到10月期间进行。
冷却水污垢热阻的影响因素主要是温度、流速和水质。
由参考文献[1]分析,冷却水温度低于50℃时温度对污垢热阻的影响可忽略。
因此主要研究冷却水流速对污垢热阻的影响,为冷凝器的设计提供较具体的污垢热阻数据。
1 试验原理及试验装置1.1 试验原理由传热学法测量污垢热阻R f,即(1)(2)于是,(3)通过计算冷凝器换热管两侧的换热系数和总的传热系数,从分离出污垢热阻。
本试验采用实际的水冷式冷水机组,制冷量是30kW,制冷剂为HCFC-22。
冷凝器是两回程的管壳式换热器,管内径是0.0117m,铜管数目是38根。
污垢热阻垢热阻时的传热系数的0.85倍,比较设定一和设定三,可知气侧和水侧都取常规污垢热阻时的传热系数是没有考虑污垢热阻时的传热系数的0.84倍,这说明原来习惯上取的0.85的系数是合适的,同时还说明我们管片式热热器计算中气侧的污垢热阻比水侧的污垢热阻对传热系数的影响小,气侧污垢热阻对总体传热系数的影响可以忽略不计,也就是说管外污垢热阻比管内污垢热阻的影响小。
这就说明在过去我们常规设计中,取0.85倍的传热系数是得当的和可行的,也是考虑污垢热阻时最简便的一种经验方法了。
2污垢对传热的影响近几年随着我国换热器行业产品的快速发展,换热器产品使用条件和换热器产品客户发生了根本的改变,用户对换热器产品设计提出了更高、更严、更具体的要求,如产品压力、面积、体积和工艺介质方面都与以往大不相同。
最明显的一点,用户在水的污垢热阻都提出了更明确的要求,明确提出水的污垢热阻是0.000344m2.℃/W(是原来洁净自来水的2倍,这一般是用户的最低要求)、0.0004m2.℃/W,有的甚至提到了0.0005m2.℃/W。
气侧一般是压缩空气,用户一般没有明确提出要求,但按《换热器原理及计算》书中明确规定其污垢热与设定一比较,设定九传热系数是设定一传热系数0.69倍;与设定五比较,设定九传热系数是设定五传热系数0.99倍。
从上面几种污垢热阻组合计算比较,可以看出水侧取不同污垢热阻时,对传热系数的影响是不同的,并且都超过了原来的0.85的系数,当水侧污垢系数rl=0.000344m2.℃/W时,系数变为0.73;当水侧污垢系数rl=0.0004m2.℃/W时,系数变为0.70;当水侧污垢系数rl=0.0005m2.℃/W时,系数变为0.65;总之水侧的污垢热阻大大削弱了传热性能。
套片式换热器气侧污垢系数改变时,传热系数变化不大,也就是说气侧污垢热阻对传热系数影响仍然可以忽略不计。
显而易见,可知现在设计计算中仍按原来取0.85系数计算方法是不适用的,而应该在换热器设计中根据具体不同的污垢系数具体计算。
各种材料导热系数速查1、导热系数:导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用°C代替)。
2、通常把导热系数较低的材料称为保温材料,而把导热系数在0.05瓦/米?度以下的材料称为高效保温材料。
一、金属导热系数表(W/mK):银429铜401金317铝237铁80锡67铅34.8二、常用材料导热系数(20℃)——λ(w/m.k)聚苯乙烯0.04PVC0.14~0.15PP0.21~0.26PE0.42有机玻璃0.14~0.20石墨:热导率129w/(m·k)碳:热导率:129w/(m·k)特氟龙teflon0.256,填充石墨制品16-128(来源于厂家数据)泡沫0.045木材(横)0.14~0.17(纵)0.38散珍珠岩0.042~0.08水泥珍珠岩0.07~0.09石棉0.15混凝土 1.2885%MgO0.07玻璃0.52~1.01水垢 1.3~3.1搪瓷0.87~1.16耐火砖 1.06普通砖0.7~0.8银419锌112钛14.63锡64铅35镍90钢36~54铸铁42~90钝铜381黄铜118青铜71纯铝218铸铝138~147不锈钢17三、空气:温度[10^-2(w/m.k)]100K0.93150K 1.38200K 1.80250K 2.21300K 2.62350K 3.00400K 3.38四、水:温度w/m.k0℃0.5010℃0.5820℃0.6030℃0.6240℃0.6450℃0.6560℃0.6670℃0.6780℃0.68水蒸汽0.023五、硫酸:5~25%0.51~0.4725~50%0.47~0.41。
第38卷第14期中国电机工程学报V ol.38 No.14 Jul. 20, 20182018年7月20日Proceedings of the CSEE ©2018 Chin.Soc.for Elec.Eng. 4165 DOI:10.13334/j.0258-8013.pcsee.171717 文章编号:0258-8013 (2018) 14-4165-08 中图分类号:TK 172换热管道污垢热阻直接检测方法与实现王恭,罗博文,曹生现,赵波,张叶,吕昌旗(东北电力大学自动化工程学院,吉林省吉林市 132012)A Method to Direct Detect Fouling Resistance of Heat Exchanging Pipe andIts ImplementationWANG Gong, LUO Bowen, CAO Shengxian, ZHAO Bo, ZHANG Ye, LÜ Changqi (School of Automation Engineering, Northeast Electric Power University, Jilin 132012, Jilin Province, China)ABSTRACT: At present, indirect detection methods have been mostly used to detect fouling resistance of heat exchanging pipe in power plant circulating cooling water system. The detection process is complex and would introduce a variety of measurement error. In this paper, a method of fouling resistance direct detection by fouling thickness and thermal conductivity measurement was proposed. The fouling thickness was obtained using ultrasonic time domain reflectometry (UTDR) combined with signal processing technique, and its measurement accuracy was verified by microscopy. The thermal conductivity was obtained using transient plane source method (TPS), and its reliability was proved by residual analysis. Finally, according to the principle of heat transfer, the formula was deduced to calculate fouling resistance. The results of typical calcium carbonate fouling test show that, this method can detect fouling resistance rapidly and accurately, with high reliability and good repeatability. It is of great significance for fouling detection, prevention and removal in industrial heat exchange system.KEY WORDS: heat exchanging pipe; ultrasonic testing; fouling thickness; thermal conductivity; fouling resistance摘要:目前,电厂循环冷却水换热管道内壁污垢热阻检测多采用间接检测法,其检测过程复杂且易引入多种测量误差。
换热器设计中污垢热阻对设计的影响张平张蔚兰(湖北登峰换热器有限公司湖北大冶435100)【摘要】通过设定污垢系数的方法论证了污垢系数对换热器设计的影响。
要求用户在提出污垢系数时应当合理。
合理的污垢系数对换热器的优化设计、降低成本有重大决定作用。
【关键词】换热器污垢热阻污垢系数换热系数在当前换热器市场日益激烈的竞争中,一个问题日益突出,应当引起足够的重视,那就是污垢系数问题。
污垢系数,即换热器使用过程中污垢对换热产生的影响程度。
由于换热器传热面本身导热系数很大,其热阻通常可忽略。
但如果壁面上结有污垢,则对传热性能和压降影响很大,其热阻有时可达到起控制作用的数量级。
据报道,一台结垢严重的冷凝器,其有效的传热面积仅为清洁状态的1/2。
因此,在换热器设计中必须考虑污垢热阻对传热性能的影响。
1传热系数的计算在实际工作中,对于污垢系数的选用,有三套标准:一种标准为用户在设计换热器时就明确提出的标准数值,参考国家标准,针对工业用水、循环冷却水和洁净自来水分别提出污垢系数要求;第二种为项目技术人员提出的标准,由于担心换热器运行时传热性能达不到要求,故将污垢热阻提得很大;第三种为换热器设计单位提出的参考值,在以往换热器设计中,用户一般习惯不提污垢热阻的要求,在换热器设计计算过程中不考虑污垢热阻的影响,只在最后取传热系数时取0.85的系数(即取计算值的85%)作为考虑污垢热阻后的最终传热系数。
对于实际选用的污垢系数标准是否合理,下面以常用的一种冷却元件做一个计算比较,以便共同探讨:设定一,气侧换热系数hk=65.5W/(m2.℃),水侧换热系数hl=7353W/(m2.℃),肋化系数ψ=19.7,换热管壁厚δ=0.001m,换热管导热系数λ=39W/(m2.℃),气侧污垢系数rk=0,水侧污垢系数rl=0,计算换热器传热系数K,代入各数值计算:设定二,气侧污垢系数rk=0,水侧污垢系数rl=0.000172m2.℃/W(洁净自来水时所取的污垢系数),其余条件与设定一样,代入计算:设定三,气侧污垢系数rk=0.000172m2.℃/W(常压空气),水侧污垢系数rl=0.000172m2.℃/W(洁净自来水时所取的污垢系数),其余条件与设定一样,代入计算:比较设定一和设定二,不难得出水侧取污垢热阻后的传热系数是没有考虑污垢热阻时的传热系数的0.85倍,比较设定一和设定三,可知气侧和水侧都取常规污垢热阻时的传热系数是没有考虑污垢热阻时的传热系数的0.84倍,这说明原来习惯上取的0.85的系数是合适的,同时还说明我们管片式热热器计算中气侧的污垢热阻比水侧的污垢热阻对传热系数的影响小,气侧污垢热阻对总体传热系数的影响可以忽略不计,也就是说管外污垢热阻比管内污垢热阻的影响小。
金属导热系数表(W/mK):银429铜401金317铝237铁80锡67铅34.8常用材料导热系数(20℃)——λ(w/m。
k)晨怡热管2008-5—2 15:03:49 名称λ(w/m。
k)F4、F460.19~0。
25聚苯乙烯0.04PVC0.14~0。
15PP0。
21~0.26PE0.42有机玻璃0。
14~0.20泡沫0。
045木材(横) 0。
14~0。
17(纵)0.38散珍珠岩0.042~0。
08水泥珍珠岩0.07~0.09石棉0.15混凝土 1.2885%MgO0.07玻璃0.52~1。
01水垢1。
3~3.1搪瓷0。
87~1。
16耐火砖1。
06普通砖0.7~0.8银419锌112钛14.63锡64铅35镍90钢36~54铸铁42~90钝铜381黄铜118青铜71纯铝218++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++铸铝138~147不锈钢17空气温度[10^-2(w/m.k)]100K 0.93150K 1.38200K1。
80250K 2.21300K2。
62350K3。
00400K 3.38水温度w/m。
k0℃0.5010℃0。
5820℃0。
6030℃0.6240℃0。
6450℃0。
6560℃0.6670℃0。
6780℃0.68水蒸汽0.023硫酸5~25%0。
51~0。
4725~50%0.47~0。
41+++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++导热系数导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用°C代替).导热系数与材料的组成结构、密度、含水率、温度等因素有关。
非晶体结构、密度较低的材料,导热系数较小.材料的含水率、温度较低时,导热系数较小。
导热系数、传热系数、热阻值概念及热工计算方法导热系数λ[W/(m.k)]:导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。
导热系数可通过保温材料的检测报告中获得或通过热阻计算。
传热系数K [W/(㎡?K)]:传热系数以往称总传热系数。
国家现行标准规范统一定名为传热系数。
传热系数K 值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。
传热系数可通过保温材料的检测报告中获得。
热阻值R(m.k/w):热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。
单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。
传热阻:传热阻以往称总热阻,现统一定名为传热阻。
传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。
(节能)热工计算:1、围护结构热阻的计算单层结构热阻: R=δ/λ式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)]多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn式中: R1、R2、---Rn—各层材料热阻(m.k/w)δ1、δ2、---δn—各层材料厚度(m)λ1、λ2、---λn—各层材料导热系数[W/(m.k)]2、围护结构的传热阻R0=Ri+R+Re式中: Ri —内表面换热阻(m.k/w)(一般取0.11)Re —外表面换热阻(m.k/w)(一般取0.04)R —围护结构热阻(m.k/w)3、围护结构传热系数计算K=1/ R0式中: R0—围护结构传热阻外墙受周边热桥影响条件下,其平均传热系数的计算Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3)式中:Km—外墙的平均传热系数[W/(m.k)]Kp—外墙主体部位传热系数[W/(m.k)]Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m.k)]Fp—外墙主体部位的面积Fb1、Fb2、Fb3—外墙周边热桥部位的面积4、单一材料热工计算运算式①热阻值R(m.k/w) = 1 / 传热系数K [W/(㎡?K)]②导热系数λ[W/(m.k)] = 厚度δ(m) / 热阻值R(m.k/w)③厚度δ(m) = 热阻值R(m.k/w) * 导热系数λ[W/(m.k)]④厚度δ(m) = 导热系数λ[W/(m.k)] / 传热系数K [W/(㎡?K)]5、围护结构设计厚度的计算厚度δ(m) = 热阻值R(m.k/w) * 导热系数λ[W/(m.k)] *修正系数(见下表)R值和λ值是用于衡量建筑材料或装配材料热学性能的两个指标。
换热器设计中污垢热阻对设计的影响发布时间:2009-05-25张平张蔚兰(湖北登峰换热器有限公司湖北大冶435100)【摘要】通过设定污垢系数的方法论证了污垢系数对换热器设计的影响。
要求用户在提出污垢系数时应当合理。
合理的污垢系数对换热器的优化设计、降低成本有重大决定作用。
【关键词】换热器污垢热阻污垢系数换热系数在当前换热器市场日益激烈的竞争中,一个问题日益突出,应当引起足够的重视,那就是污垢系数问题。
污垢系数,即换热器使用过程中污垢对换热产生的影响程度。
由于换热器传热面本身导热系数很大,其热阻通常可忽略。
但如果壁面上结有污垢,则对传热性能和压降影响很大,其热阻有时可达到起控制作用的数量级。
据报道,一台结垢严重的冷凝器,其有效的传热面积仅为清洁状态的1/2。
因此,在换热器设计中必须考虑污垢热阻对传热性能的影响。
1 传热系数的计算在实际工作中,对于污垢系数的选用,有三套标准:一种标准为用户在设计换热器时就明确提出的标准数值,参考国家标准,针对工业用水、循环冷却水和洁净自来水分别提出污垢系数要求;第二种为项目技术人员提出的标准,由于担心换热器运行时传热性能达不到要求,故将污垢热阻提得很大;第三种为换热器设计单位提出的参考值,在以往换热器设计中,用户一般习惯不提污垢热阻的要求,在换热器设计计算过程中不考虑污垢热阻的影响,只在最后取传热系数时取0.85 的系数(即取计算值的85%)作为考虑污垢热阻后的最终传热系数。
对于实际选用的污垢系数标准是否合理,下面以常用的一种冷却元件做一个计算比较,以便共同探讨:设定一,气侧换热系数hk=65.5 W/(m2.℃),水侧换热系数hl=7353 W/(m2.℃),肋化系数ψ=19.7,换热管壁厚δ=0.001m,换热管导热系数λ=39W/(m2 .℃),气侧污垢系数rk=0,水侧污垢系数rl=0,计算换热器传热系数K,代入各数值计算:设定二,气侧污垢系数rk=0,水侧污垢系数rl=0.000172m2.℃/W(洁净自来水时所取的污垢系数),其余条件与设定一样,代入计算:设定三,气侧污垢系数rk= 0.000172 m2 .℃/W(常压空气),水侧污垢系数rl=0.000172 m2 .℃/W(洁净自来水时所取的污垢系数),其余条件与设定一样,代入计算:比较设定一和设定二,不难得出水侧取污垢热阻后的传热系数是没有考虑污垢热阻时的传热系数的0.85 倍,比较设定一和设定三,可知气侧和水侧都取常规污垢热阻时的传热系数是没有考虑污垢热阻时的传热系数的0 . 8 4 倍,这说明原来习惯上取的0.85 的系数是合适的,同时还说明我们管片式热热器计算中气侧的污垢热阻比水侧的污垢热阻对传热系数的影响小,气侧污垢热阻对总体传热系数的影响可以忽略不计,也就是说管外污垢热阻比管内污垢热阻的影响小。
高炉冷却的基础知识第一节高炉冷却理论常识一. 高炉冷却的目的高炉冷却的目的在于增大炉衬内的温度梯度,致使1150℃等温面远离高炉炉壳,从而保护某些金属结构和混凝土构件,使之不失去强度。
使炉衬凝成渣皮,保护甚至代替炉衬工作,从而获得合理炉型,延长炉衬工作能力和高炉使用寿命。
高炉冷却是形成保护性渣皮、铁壳、石墨层的重要条件。
高炉常用的冷却介质有:水、风、汽水混合物。
根据高炉各部位工作条件,炉缸、炉底的冷却目的主要是使铁水凝固的1150℃等温面远离高炉壳,防止炉底、炉缸被渣铁水烧漏。
而炉身冷却的目的是为了保持合理的操作炉型和保护炉壳。
二. 高炉冷却的方式目前国内高炉采用的冷却方式有三种:1. 工业水开路循环冷却系统2. 汽化冷却系统3. 软水密闭循环冷却系统三.冷却原理冷却水通过被冷却的部件空腔,并从其表面将热量带走,从而使冷却水的自身温度提高。
t1 ┏━━━┓ t2水——→┃冷却件┃——→水┗━━━┛1.自然循环汽化冷却工作原理:利用下降管中的水和上升管中的汽水混合物的比重不同所形成的压头,克服整个循环过程中的阻力,从而产生连续循环,汽化吸热而达到冷却目的。
2.软水密闭循环冷却工作原理:它是一个完全封闭的系统,用软水(采用低压锅炉软水即可)作为冷却介质,其工作温度50~60℃(实践经验40~45℃)由循环泵带动循环,以冷却设备中带出来的热量经过热交换器散发于大气。
系统中设有膨胀罐,目的在于吸收水在密闭系统中由于温度升高而引起的膨胀。
系统工作压力由膨胀罐内的N2压力控制,使得冷却介质具有较大的热度而控制水在冷却设备中的汽化。
3.工业水开路循环冷却工作原理:由动力泵站将凉水池中的水输送到冷却设备后,自然流回凉水池或冷却塔,把从冷却设备中带出的热量散发于大气。
系统压力由水泵供水能力大小控制。
四.冷却方式的优缺点高炉技术进步的特点,表现为高炉炼铁已发展成为较成熟的技术。
从近几年高炉技术进步的发展方向看,突出的特点是大型化、高效化和自动化。