电磁场复习提纲(大连海事大学)
- 格式:doc
- 大小:2.13 MB
- 文档页数:24
5、场论的两个重要定理: 散度定理(高斯定理)性质1旋度的散度恒等于0性质2:标量的梯度的旋度恒等于高斯散度定理和斯托克斯定理。
计算公式:dl=lim —% A/->0 A/du du du—ax H-------- dv + —dza* d 丿nox dy dz dl梯度的表达式: 直角坐标系2、通量的表达式;du du q du-—cos«+—cosp +—cosyox cy uzSuA Va, ------dx:uey zc y c z散度的计算式。
F e n dS:Fzz3、旋度的计算式;旋度的两个重要性质。
4、F z F y F z F y:Fxye xxF x eyyF y■zF z第一早矢量分析1方向导数和梯度的概念;方向导数和梯度的关系;直角坐标系中方向导数和梯度的表达式梯度是一个矢量。
标量场U在某点梯度的模等于该点的最大方向导数,方向为该点具有最大方向导数的方向。
记为gradu 方向导数:标量场u自某点沿某一方向上的变化率标量场u在给定点沿某个方向上的方向导数,是梯度在该方向上的投影。
矢量场在空间任意闭合曲面S 的通量等于该闭合曲面S 所包含体积V 中矢量场的散度的体积分,即斯托克斯定理 矢量场F 沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即6、 无旋场和无散场概念。
旋度表示场中各点的场量与旋涡源的关系。
矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。
矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 场7、 理解格林定理和亥姆霍兹定理的物理意义格林定理反映了两种标量场(区域V 中的场与边界S 上的场之间的关系) 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。
电磁场理论复习指导第一章 矢量分析知识点: ● 矢量代数:()()()A B C B A C C B A ⨯⨯=-()()()A B C B C A C A B⨯=⨯=⨯● 基本概念:场的定义,方向导数、梯度,通量、散度和环量、涡量、旋度 ● 无旋场、无散场及矢量分解定义 以及矢量场的Helmholtz 定理● ▽算子的运算矢量性和微分性,运算规则 ,注意合法运算,两者兼顾。
● 矢量分析中的若干积分定理Guass 定理,Stokes 定理,其他用到会给出2314()r r r r πδ⎛⎫⎛⎫∇=∇= ⎪ ⎪⎝⎭⎝⎭ 30r r ⎛⎫∇⨯= ⎪⎝⎭第二章 静电场知识点:● 静电场的基本定律:基本概念和定律(库仑定律、叠加原理、电场强度、电流密度的定义、点电荷的数学模型、各种分布的电场强度表达式、零级近似)静电场的基本方程:高斯定理和环路定理● 静电场的电位:电位的由来、定义,电位降概念、电位满足的方程(泊松方程和拉普拉斯方程)● 电位的多级展开:单级项和偶级项,点偶极子的物理模型,性质● 存在介质时的静电场:介质极化、极化强度和极化电荷的概念和定义;存在介质时满足的基本方程;本构关系;边界条件(切向电场连续,法向电位移矢量在表面无自由电荷时连续。
电位连续,电位的法向导数在表面无自由电荷时连续),等效思想(三种模型);介质的极化特性(尤其是线性均匀各项同性介质)● 静电场中的导体:基本概念和性质;理想化模型;导体系电容(电容系数等定义和物理意义)互易性 ● 静电场的能量:有无介质时,能量的表达式和物理意义,注意有一个只能表征能量 ● 静电场的求解方法:直接积分法;高斯定理加叠加原理;解泊松方程,注意边界条件和对称性第三章 边值问题的解法知识点:●唯一性定理:概念;重要意义●镜像法:(可直接记忆结果)思路、理论根据、方法;主要是课上所讲几种镜像以及其叠加问题;注意使用镜像法的几个要点(5个)以及对称性●解析函数法:基本概念,保角变换法(指数、对数、幂函数)注意使用条件和单一性区域●分离变量法:定义,解题思路和步骤;直角坐标系需自己记忆,圆柱和球坐标系会给出正交性公式(只考课上所讲几种情况)●格林函数法:基本思想、定义和分类,(只要求解格林函数,无需求解电位分布)●恒定电流场的电场:一般规律:电流和电流密度的定义以及它们之间的关系;电荷守恒定律;焦耳定律;恒定电流场的基本特性;基本方程和边界条件;导电介质中的恒定电流场:欧姆定律;维持恒定电流场的条件;基本方程和边界条件;理想导体在恒定电流场中的特性以及与静电场中导体的对偶性;恒定电流场的求解方法(高斯定理、恒定电流条件;解拉普拉斯方程;电阻的串并联;利用对偶性)一般求解漏电导。
电磁场与微波技术复习提纲第1章重要知识点:直角坐标系下散度、旋度、梯度的计算;两个矢量恒等式;斯托克斯定理。
第2章(1)重要知识点:真空中静电场、恒定电场、恒定磁场的基本方程及相关定理;边界条件;高斯定理求静电场;理解静电场的能量与什么有关。
(2)重要计算题:2.8、2.12第3章重要知识点:记忆麦克斯韦方程、波动方程;在无源区域理想介质中,能根据麦克斯韦方程组推导波动方程;理解位移电流;时变电磁场的边界条件,理想导体表面上介质一侧电场与磁场的特点;坡印廷定理的物理意义、坡印廷矢量;第4章(1)重要知识点:什么叫平面电磁波、均匀平面波,它的特点及电场和磁场的计算;介质中均匀平面波的速度计算公式;波的极化的种类和判断;理解色散效应,哪些波属于色散波;什么叫趋肤效应,趋肤深度与什么因素有关;判断良导体和良介质的根据;均匀平面波对理想导体平面的垂直入射形成驻波。
(2)重要计算题:4.2、4.4、4.5、4.10第5章(1)重要知识点:理解长线的涵义;传输线基本特性参数的定义;均匀无耗传输线的三种工作状态下负载、电压反射系数和驻波比的取值;λ/4、λ/2传输线的特点以及λ/4终端短路和开路传输线的输入阻抗;史密斯圆图的组成和特点;λ/4阻抗变换器的匹配公式、已知输入阻抗,如何利用圆图求其导纳、负载是复阻抗时的接入方式;理解信号源的共轭匹配和阻抗匹配及匹配公式;分贝毫瓦与分贝瓦的换算。
(2)重要计算题:5.7、5.18、5.23、PPT87页例4第6章(1)重要知识点:什么是TEM波、TE波、TM波;矩形波导、圆波导、同轴线、微带线、带状线传输的波型有哪些,它们的主模是什么;矩形波导的传输条件;矩形波导主模场结构图特点、壁面电流分布特点;开辐射缝和测量缝的方法;圆波导的几种主要应用模式;什么叫简并。
(2)重要计算题:6.12、6.16、6.17第7章(1)重要知识点:微波系统中,传输线和微波元件分别等效为什么;波导等效为双线的条件是什么;微波网络参量的两大类型;散射参量的定义方程,理解各参量的物理意义,会根据物理意义求散射参量;无耗、对称、互易网络的S参数间的关系;微波网络工作特性参量有哪些,它们的定义以及是在什么条件下测得的。
电磁场与电磁波复习资料电磁场与电磁波期末复习资料第⼀章⼀、在直线坐标系中,过空间任意⼀点P (X 0,Y 0,Z 0)的三个互相正交的坐标单位⽮量e x ,e y ,e z 分别是x ,y ,和z 增加的⽅向,且遵循右⼿螺旋法则:e x ×e y =e z 、e y ×e z =e x ,e z ×e x =e y⼆、A 与B 的点积为:A ·B = (e x A x +e Y A y +e z A z )·(e x B x +e y B y +e z B z ) = A X B X + A Y B Y +A Z B Z三、A 与B 的叉积为:A XB = (e x Ax+e y A y +e z A z ) X (e x B x +e y B y +e z B z )=e x (A y B Z -A Z B Y ) + e y (A Z B X - A X B Z ) + e z (A X B Y - A Y B X )= x e y z xy xYZ e e A A Az B B B ?? ? ?四、场的⼀个重要属性是他占有⼀个空间,他把物理状态作为空间和时间的函数来描述,⽽且,在此空间区域中,除了有限个点或某些表⾯外,该函数是处处连续的。
若物理状态与时间⽆关,则为静态场;反之,则为动态场或时变场。
五、直⾓坐标系中梯度的表达式为:x y z u u zgrad u e e e x y y=++ 六、哈密顿算符“?”,在直⾓坐标系中: xy z e e e x y z=++??? 七、哈密顿算符?表⽰标量场的梯度u : ()xy z grad u e e e u u x y z=++=? 例 1.3.1已知R = ,R = |R|。
证明:(1)RR R ?=;(2)31()R R R=- ;(3)()'()f R f R ?=-?。
其中:xy z e e e x y z =++???表⽰对x 、y 、z 的运算,''''x y z e e e x y z=++,表⽰对x ’、y ’、z 的运算。
第一章1、电荷和电荷之间的作用力是通过电场传递的。
2、电场强度定义:①没有电场中某P点,置一带正点的实验电荷q0,电场对他的作用力为F,则电场强度(简称场强)E=lim q0→0F/q0②电场密度③电位:在静电场中,沿密闭合路径移动的电荷,电场力所作的功恒为零。
3、均匀球面电荷在球内建立的电场恒为零(判断)4、功只和两端点有关。
电场力所作用的功也是和路径无关的。
5、静电场,电场强度的环路积分恒等于零(判断)(非保守场不等于0,保守场(静电场)恒为零,静电场是保守场)6、等位面和E线是到处正交的。
在场图中,相邻两等位面之间的电位差相等,这样才能表示出电场的强弱。
等位面越密,外场强越大。
7、静电平衡状态:第一,导体内的电场为零,E=0。
第二,静电场中导体必为一等位体,导体表面必为等位面。
————第三,导体表面上的E必定垂直于表面。
第四,导体如带电,则电荷只能分布于其表面(不是分布在内部)8、静电场中的电介质不是导体也不是完全绝缘介质。
9、电介质对电场的影响可归结为极化后极化电荷或电偶极子在真空中产生的作用。
10、任意闭合曲面S上,电场强度E的面积分等于曲面内的总电荷q=∫v pdv的1/e0(希腊字母)倍(v是s限定的体积)11、静电场积分方程:∮S D·ds=∫V pdv微分方程:▽﹒D=p∮l E·dv=0 ▽×E=0 12、D2n-D1n=0E1t=E2t称为静电场中分界上的衔接条件。
n垂直,t水平13、电位——的泊松方程:————在自由电荷密度——的区域内,——(电位——的拉普拉斯方程)(看空间中有无自由电荷)14、在场域的边界面S上给定边界条件的方式有以下类型:①已知场域辩解面S上各点的电位值,即给定————,称为第一类边界条件②已知场域边界面S上各点的电位法向导数值,即给定————,称为第二类边界条件。
③已知场域边界面S上各点电位和电位法向导数的线性组合的值,即给定————,称为第三类边界条件。
电磁场理论复习提纲电磁场理论复习提纲一、矢量分析与场论基础①正交曲线坐标系及变换,拉梅系数;②正交曲线坐标单位矢量及变换关系;③矢量及矢量的基本运算;④场的概念、矢量场和标量场;⑤源的概念、场与源的关系;⑥标量函数的梯度,梯度的意义与性质;⑦矢量场的散度,散度的意义与性质;⑧矢量函数的旋度,旋度的意义与性质⑨正交曲线坐标系中梯度、散度、旋度计算公式;⑩矢量场的基本构成,Helmholtz定理。
二、宏观电磁场的实验定律①库仑定律,电场的定义,电场的力线;②静电场的性质(静电场的散度、旋度及电位概念);③Ampere定律,电流元之间的作用力;④毕奥-沙伐尔定律,磁感应强度定义,磁场的力线;⑤恒定电流磁场性质(磁场的散度、旋度和矢势概念);⑥Faraday电磁感应定律,电磁感应定律的意义;⑦电荷守恒定律(或称为电流连续原理)⑧电磁场与带电粒子相互作用力,Lorentz力公式;⑨宏观电场、磁场的激励源与完整定义;⑩宏观电磁场的矢量特性。
三、介质的电磁性质①介质基本概念,场与介质相互作用的物理机制;②介质极化,磁化、传导的宏观现象及其特点;③介质的极化现象及其描述方法,电位移矢量;④介质的磁化现象及其描述方法,磁场矢量;⑤介质的传导现象及其描述方法,欧姆定律;⑥极化电流、磁化电流与传导电流产生原因及异同点;⑦介质的分类、电磁特性参数与物质本构方程;⑧介质的色散及其产生的原因,色散现象带来的问题;⑨导电媒质—良导体—理想导体⑩理想导体几个问题(模型、静电平衡、电荷分布等);四、宏观Maxwell方程组①静态电磁场与电流连续性原理之间的矛盾;②位移电流概念、位移电流的实验基础及其意义;③宏观电磁场的Maxwell方程组及其对应实验;④宏观Maxwell的微分形式、积分形式、边界条件;⑤宏观Maxwell方程组的预言及其物理意义;⑥宏观Maxwell方程组的完备性问题、物质本构关系;⑦宏观Maxwell方程组各方程的独立性问题;⑧宏观电磁场的应用领域及其求解方法。
第一章矢量分析1.理解标量场与矢量场的概念,了解标量场的等值面和矢量场的矢量线的概念;2.矢量场的散度和旋度、标量场的梯度是矢量分析中最基本的重要概念,应深刻理解,掌握散度、旋度和梯度的计算公式和方法;理解矢量场的性质与散度、旋度的相互关系。
注意矢量场的散度与旋度的对比和几个重要的矢量恒等式。
注意哈密顿算符在散度、旋度、梯度中的应用。
3.散度定理和斯托克斯定理是矢量分析中的两个重要定理,应熟练掌握和应用。
4.熟悉亥姆霍兹定理,理解它的重要意义。
5.会计算给定矢量的散度、旋度。
并能够验证散度定理。
理解无旋场与无源场的条件和特点。
掌握矢量场的梯度和旋度的两个重要性质(课件例题,课本习题1.16、1.18、1.20,1.27)第二章电磁场的基本规律1.电荷是产生电场的源,应理解电荷与电荷分布的概念,理解并掌握电流连续性方程的微分形式和积分形式;电流是产生磁场的源,应理解电流与电流密度的概念。
2.掌握真空中静电场的散度与旋度及其物理意义,真空中高斯定理的微分和积分形式。
会计算一些典型电荷分布的电场强度。
3.熟悉掌握磁感应强度的表示及其特性。
会计算一些典型电流分布的磁感应强度。
掌握恒定磁场的散度和旋度及其物理意义;磁通连续性定理的微分、积分形式和安培环路定理的积分、微分形式。
4.媒质的电磁特性有哪些现象?分别对应哪些物质?(1)电介质的极化有哪些分类?极化强度矢量与电介质内部极化电荷体密度、电介质表面上极化电荷面密度各有什么关系式?电介质中的高斯定理?电位移矢量的定义?电介质的本构关系?(2)磁化强度矢量与磁介质内磁化电流密度、磁介质表面磁化电流面密度之间各有什么关系式?磁化强度矢量的定义?磁介质中的安培环路定理?磁介质的本构关系?(3)导电媒质的本构关系/欧姆定律的微分形式?(式2.4.29),焦耳定律的微分形式、积分形式?5.电磁感应定律揭示了随时间变化的磁场产生电场这一重要的概念,应深刻理解电磁感应定律的意义,掌握感应电动势的计算。