第7讲最优化问题.pdf
- 格式:pdf
- 大小:8.28 KB
- 文档页数:6
最优化问题——梯度下降法1、⽆约束最优化问题求解此问题的⽅法⽅法分为两⼤类:最优条件法和迭代法。
2、最优条件法我们常常就是通过这个必要条件去求取可能的极⼩值点,再验证这些点是否真的是极⼩值点。
当上式⽅程可以求解的时候,⽆约束最优化问题基本就解决了。
实际中,这个⽅程往往难以求解。
这就引出了第⼆⼤类⽅法:迭代法。
最优条件法:最⼩⼆乘估计3、迭代法(1)梯度下降法(gradient descent),⼜称最速下降法(steepest descent)梯度下降法是求解⽆约束最优化问题的⼀种最常⽤的⽅法。
梯度下降法是迭代算法,每⼀步需要求解⽬标函数的梯度向量。
必备条件:函数f(x)必须可微,也就是说函数f(x)的梯度必须存在优点:实现简单缺点:最速下降法是⼀阶收敛的,往往需要多次迭代才能接近问题最优解。
算法A.1(梯度下降法)输⼊:⽬标函数f(x),梯度函数g(x)=▽f(x),计算精度ε;输出:f(x)的极⼩点x*总结:选取适当的初值x(0),不断迭代,更新x的值,进⾏⽬标函数的极⼩化,直到收敛。
由于负梯度⽅向是使函数值下降最快的⽅向,在迭代的每⼀步,以负梯度⽅向更新x的值,从⽽达到减少函数值的⽬的。
λk叫步长或者学习率;梯度⽅向g k=g(x(k))是x=x(k)时⽬标函数f(x)的⼀阶微分值。
学习率/步长λ的确定:当f(x)的形式确定,我们可以通过求解这个⼀元⽅程来获得迭代步长λ。
当此⽅程形式复杂,解析解不存在,我们就需要使⽤“⼀维搜索”来求解λ了。
⼀维搜索是⼀些数值⽅法,有0.618法、Fibonacci法、抛物线法等等,这⾥不详细解释了。
在实际使⽤中,为了简便,也可以使⽤⼀个预定义的常数⽽不⽤⼀维搜索来确定步长λ。
这时步长的选择往往根据经验或者通过试算来确定。
步长过⼩则收敛慢,步长过⼤可能震荡⽽不收敛。
如下图:当⽬标函数是凸函数时,梯度下降法的解是全局最优解。
但是,⼀般情况下,往往不是凸函数,所以其解不保证是全局最优解。
最优化问题最优化问题(一)例1:一只平底锅上只能剪两只饼。
用它剪1只饼需要2分钟(正面、反面各1分钟)。
问剪3只饼需要几分钟?怎样剪?例2:6个人各拿一只水桶到水龙头接水。
水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟。
现在只有这一个水龙头可用,问怎样安排这6个人的打水次序,可使他们总的等候最短?这个最短时间是多少?例3:小红放学回家,想让爸爸、妈妈下班后就能吃上晚饭。
她准备做大米饭和炒鸡蛋。
小红家有两个炉灶。
估计一下,洗锅要用1分钟,淘米要用5分钟,做大米饭要用30分钟,打蛋要用1分钟,洗炒勺要用1分钟,烧油要1分钟,炒鸡蛋要3分钟。
你认为最合理的安排要几分钟能做好饭菜?例4:在公路上,每隔100千米有一个仓库,共有5个仓库。
1号仓库里有10吨货物,2号仓库里有20吨货物,5号仓库里有40吨货物,其余两个仓库都是空的。
现在想把所有的货物集中存放在一个仓库里,若每吨货物运输一千米要0.5元运输费,那么至少要花费多少元运费才行?例5:沿铁路有5个工厂,A,B,C,D,E(如图),各厂每天都有10吨货物要外运。
现在想建一座车站,使这5个工厂的货物运到车站的行程总和越小越好。
车站应建在何处?如果在E的右侧增加一个工厂,车站建在何处总行程最小呢?例6:在公路干线的附近,有5个工厂A,B,C,D,E(如图),各厂每天都有10吨货物要存库。
现在想在公路干线上建一座库房,使这5个工厂的货物运到库房的行程总和越小越好,库房应建在何处?例7:工地上有手推车20辆,其中10辆从A1到B1运垃圾,要60车次运完。
另外10辆从A2到B2运砖头,要40车次运完。
工地上的可行道路及路程如图(单位:米)所示。
有人说上面的安排不合理,因为跑空车的路程还可以更少些。
那么,怎样安排才算合理呢?【练习题】1、有7个满杯水、7个半杯水和7个空杯。
不许倒水,你能把这些东西平均分给3个人,使得每人有7只杯子和3杯半水吗?2、有8个人在交通事故中受伤,救援人员1人可以救护2人,而1辆救护车只可以坐4个人。
(六年级)备课教员:×××第七讲最优化问题一、教学目标: 1. 通过简单事例,初步体会统筹思想在实际问题中的应用。
2. 在各种方案中寻求一个最合理,最省事,最节约的方案。
二、教学重点: 1. 通过观察分析、合作探究让学生感受用不同的方法,进行有条理安排的数学统筹方式。
三、教学难点: 1. 让学生经历探索统筹策略的过程,建立统筹思想。
四、教学准备:PPT、8根火柴棒或8枚棋子五、教学过程:第一课时(50分钟)一、导入(5分)师:同学们,你们都是6年级的学生了,平时是不是会帮助爸爸妈妈做家务呢?生:……师:今天,米德和卡尔也要帮助阿博士做事情。
我们来看看他们要做些什么呢?(出示PPT)(与学生初步探讨简单的时间最优化问题)师:这就是我们生活中最常遇见的最优化问题,在解决该类型生活问题我们需要观察分析,有时候还需要通过列举法,一一比较,找出最优化方法。
这节课我们就来学习下吧。
【板书课题:最优化问题】二、探索发现授课(40分)(一)例题1:(13分)把78拆成2个质数之和,它们最大的积是多少?师:同学们,还记得什么是质数吗?最小的质数是?最小的合数是?(简单复习质数、合数等数的概念)生:……师:把78拆成2个质数之和有几种拆法呢,同学们动手试试。
(巡视学生的列举情况,培养学生的细心习惯及观察学生的性格特点)生:……师:我们可以从小到大,一一列举。
(5,73)、(7,71)、(11,67)、(17,61)、(19,59)、(31,47)、(37,41)。
师:同学们,自己看看有没有遗漏的呢?生:……师:同学们,把这些组合都乘积都算出来看看,有什么发现吗?(让学生通过自身实践努力,发现数学规律)生:……师:不错,两个数的和一定,两个数的差越小,它们的积越大。
板书:78=37+4137×41=1517答:它们最大的积是1517。
练习1:(6分)把152拆成2个质数之和,它们最大的积是多少?分析:通过列举法,找出最接近的两个质数组合,它们最大的积就算出来了。
第7讲数学好玩一.设计秋游方案最优化问题:最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容.下面我们就最优化问题做出汇总分析.最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处.但解决这类问题需要的基础知识相当广泛,很难做到一一列举.二.图形中的规律事物的间隔排列规律三.尝试与猜测鸡兔同笼:方法:假设法,方程法,抬腿法,列表法公式1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数;总只数-鸡的只数=兔的只数公式2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数;总只数-兔的只数=鸡的只数公式3:总脚数÷2-总头数=兔的只数;总只数-兔的只数=鸡的只数公式4:鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2;兔的只数=鸡兔总只数-鸡的只数公式5:兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2;鸡的只数=鸡兔总只数-兔总只数公式6:(头数x4-实际脚数)÷2=鸡公式7:4×+2(总数-x)=总脚数(x=兔,总数-x=鸡数,用于方程)公式8:鸡的只数:兔的只数=兔的脚数-(总脚数÷总只数):(总脚数÷总只数)-鸡的脚数.题型一:简单规划问题【典例1】(永州模拟)小芳去文具市场买钢笔,每支钢笔零售价为5元,但市场规定,5支或5支以上可以批发,批发价为每支4元.小芳要买3支钢笔,可以怎样买了(请写出你的购买方案和理由)【典例2】(长沙模拟)公园里有红、橙、黄、蓝、紫五种颜色的鲜花.用其中三种颜色的鲜花组成一个大花丛,另两种颜色的鲜花组成一个小花丛.上述各色花的栽种面积依次相当于大花丛面积的12、13、14、15和16.请问:小花丛是由哪两种颜色的鲜花组成的?简述理由.题型二:事物的间隔排列规律【典例1】(长沙)如图所示,按三个图的顺序,第四个图应该是ABCD 的( )A .B .C .D .4.(济南期末)找规律。
第7讲最优化问题
一、知识要点
在日常生活和生产中,我们经常会遇到下面的问题:完成一件事情,怎样
合理安排才能做到用的时间最少,效果最佳。
这类问题在数学中称为统筹问题。
我们还会遇到“费用最省”、“面积最大”、“损耗最小”等等问题,这些问
题往往可以从极端情况去探讨它的最大(小)值,这类问题在数学中称为极值
问题。
以上的问题实际上都是“最优化问题”。
二、精讲精练
【例题1】用一只平底锅煎饼,每次只能放两个,剪一个饼需要2分钟(规定正反面各需要1分钟)。
问煎3个饼至少需要多少分钟?
练习1:
1、烤面包时,第一面需要2分钟,第二面只要烤1分钟,即烤一片面包需要3分钟。
小丽用来烤面包的架子,一次只能放两片面包,她每天早上吃3片面包,至少要烤多少分钟?
2、用一只平底锅烙大饼,锅里只能同时放两个。
烙熟大饼的一面需要3分钟,现在要烙3个大饼,最少要用几分钟?
1
【例题2】妈妈让小明给客人烧水沏茶。
洗水壶需要1分钟,烧开水需要15分钟,洗茶壶需要1分钟,洗茶杯需要1分钟。
要让客人喝上茶,最少需要多少分钟?
练习2:
1、小虎早晨要完成这样几件事:烧一壶开水需要10分钟,把开水灌进热
水瓶需要2分钟,取奶需要5分钟,整理书包需要4分钟。
他完成这几件事最少需要多少分钟?
2、小强给客人沏茶,烧开水需要12分钟,洗茶杯要2分钟,买茶叶要8 分钟,放茶叶泡茶要1分钟。
为了让客人早点喝上茶,你认为最合理的安排,
多少分钟就可以了?
2。