第22章总结提升
- 格式:ppt
- 大小:2.85 MB
- 文档页数:8
九年级上册22章数学知识点总结数学是一门抽象而精确的科学,它渗透到我们生活的各个方面,为我们提供了解决问题的方法和工具。
在初中的数学学习过程中,我们接触到了许多新的知识点和概念。
本文将对九年级上册22章的数学知识点进行总结,帮助同学们更好地复习和理解这些内容。
一、函数与方程在这一章中,我们学习了函数与方程的基本概念和性质。
函数是一种特殊的关系,它将一个数的集合映射到另一个数的集合。
我们学习了如何表示函数,如何求函数的定义域和值域,以及如何求函数的逆函数。
方程则是等式的一种特殊形式,它含有未知数,并且要求找出使等式成立的未知数的值。
我们学习了如何解一元一次方程和一元二次方程,并应用它们解决实际问题。
二、平面向量平面向量是描述空间中物体位置和方向的工具。
我们学习了如何表示平面向量、如何进行向量的运算,包括向量的加、减、数量乘和点乘。
平面向量的应用很广泛,比如在力学中描述物体受力的情况,在几何中描述图形的性质等。
通过学习平面向量的知识,我们能够更好地理解和解决相关问题。
三、三角形三角形是几何学中最基本的图形之一,也是我们生活中常见的图形。
我们学习了三角形的基本性质,包括角的性质、边的关系以及外角和内角的关系。
我们还学习了三角形的各种分类,如等腰三角形、等边三角形、直角三角形等。
通过熟练掌握这些知识,我们可以更好地分析和解决涉及到三角形的问题。
四、平面几何运动平面几何运动描述了平面上的图形在平移、旋转和对称等运动中所保持的性质。
我们学习了平面几何运动的基本概念和性质,如平移的性质、旋转的性质以及对称的性质。
这些运动在几何学中扮演着重要的角色,通过学习平面几何运动的知识,我们可以更好地理解和分析几何问题。
五、概率与统计概率与统计是数学中非常实用的分支,它能够帮助我们描述和分析不确定性的现象。
我们学习了概率的基本概念和性质,如事件、概率、样本空间等。
我们还学习了统计的基本方法和思想,如数据的收集、整理和表示方式等。
二次函数复习知识点一、二次函数概念:1.二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a≠0,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数y=ax2+bx+c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次多项式。
(①含自变量的代数式是整式,②自变量的最高次数是2,③二次项系数不为0.)⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. y=ax2的性质:2. y=ax2+k的性质:(k上加下减)3. y=a(x-h)2的性质:(h左加右减)4. y =a (x -h)2+k 的性质:5. y =ax2+bx+c 的性质:三、二次函数的图象与各项系数之间的关系1. 二次项系数a.(a 决定了抛物线开口的大小和方向)二次函数2y ax bx c =++中,a 作为二次项系数,显然a ≠0 ① 当0a >时,抛物线开口向上,当0a <时,抛物线开口向下;②a 的绝对值越大,开口越小,反之a 的绝对值越小,开口越大。
总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b (a 和b 共同决定抛物线对称轴的位置).抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;② (即a 、b 同号)时,对称轴在y 轴左侧;③ (即a 、b 异号)时,对称轴在y 轴右侧.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”3. 常数项c(c 决定了抛物线与y 轴交点的位置)⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 四、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)五、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.七、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.八、二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠),适用条件:已知抛物线上三点的坐标,一般选用一般式;2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠),适用条件:已知图像上点两坐标,且其中一点为抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 交点式(两根式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标), 适用条件:已知图像上三点坐标,其中两点为抛物线与x 轴的两个交点(1x ,0),(2x ,0),一般选用交点式;九、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,a b ac y 442-=最值。
八年级生物22章知识点总结归纳在中学生物课本中,第22章主要讲述了生物多样性及其保护。
本文将对该章节的重要知识点进行总结归纳。
一、生物多样性的含义生物多样性指的是地球上生物种类的丰富程度。
生物多样性中包括了生物的遗传多样性、物种多样性和生态系统多样性。
生物多样性的保护对于生态平衡的维持和人类的发展都具有重要的意义。
二、生物多样性的现状当前,全球生物多样性正面临着严峻的挑战。
自然景观破坏、森林砍伐、气候变化、生物入侵等因素影响着各地的生态平衡,导致了生物种类的灭绝和生态系统的崩溃。
因此,生物多样性保护成为了全球的热点问题。
三、生物多样性的保护方法1. 保护重点区域:通过对特定地区的保护,来保障物种在该区域内的生存和繁殖。
2. 物种保护:重点关注保护濒危物种和珍稀物种。
3. 保护生态系统:重点关注生态系统的整体保护,通过恢复和重建生态系统来保护生物多样性。
4. 面向公众的教育和宣传:通过宣传教育的方式,增强公众对生物多样性保护的重视和认识。
5. 生态补偿:对破坏生态系统的个体或群体进行经济上的惩罚,以减少人类对生态环境的破坏。
四、生物多样性的价值生物多样性是地球上生命的基础,同时也是人类社会发展的重要条件之一。
保护生态平衡和保护地球上的生物多样性是人类的责任和担当。
生物多样性同人类社会的稳定和发展息息相关,对未来的可持续发展也具有重要的影响。
本文对生物多样性及其保护的知识点进行了总结归纳,希望能够帮助广大学生更好地掌握该章节的知识。
同时也希望更多的人能够关注生态环境保护,从自身做起,为保护地球上的生物多样性贡献自己的力量。
八下第22章知识点总结平行四边形定义&性质1.平行四边形是中心轴对称图形,他的对称中心是两条对角线的交点2.平行四边形的对边相等,对角相等3.平行四边形的对角线互相平分判定1.一组对边平行且相等的四边形是平行四边形例题(1)解:∵BE∥DF∴∠BEF=∠EFD∴∠AEB=∠DFC由题意得:AB∥DC且AB=DC∴∠BAE=∠ACD在 ABE与 CDF中∠BEA=∠DFC∠BAE=∠DCFAB=CD∴FD=BE∴四边形BEFD为平行四边形(2)解:连接BD交AC于O∵AB⊥AC,AB=4,BC=2√∴AC=6∴AO=3∵BEDF为矩形∴BO=EO=3∵AB=4,∠BAE=90°∴BO=5∵AO=BO∴AE=5-3=2三角形的中位线定义1.三角形的中位线平行于第三边且等于第三边的一般例题CDEM F G NA BBD=AC,M、N分别为AD、BC的中点,MN分别交AC、BD于F、G。
求证:EF=EG证明:取DC中点H,连接MH,NH∵M,H为DA,DC中点∴MH=1/2AC且MH∥AC;HN=1/2BD且HN∥BD∵BD=AC∴MH=HN∴∠HMN=∠HNM∴∠EFG=∠EGF∴EF=EG定义&性质1.矩形既是中心对称图形,也是轴对称图形2.矩形的四个内角都是直角,矩形的两条对角线相等判定1.有三个角是直角的四边形是矩形2.对角线相等的平行四边形是矩形例题C在矩形ABCD中,AE平分∠BAD,∠CAE=15°。
求∠BOE的度数?解:∵AE平分∠BAD∴∠BAE=45°∵∠EAO=15°∴∠BAO=60°∴∠OBA=60°∴∠OBE=30°∵∠BAE=45°∴∠BEA=∠BAE=45°∴∴AB=BE∵AB=BO∴BO=BE∴∠BOE=75°定义&性质1.菱形既是中心对称图形,也是轴对称图形。
九年级数学上册第二十二章二次函数考点总结单选题1、若y=(m+1)x m2−6m−5是二次函数,则m= ()A.-1B.7C.-1或7D.以上都不对答案:B分析:令x的指数为2,系数不为0,列出方程与不等式解答即可.由题意得:m2-6m-5=2;且m+1≠0;解得m=7或-1;m≠-1,∴m=7,故选:B.小提示:利用二次函数的定义,二次函数中自变量的指数是2;二次项的系数不为0.2、已知抛物线y=x2+bx+c与x轴的两个交点之间的距离为6,对称轴为x=3,则抛物线的顶点P关于x轴对称的点P′的坐标是()A.(3,9)B.(3,−9)C.(−3,9)D.(−3,−9)答案:A分析:根据抛物线y=x2+bx+c与x轴两个交点间的距离为6.对称轴为直线x=3,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为6,对称轴为直线x=3,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=36,−b=3,2×1∴(﹣b)2﹣4×c=36,b=﹣6,解得:c=0,∴抛物线的解析式为y=x2﹣6x=(x﹣3)2﹣9,∴顶点P的坐标为(3,﹣9),∴点P关于x轴的对称点的坐标是(3,9),故选:A.小提示:本题考查抛物线与x轴的交点、二次函数的性质、关于x轴对称的点的坐标特点,解答本题的关键是求出点P的坐标,利用二次函数的性质解答.3、已知a是不为0的常数,函数y=ax和函数y=﹣ax2+a在同一平面直角坐标系内的图象可以是()A.B.C.D.答案:C分析:根据题意分a>0,a<0两种情况讨论,结合函数图象即可求解.解:A.正比例函数中a<0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故A 不正确;B.正比例函数中a>0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故B不正确;C.正比例函数中a>0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,故C正确;D. .正比例函数中a<0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,矛盾,故D不正确;故选C小提示:本题考查了正比例函数与二次函数的图象的性质,掌握正比例函数与二次函数的图象的性质是解题的关键.4、如图,已知开口向下的抛物线y =ax 2+bx +c 与x 轴交于点(−1,0)对称轴为直线x =1.则下列结论:①abc >0;②2a +b =0;③函数y =ax 2+bx +c 的最大值为−4a ;④若关于x 的方数ax 2+bx +c =a +1无实数根,则−15<a <0.正确的有( )A .1个B .2个C .3个D .4个答案:C分析:由图象可知,图像开口向下,a <0,对称轴为x =1,故−b 2a =1,故b >0,且b =−2a ,则2a +b =0 图象与y 轴的交点为正半轴,则c >0,由此可知abc <0,故①错误,由图象可知当x =1时,函数取最大值,将x =1,代入y =ax 2+bx +c ,中得:y =a +b +c ,计算出函数图象与x 轴的另一交点为(3,0)设函数解析式为:y =a(x −x 1)(x −x 2),将交点坐标代入得化简得:y =ax 2−2ax −3a ,将x =1,代入可得:y =a −2a −3a =−4a ,故函数的最大值为-4a ,、ax 2+bx +c =a +1变形为:ax 2+bx +c −a −1=0要使方程无实数根,则b 2−4a(c −a −1)<0,将c =-3a ,b =−2a ,代入得:20a 2+4a <0,因为a <0,则20a +4>0,则a >−15,综上所述−15<a <0,结合以上结论可判断正确的项. 解:由图象可知,图像开口向下,a <0,对称轴为x =1,故−b 2a =1,故b >0,且b =−2a ,则2a +b =0故②正确,∵图象与y 轴的交点为正半轴,∴c >0,则abc <0,故①错误,由图象可知当x =1时,函数取最大值,将x =1,代入y =ax 2+bx +c ,中得:y =a +b +c ,由图象可知函数与x 轴交点为(﹣1,0),对称轴为将x =1,故函数图象与x 轴的另一交点为(3,0),设函数解析式为:y =a(x −x 1)(x −x 2),将交点坐标代入得:y =a(x +1)(x −3),故化简得:y =ax 2−2ax −3a ,将x =1,代入可得:y =a −2a −3a =−4a ,故函数的最大值为-4a ,故③正确,ax 2+bx +c =a +1变形为:ax 2+bx +c −a −1=0要使方程无实数根,则b 2−4a(c −a −1)<0,将c =-3a ,b =−2a ,代入得:20a 2+4a <0,因为a <0,则20a +4>0,则a >−15,综上所述−15<a <0,故④正确,则②③④正确,故选C .小提示:本题考查二次函数的一般式,二次函数的交点式,二次函数的最值,对称轴,以及交点坐标掌握数形结合思想是解决本题的关键.5、若y =(a ﹣2)x 2﹣3x +2是二次函数,则a 的取值范围是( )A .a ≠2B .a >0C .a >2D .a ≠0答案:A分析:根据二次函数的二次项系数不为0可得关于a 的不等式,解不等式即得答案.解:由题意得: a −2≠0,则a ≠2.故选:A .小提示:本题考查了二次函数的定义,属于基础题型,掌握二次函数的概念是关键.6、如图,一抛物线型拱桥,当拱顶到水面的距离为2m 时,水面宽度为4m .那么水位下降1m 时,水面的宽度为( )A .√6mB .2√6mC .(√6−4)mD .(2√6−4)m答案:B分析:结合已知条件先建立适当的坐标系,然后设出解析式,利用点的坐标求得解析式,再将y=−3代入解析式求得相应的x的值,进而求得答案.解:以拱顶为坐标原点建立坐标系,如图:∴设抛物线解析式为:y=ax2,∵观察图形可知抛物线经过点B(2,−2),∴−2=a⋅22,∴a=−1,2∴抛物线解析式为:y=−1x2,2∴当水位下降1米后,即当y=−2−1=−3时,有−1x2=−3,2∴x1=√6,x2=−√6,∴水面的宽度为:2√6m.故选:B.小提示:本题考查了二次函数的应用,根据已知条件建立坐标系从而求得二次函数解析式是解决问题的关键.7、某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x2+60x+800,则利润获得最多为()A.15元B.400元C.800元D.1250元答案:D分析:将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故当x=15时,y有最大值,最大值为1250即利润获得最多为1250元故选:D.小提示:此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.8、已知a<−1,点(a−1,y1),(a,y2),(a+1,y3)都在函数y=3x2−2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y1答案:D分析:先求出抛物线的对称轴,抛物线y=3x2-2的对称轴为y轴,即直线x=0,图象开口向上,当a<-1时,a-1<a<a+1<0,在对称轴左边,y随x的增大而减小,由此可判断y1,y2,y3的大小关系.解:∵当a<-1时,a-1<a<a+1<0,而抛物线y=3x2-2的对称轴为直线x=0,开口向上,∴三点都在对称轴的左边,y随x的增大而减小,∴y1>y2>y3.故选:D.小提示:本题考查的是二次函数图象上点的坐标特点,当二次项系数a>0时,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大;a<0时,在对称轴的左边,y随x的增大而增大,在对称轴的右边,y随x的增大而减小.9、某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y(件)与销售单价x (元)之间满足函数关系式y=−5x+550,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A.90元,4500元B.80元,4500元C.90元,4000元D.80元,4000元答案:B分析:设每月所获利润为w ,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.解:设每月总利润为w ,依题意得:w =y(x −50)=(−5x +550)(x −50)=−5x 2+800x −27500=−5(x −80)2+4500∵−5<0,此图象开口向下,又x ≥50,∴当x =80时,w 有最大值,最大值为4500元.故选:B .小提示:本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.10、下表中列出的是一个二次函数的自变量x 与函数y 的几组对应值:B .这个函数的图象与x 轴无交点C .这个函数的最小值小于-6D .当x >1时,y 的值随x 值的增大而增大答案:C分析:利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断. 解:设二次函数的解析式为y =ax 2+bx +c ,依题意得:{4a −2b +c =6c =−4a +b +c =−6 ,解得:{a =1b =−3c =−4, ∴二次函数的解析式为y =x 2−3x −4=(x −32)2−254,∵a =1>0,∴这个函数的图象开口向上,故A 选项不符合题意;∵△=b 2−4ac =(−3)2−4×1×(−4)=25>0,∴这个函数的图象与x 轴有两个不同的交点,故B 选项不符合题意;∵a =1>0,∴当x =32时,这个函数有最小值−254<−6,故C 选项符合题意;∵这个函数的图象的顶点坐标为(32,−254), ∴当x >32时,y 的值随x 值的增大而增大,故D 选项不符合题意;故选:C .小提示:本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键.填空题11、如图,抛物线y =ax 2+bx +c(a ≠0)与x 轴交于点(−1,0)和点(2,0),以下结论:①abc <0;②4a −2b +c <0;③a +b =0;④当x <12时,y 随x 的增大而减小.其中正确的结论有___________.(填写代表正确结论的序号)答案:①②##②①分析:根据二次函数的对称轴位置和抛物线开口方向确定①③,根据x =-2时判定②,由抛物线图像性质判定④.解:①抛物线的对称轴在y 轴右侧,则ab <0,而c >0,故abc <0,故正确;②x =-2时,函数值小于0,则4a -2b +c <0,故正确;③与x 轴交于点(−1,0)和点(2,0),则对称轴x =−b 2a =−1+22=−12,故a =b ,故③错误; ④当x <12时,图像位于对称轴左边,y 随x 的增大而减大.故④错误;综上所述,正确的为①②.所以答案是:①②.小提示:本题考查了二次函数的图像和性质,要求熟悉掌握函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.12、如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,6),B(1,3),则方程ax2﹣bx﹣c=0的解是_________.答案:x1=﹣3,x2=1分析:根据抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,6),B(1,3),可得方程ax2=bx+c的解为x1=﹣3,x2=1,即可求解.解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,6),B(1,3),∴方程ax2=bx+c的解为x1=﹣3,x2=1,∴ax2﹣bx﹣c=0的解是x1=﹣3,x2=1,所以答案是:x1=﹣3,x2=1.小提示:本题考查了一次函数与抛物线交点问题,理解交点的横坐标即为方程的解是解题的关键.13、已知抛物线y=(x−1)(x−5)与x轴的公共点坐标是A(x1,0),B(x2,0),则x1+x2=_______.答案:6分析:令y=0,可得(x−1)(x−5)=0,解出即可求解.解:∵抛物线y=(x−1)(x−5)与x轴的公共点坐标是A(x1,0),B(x2,0),令y=0,则(x−1)(x−5)=0,解得:x1=1,x2=5,∴x1+x2=1+5=6.所以答案是:6.小提示:本题主要考查了二次函数的图象与x轴的交点问题,熟练掌握二次函数的图象和性质是解题的关键.14、如图,某单位的围墙由一段段形状相同的抛物线形栅栏组成,为了牢固,每段栅栏间隔0.2米设置一根立柱(即AB间间隔0.2米的7根立柱)进行加固,若立柱EF的长为0.28米,则拱高OC为_____米答案:0.64分析:根据抛物线,建立直角坐标系,求出抛物线解析式,即可求得OC的长.解:如图,以点C为坐标系原点,OC所在直线为y轴,建立直角坐标系.设抛物线的解析式为y=ax2(a≠0),由题意可知:点A的横坐标为-0.8,点F的横坐标为-0.6,代入y=ax2(a≠0),有y F=(−0.6)2a=0.36a,y A=(−0.8)2a=0.64a,点A的纵坐标即为OC的长,∴0.36a+0.28=0.64a,解得a=1,∴抛物线解析式为y=x2,y A=(−0.8)2=0.64,故OC的长为:0.64m.小提示:本题考查根据抛物线构建直角坐标系,解决实际问题,熟练掌握二次函数相关知识点是解题的关键.15、已知函数y=mx2+2mx+1在−3⩽x⩽2上有最大值4,则常数m的值为 __.答案:3或−38分析:分两种情况:m>0和m<0分别求y的最大值即可.解:y=mx2+2mx+1=m(x+1)2+1−m.当m>0时,当x=2时,y有最大值,∴4m+4m+1=4,∴m=3;8当m<0时,当x=−1时,y有最大值,∴m−2m+1=4,∴m=−3,或−3.综上所述:m的值为38或−3.故答案是:38小提示:本题考查了二次函数的最值,熟练掌握二次函数的图象及性质,解题时,注意要分类讨论,以防漏解.解答题16、单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x−ℎ)2+k(a<0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:y=a(x−ℎ)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=−0.04(x−9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d1,第二次训练的着陆点的水平距离为d2,则d1______d2(填“>”“=”或“<”).答案:(1)23.20 m;y=−0.05(x−8)2+23.20(2)<分析:(1)先根据表格中的数据找到顶点坐标,即可得出h、k的值,运动员竖直高度的最大值;将表格中除顶点坐标之外的一组数据代入函数关系式即可求出a的值,得出函数解析式;(2)着陆点的纵坐标为t,分别代入第一次和第二次的函数关系式,求出着陆点的横坐标,用t表示出d1和d2,然后进行比较即可.(1)解:根据表格中的数据可知,抛物线的顶点坐标为:(8,23.20),∴ℎ=8,k=23.20,即该运动员竖直高度的最大值为23.20 m,根据表格中的数据可知,当x=0时,y=20.00,代入y=a(x−8)2+23.20得:20.00=a(0−8)2+23.20,解得:a=−0.05,∴函数关系关系式为:y=−0.05(x−8)2+23.20.(2)设着陆点的纵坐标为t,则第一次训练时,t=−0.05(x−8)2+23.20,解得:x =8+√20(23.20−t )或x =8−√20(23.20−t ),∴根据图象可知,第一次训练时着陆点的水平距离d 1=8+√20(23.20−t ),第二次训练时,t =−0.04(x −9)2+23.24,解得:x =9+√25(23.24−t )或x =9−√25(23.24−t ),∴根据图象可知,第二次训练时着陆点的水平距离d 2=9+√25(23.24−t ),∵20(23.20−t )<25(23.24−t ),∴√20(23.20−t )<√25(23.24−t ),∴d 1<d 2.所以答案是:<.小提示:本题主要考查了二次函数的应用,待定系数法求函数关系式,设着陆点的纵坐标为t ,用t 表示出d 1和d 2是解题的关键.17、如图,抛物线y =−x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于C 点,直线BC 方程为y =x −3.(1)求抛物线的解析式;(2)点P 为抛物线上一点,若S △PBC =12S △ABC ,请直接写出点P 的坐标;(3)点Q 是抛物线上一点,若∠ACQ =45°,求点Q 的坐标.答案:(1)y =-x 2+4x -3(2)(3+√52,−1+√52)或(3−√52,−1−√52)或(3+√132,−5+√132)或(3−√132,−5−√132) (3)(72,−54)分析:(1)先根据一次函数解析式求出点B 、C 坐标;再代入y =−x 2+bx +c ,求出b 、c 即可求解;(2)过点A作AN⊥BC于N,过点P作PM⊥BC于M,过点P作PE∥BC,交y轴于E,交抛物线于p1,p2,过点E作EF⊥BC于F,先求出AN=√2,再根据两三角形面积关系,求得PM=√22,从而求得CE=1,则点P是将直线BC向上或向下平移1个单位与抛物线的交点,联立解析式即可求出交点坐标;(3)过点Q作AD⊥CQ于D,过点D作DF⊥x轴于F财富点C作CE⊥DF于E,证△CDE≌△DAD(AAS),得DE=AF,CE=DF,再证四边形OCEF是矩形,得OF=CE,EF=OC=3,然后设DE=AF=n,则CE=DF=OF=n+1,DF=3-n,则n+1=3-n,解得:n=1,即可求出D(2,-2),用待定系数法求直线CQ解析式为y=12x-3,最后联立直线与抛物线解析式,求出交点坐标即可求解.(1)解:对于直线BC解析式y=x-3,令x=0时,y=-3,则C(0,-3),令y=0时,x=3,则B(3,0),把B(3,0),C(0,-3),分别代入y=−x2+bx+c,得{-9+3b+c=0c=−3,解得:{b=4c=−3,∴求抛物线的解析式为:y=-x2+4x-3;(2)解:对于抛物线y=-x2+4x-3,令y=0,则-x2+4x-3=0,解得:x1=1,x2=3,∴A(1,0),B(3,0),∴OA=1,OB=3,AB=2,过点A作AN⊥BC于N,过点P作PM⊥BC于M,如图,∵A (1,0),B (3,0),C (0,-3),∴OB =OC =3,AB =2,∴∠ABC =∠OCB =45°,∴AN =√2,∵S △PBC =12S △ABC , ∴PM =√22,过点P 作PE ∥BC ,交y 轴于E ,过点E 作EF ⊥BC 于F ,则EF = PM =√22,∴CE =1∴点P 是将直线BC 向上或向下平移1个单位,与抛物线的交点,如图P 1,P 2,P 3,P 4,∵B (3,0),C (0,-3),∴直线BC 解析式为:y =x -3,∴平移后的解析式为y =x -2或y =x -4,联立直线与抛物线解析式,得{y =−x 2+4x −3y =x −2 或{y =−x 2+4x −3y =x −4, 解得:{x 1=3+√52y =−1+√52 ,{x 1=3−√52y =−1−√52 ,{x 1=3+√132y =−5+√132 ,{x 1=3−√132y =−5−√132 ,∴P 点的坐标为(3+√52,−1+√52)或(3−√52,−1−√52)或(3+√132,−5+√132)或(3−√132,−5−√132).(3) 解:如图,点Q 在抛物线上,且∠ACQ =45°,过点Q 作AD ⊥CQ 于D ,过点D 作DF ⊥x 轴于F ,过点C 作CE ⊥DF 于E ,∵∠ADC =90°,∴∠ACD =∠CAD =45°,∴CD =AD ,∵∠E =∠AFD =90°,∴∠ADF =90°-∠CDE =∠DCE ,∴△CDE ≌△DAD (AAS ),∴DE =AF ,CE =DF ,∵∠COF =∠E =∠AFD =90°,∴四边形OCEF 是矩形,∴OF =CE ,EF =OC =3,设DE =AF =n ,∵OA =1,∴CE =DF =OF =n +1∴DF =3-n ,∴n +1=3-n解得:n =1,∴DE =AF =1,∴CE =DF =OF =2,∴D (2,-2),设直线CQ 解析式为y =px -3,把D (2,-2)代入,得p =12,∴直线CQ 解析式为y =12x -3,联立直线与抛物线解析式,得{y =12x −3y =−x 2+4x −3解得:{x 1=72y 1=−54 ,{x 2=0y 2=−3 (不符合题意,舍去), ∴点Q 坐标为(72,−54). 小提示:本题属二次函数与一次函数综合题目,考查了用待定系数法求函数解析式,一次函数图象平行,全等三角形的判定与性质,矩形的判定与性质,熟练掌握一次函数与二次函数的图象性质是解题的关键.18、跳绳是一项很好的健身活动,如图是小明跳绳运动时的示意图,建立平面直角坐标系如图所示,甩绳近似抛物线形状,脚底B 、C 相距20cm ,头顶A 离地175cm ,相距60cm 的双手D 、E 离地均为80cm .点A 、B 、C 、D 、E 在同一平面内,脚离地面的高度忽略不计.小明调节绳子,使跳动时绳子刚好经过脚底B 、C 两点,且甩绳形状始终保持不变.(1)求经过脚底B、C时绳子所在抛物线的解析式.(2)判断小明此次跳绳能否成功,并说明理由.答案:(1)y=110x2−90.(2)不成功,理由见解析分析:(1)建立如图所示的坐标系:结合题意可得:D(−30,0),E(30,0),由双手D、E离地均为80cm,可得C 点坐标为:(10,−80),再利用待定系数法求解解析式即可;(2)由175−80=95>80,可得跳绳不过头顶A,从而可得答案.(1)解:建立如图所示的坐标系:结合题意可得:D(−30,0),E(30,0),∵双手D、E离地均为80cm.∴C点坐标为:(10,−80),设抛物线为:y=ax2−80,{0=900a+b−80=100a+b,解得:{a=110b=−90,所以抛物线为y=110x2−90.(2)解:∵y=0.1x²-90,∴顶点为(0,-90).即跳绳顶点到手的距离是90cm,∵175−90=85>80,∴跳绳不过头顶A,∴小明此次跳绳能不成功.小提示:本题考查的是二次函数的实际应用,理解题意,建立合适的坐标系是解本题的关键.。
一、选择题1.设函数()()24310y kx k x k =+++<,若当x m <时,y 随着x 的增大而增大,则m的值可以是( ) A .1B .0C .1-D .2-2.如图等边ABC 的边长为4cm ,点P ,点Q 同时从点A 出发点,Q 沿AC 以1cm/s 的速度向点C 运动,点P 沿A B C --以2cm/s 的速度也向点C 运动,直到到达点C 时停止运动,若APQ 的面积为()2cm S ,点Q 的运动时间为()s t ,则下列最能反映S 与t 之间大致图象是( ).A .B .C .D .3.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个4.若整数a 使得关于x 的分式方程12322ax xx x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12 B .15 C .17 D .205.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标为(1,)n 与y 轴的交点在(0,2)、(0,3) 之间(包含端点).有下列结论:①24ac b <;②30a b +>;③420a b c ++>;④当0y >时,x 的取值范围为13x;⑤当0x >时,y 随着x的增大而减小;⑥若抛物线经过点()12,y -、23,2y ⎛⎫ ⎪⎝⎭、()33,y ,则312y y y <<.其中正确的有( )A .②③⑤B .①③④C .①③⑥D .②③⑥6.已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如表:x ﹣1 0 2 3 4 y5﹣4﹣3下列结论正确的是( ) A .抛物线的开口向下 B .抛物线的对称轴为直线x =2 C .当0≤x ≤4时,y ≥0D .若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 27.如图,在ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ △的面积S 随出发时间t 的函数图象大致是( )A .B .C .D .8.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限9.已知二次函数22236y x ax a a =-+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( ) A .2a <B .1a >-C .12a -<≤D .12a -≤<10.已知二次函数()()2y x p x q =---,若m ,n 是关于x 的方程()()20x p x q ---=的两个根,则实数m ,n ,p ,q 的大小关系可能是( )A .m <p <q <nB .m <p <n <qC .p <m <n <qD .p <m <q <n11.已知抛物线y=-x 2+bx+c 与x 轴交于A,B 两点(A 在原点O 左侧,B 在原点O 右侧),与y 轴交于C 点,且OC=OB,令COAO=m ,则下列m 与b 的关系式正确的是( )A .m=2b B .m=b+1C .m=6bD . m=2b +112.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D .13.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( ) A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>14.二次函数2y ax bx c =++的图象如图所示,下列结论中:①20a b +>;②()a b m am b +≠+(1m ≠的实数);③2a c +>;④在10x -<<中存在一个实数0x 、使得0a bx a+=-其中正确的有( )A .1个B .2个C .3个D .4个15.二次函数2y ax bx c =++的图象如图所示,则下列关于该函数说法中正确的是( )A .0b <B .0c >C .0a b c ++=D .240b ac -<二、填空题16.如图,抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,则不等式2ax mx c n -+<的解集是_____________.17.在ABC 中,A ∠,B 所对的边分别为a ,b ,30C ∠=︒.若二次函数2()()()y a b x a b x a b =+++--的最小值为2a-,则A ∠=______︒. 18.如图,已知二次函数()20y ax bx c a =++≠的图像与x 轴交于点A (3,0)对称轴为直线x =1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x <-1时,y <0;②30a b +>;③2-13a ≤≤-;④248ac ab ->;其中正确的结论有_________.19.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).20.抛物线2(3)y a x m =-+与x 轴的一个交点为(1,0),则关于x 的一元二次方程2(3)0a x m -+=的根为__________.21.若抛物线22y x x c =++与坐标轴有两个交点,则c 应满足的条件是_______. 22.二次函数2y ax bx c =++的部分对应值如下表:x-3 -2 -1 0 1 2 3 4 5 y125-3-4-3512利用二次函数的图象可知,当函数值时,x 的取值范围是______.23.学校公益伞深受师生欢迎,如图为公益伞骨架结构,点A 为伞开关位置,图1完全收拢状态,图2中间状态,图3完全打开状态,撑伞整个过程中,63AB cm =,10CE cm =,2EF DE =,5BF DF =+,DF 长度保持不变,滑动环扣C 、D 相对距离会变化.(1)图1中,A 、G 重合,此时8AC cm =,则DF =______cm .(2)图3中,90EDC ∠=︒,因支架、伞布等作用,弹性钢丝BG 近似变形为抛物线2164y x bx c =-++一部分,则AC =______cm .24.设A (﹣1,y 1),B (0,y 2),C (2,y 3)是抛物线y =﹣x 2+2a 上的三点,则y 1,y 2,y 3由小到大关系为_____.25.写出一个二次函数,其图像满足:①开口向下;②与y 轴交于点(0,3)-,这个二次函数的解析式可以是_______________________.26.如图,在平面直角坐标系xOy 中,抛物线y =-2x 2+bx +c 与x 轴交于A ,B 两点.若顶点C 到x 轴的距离为6,则线段AB 的长为______.三、解答题27.如图,在平面直角坐标系中,点1A ,2A ,3A ,……,n A 和1C ,2C ,3C ,……,n C 均在抛物线2yx 上,点1B ,2B ,3B ,……,n B 在y 轴的正半轴上,若四边形111OA B C ,四边形1222B A B C ,四边形2333B A B C ,……,四边形1n n n n B A B C -都是正方形. (1)分别写出点1A ,1B ,1C 的坐标;(2)分别求出正方形2333B A B C 和正方形1n n n n B A B C -的面积.28.某商场销售一批名牌衬衫,平均每天可售出10件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出1件.(1)若商场平均每天赢利600元,每件衬衫应降价多少元? (2)每件衬衫降价多少元时,商场平均每天赢利最多?29.如图,抛物线2y x 2x 3=-++与x 轴交于A ,B 两点,交y 轴于点C ,点M 抛物线的顶点.(1)连接BC ,求BC 与对称轴MN 的交点D 坐标. (2)点E 是对称轴上的一个动点,求OE CE +的最小值.30.(1)若抛物线23y x x a =++与x 轴只有一个交点,求实数a 的值; (2)已知点()3,0在抛物线()233y x k x k =-++-上,求此抛物线的对称轴.。
九年级数学22章知识点归纳数学一直以来都是学生们头疼的科目之一。
九年级数学的22章知识点是综合性较强的,涵盖了各类数学知识。
在这篇文章里,我们将对这些知识点进行归纳和总结,帮助同学们更好地掌握和理解。
1. 有理数的加减乘除有理数是由整数和分数组成的数。
在这一章节里,我们需要掌握有理数的加减乘除运算法则,包括正数、负数、零的加减乘除规则。
2. 整式加减法整式是由常数项、变量项和它们的乘积所表示的式子。
整式的加减法就是将同类项进行合并,最后化简得到结果。
同类项即指变量的指数和字母完全相同的项。
3. 一元二次方程一元二次方程是指形如ax^2 + bx + c = 0的方程。
在这一章节中,我们需要掌握一元二次方程的解法,包括因式分解法、配方法和公式法。
还需要理解解的个数和解的判别式。
4. 两点间的距离和中点坐标这一节主要是通过坐标系来求两点之间的距离,以及求线段的中点坐标。
我们需要熟练地运用勾股定理和中点公式来解决相关问题。
5. 函数的概念与性质函数是自变量和因变量之间的一种特定关系。
我们需要了解函数的定义、函数图象、函数的增减性和奇偶性等基本概念。
还要学会根据函数的图象来确定函数是否为增减函数和奇偶函数。
6. 线性不等式的解法线性不等式是指形如ax + b < 0或ax + b > 0的不等式。
我们需要掌握线性不等式的解法,包括代数解法和图像解法。
7. 相似三角形相似三角形是指具有相同的形状但是尺寸不同的三角形。
我们需要了解相似三角形的条件和性质,包括等比例边、等角和比例尺等概念。
还需要学会运用相似三角形的性质来解决相关问题。
8. 等腰三角形与等边三角形等腰三角形是指具有两边相等的三角形,等边三角形是指具有三边相等的三角形。
我们需要掌握等腰三角形和等边三角形的性质和判定,以及利用这些性质来解决相关题目。
9. 平行线与比例平行线是指在同一个平面内永远不相交的直线。
我们需要理解平行线的性质和判定方法,包括平行线的定义、判平行线的充分必要条件以及平行线的性质。
第22章生物的遗传和变异1、遗传:生物体亲代与子代子间,子代个体子间在形态结构和生理功能上相似的现象。
它是生物界普遍存在的现象。
2、遗传信息的中心:细胞核3、染色体主要由DNA和蛋白质组成。
人的体细胞中有46条(23对)染色体。
染色体的特点:每一种生物的体细胞内,染色体的数目是一定的,一般还成对出现。
生殖细胞中(精子和卵细胞),染色体是单条存在的。
4、DNA是主要的遗传物质,DNA分子构成双螺旋结构。
5、基因:有特定遗传效应的DNA片段。
每个DNA分子上有许多基因。
6、染色体、DNA、基因三者之间的关系:遗传物质存在于细胞核中的染色体上,它由蛋白质和DNA组成,其中主要的遗传物质是DNA,呈双螺旋结构。
DNA 上有特定遗传效应的片段,叫做基因。
7、遗传性状:可以遗传的生物体的形态特征和生理特征。
例如:人的单眼皮、白化病等。
8、相对性状:同一种生物的同一性状的不同表现类型。
例如:有耳垂与无耳垂;单眼皮与双眼皮;能卷舌与不能卷舌。
9、在人的体细胞中,基因是成对存在的,有显性和隐性之分。
控制显性性状的基因叫做显性基因(用大写字母表示,A、B、D);控制隐性性状的基因叫做隐性基因(用小写字母表示,a、b、d);AA:表现显性性状Aa :表现显性性状aa:表现隐性性状。
注意:隐性基因能够遗传,且aa时能表现出来。
10、如果体细胞内的这对基因,一个是显性基因,另一个是隐性基因,则表现出显性基因所决定的遗传性状。
11、染色体分为常染色体和性染色体;其中常染色体:与性别决定无关的染色体(人体有22对);性染色体:与性别决定有关的染色体。
(1对。
)女性用XX表示,男性用XY表示。
12、男性可以产生两种精子:一种含X染色体,一种含Y染色体。
结论:生男生女主要取决于父亲精子的类型。
生男生女的概率相等。
14、与人类性别决定方式一样的生物还有:鱼类、两栖类、哺乳类。
15、遗传病:由遗传物质发生改变而引起的或由致病基因所控制的疾病。
第22章 二次函数知识点归纳及相关典型题第一部分 基础知识1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5. 二次函数由特殊到一般,可分为以下几种形式: ①2axy =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越大,抛物线的开口越小;a 越小,抛物线的开口越大。
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线ab x 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<a b(即a 、b 异号)时,对称轴在y 轴右侧,“左同右异”.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.10.几种特殊的二次函数的图像特征如下: 函数解析式开口方向对称轴顶点坐标2ax y = 当0>a 时 开口向上 当0<a 时 开口向下0=x (y 轴)(0,0) k ax y +=2 0=x (y 轴) (0, k ) ()2h x a y -=h x =(h ,0) ()k h x a y +-=2h x = (h ,k )c bx ax y ++=2abx 2-= (ab ac a b 4422--,) 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a ac b a c a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121中考回顾1.(天津中考)已知抛物线y=x 2-4x+3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M.平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为( A )A.y=x 2+2x+1B.y=x 2+2x-1C.y=x 2-2x+1D.y=x 2-2x-12.(四川成都中考)在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c 的图象如图所示,下列说法正确的是( B )A. abc<0, b 2-4ac>0B. abc>0, b 2-4ac>0C. abc<0, b 2-4ac<0D. abc>0, b 2-4ac<03.(内蒙古赤峰中考)如果关于x 的方程x 2-4x+2m=0有两个不相等的实数根,那么m 的取值范围是 m<2 .4.(内蒙古赤峰中考)如图,二次函数y=ax 2+bx+c (a ≠0)的图象交x 轴于A ,B 两点,交y 轴于点D ,点B 的坐标为(3,0),顶点C 的坐标为(1,4).备用图(1)求二次函数的解析式和直线BD 的解析式;(2)点P 是直线BD 上的一个动点,过点P 作x 轴的垂线,交抛物线于点M ,当点P 在第一象限时,求线段PM 长度的最大值;(3)在抛物线上是否存在异于B ,D 的点Q ,使△BDQ 中BD 边上的高为2,若存在求出点Q 的坐标;若不存在请说明理由.解:(1)设二次函数的解析式为y=a (x-1)2+4.∵点B (3,0)在该二次函数的图象上, ∴0=a (3-1)2+4,解得:a=-1.∴二次函数的解析式为y=-x 2+2x+3.∵点D 在y 轴上,所以可令x=0,解得:y=3. ∴点D 的坐标为(0,3).设直线BD 的解析式为y=kx+3,把(3,0)代入得3k+3=0,解得:k=-1. ∴直线BD 的解析式为y=-x+3.(2)设点P 的横坐标为m (m>0), 则P (m ,-m+3), M (m ,-m 2+2m+3),PM=-m 2+2m+3-(-m+3)=-m 2+3m=-, PM 最大值为(3)如图,过点Q 作QG ∥y 轴交BD 于点G ,作QH ⊥BD 于点H ,则QH=2设Q(x,-x2+2x+3),则G(x,-x+3),QG=|-x2+2x+3-(-x+3)|=|-x2+3x|.∵△DOB是等腰直角三角形,∴∠3=45°,∴∠2=∠1=45°.∴sin∠1=,∴QG=4.得|-x2+3x|=4,当-x2+3x=4时,Δ=9-16<0,方程无实数根.当-x2+3x=-4时,解得:x1=-1,x2=4,Q1(4,-5),Q2(-1,0).模拟预测1.已知二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是(D)A.k<3B.k<3,且k≠0C.k≤3D.k≤3,且k≠02.若点M(-2,y1),N(-1,y2),P(8,y3)在抛物线y=-x2+2x上,则下列结论正确的是(C)A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2解:x=-2时,y1=-x2+2x=-(-2)2+2×(-2)=-2-4=-6,x=-1时,y2=-x2+2x=-(-1)2+2×(-1)=--2=-2,x=8时,y3=-x2+2x=-82+2×8=-32+16=-16.∵-16<-6<-2,∴y3<y1<y2.故选C.3.已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1·x2=3,则二次函数y=ax2+bx+c(a>0)的图象有可能是()解析:∵x1+x2=4,∴-=4.∴二次函数的对称轴为x=-=2.∵x1·x2=3,=3.当a>0时,c>0,∴二次函数图象交于y轴的正半轴.4.小明在用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…-2 -1 0 1 2 …y…-6-4 -2-2 -2…根据表格中的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=-4.5.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为k=0或k=-1.6.抛物线y=-x2+bx+c的图象如图,若将其向左平移2个单位长度,再向下平移3个单位长度,则平移后的解析式为.解析:由题中图象可知,对称轴x=1, 所以- =1,即b=2.把点(3,0)代入y=-x2+2x+c,得c=3.故原图象的解析式为y=-x2+2x+3,即y=-(x-1)2+4,然后向左平移2个单位,再向下平移3个单位,得y=-(x-1+2)2+4-3,即y=-x2-2x. 答案:y=-x2-2x7.如图①,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1,L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.(1)如图②,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;(3)若抛物线y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.解:(1)∵抛物线L3:y=2x2-8x+4,∴y=2(x-2)2-4.∴顶点为(2,-4),对称轴为x=2,设x=0,则y=4,∴C(0,4).∴点C关于该抛物线对称轴对称的对称点D的坐标为(4,4).(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,-4),∴L4的解析式为y=-2(x-4)2+4.∴L3与L4中y同时随x增大而增大的自变量的取值范围是2≤x≤4.(3)a1=-a2,理由如下:∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上, ∴可以列出两个方程由①+②,得(a1+a2)(m-h)2=0,∴a1=-a2.。