玻尔兹曼分布
- 格式:pdf
- 大小:133.66 KB
- 文档页数:4
经典统计中的玻尔兹曼分布玻尔兹曼分布是一种用于描述粒子在不同能级上分布的概率分布函数,其表达式为:f_i = \frac{g_i}{Z}e^{-\frac{E_i}{kT}}其中,f_i表示粒子在能级i上的分布概率,g_i为能级i的简并度,E_i为能级i的能量,k为玻尔兹曼常数,T为温度,Z为配分函数。
由于玻尔兹曼分布包含了简并度、能量和温度等多个变量,因此适用于描述各种物质系统中的粒子分布情况。
下面列举一些应用玻尔兹曼分布的例子:1. 原子和分子的能级分布在原子和分子中,由于能量量子化现象的存在,粒子只能处于特定的能级上。
玻尔兹曼分布可以用于描述这些粒子在不同能级上的分布情况,从而推导出物质的热力学性质,如内能、熵等。
2. 电子在半导体中的分布半导体中的电子可以分为价带和导带两种能级。
由于电子在半导体中的分布对半导体的导电性质有着重要影响,因此玻尔兹曼分布可以用于描述电子在不同能级上的分布情况,从而推导出半导体的电学性质,如载流子浓度、电导率等。
3. 气体分子的速度分布在气体中,分子的速度分布对气体的热力学性质有着重要影响。
玻尔兹曼分布可以用于描述气体分子在不同速度下的分布情况,从而推导出气体的热力学性质,如压强、温度等。
4. 固体中的振动分布在固体中,原子的振动状态对固体的热力学性质有着重要影响。
玻尔兹曼分布可以用于描述原子在不同振动状态下的分布情况,从而推导出固体的热力学性质,如比热容、热膨胀系数等。
5. 热辐射的能量分布热辐射是指物体在热平衡状态下所辐射出的电磁波。
由于热辐射的波长和能量密度对物体的热力学性质有着重要影响,玻尔兹曼分布可以用于描述热辐射在不同波长和不同能量下的分布情况,从而推导出物体的热力学性质,如辐射能量密度、辐射亮度等。
6. 激光中的光子分布激光是指一种能量高、相干性强的光束。
由于光子在激光中的分布对激光的光学性质有着重要影响,玻尔兹曼分布可以用于描述光子在不同能级上的分布情况,从而推导出激光的光学性质,如激光功率、激光波长等。
玻尔兹曼分布)exp()0()(RTgzM n z n m -⋅=等温大气重力场中分布公式式麦克斯韦速度分布2223/2()(,,)d d d ()exp d d d 2π2x y z x y z x y z x y z m m f kT kT ⎡⎤++=⋅-⋅⎢⎥⎢⎥⎣⎦v v v v v v v v v v v v )exp(kTε- 分布都是按粒子能量ε的分布,它们都有一个称为“玻尔兹曼因子”的因子1122exp()N N kTεε-=-)/exp(kT ε-1ε2ε 规律:这些分布中都有因子 ,称为玻尔兹曼因子。
具有玻尔兹曼因子的分布,称为玻尔兹曼分布(Bortzmann distribution )若n 1和n 2分别是在温度为T 的系统中,处于粒子能量为的某一状态与粒子能量为的另一状态上的粒子数密度。
则玻尔兹曼分布可表示为)exp(2121kTn n εε--= 玻尔兹曼分布表示:粒子处于能量相同的各状态上的概率是相同的;粒子处于能量不同的各状态的概率是不同的,粒子处于能量高的状态上的概率反而小---能量最小原理。
exp()N kTε∝-1)玻尔兹曼分布能为我们提供用来表示温度的另一表达式1221ln()T n k n εε-=)exp(2121kTn n εε--=对于粒子只能取两个能级的系统:12εε>产生激光的系统,就处于粒子数反转(populationinversion )的负温度状态。
12εε>讨论12n n <0T >若12n n >若T <2)有外力场时分子按能量的分布规律分子处于保守力场中时,分子能量既有动能又有势能分子动能是分子速度的函数,分子势能一般是位置的函数,分子数按能量分布关系与速度有关,也和空间位置有关.(p )3k 20d ()e d d d d d d 2πE E kT x y z m N n x y zkT-+=⋅v v v 其中n 0 表示E p =0处气体分子的数密度.(玻耳兹曼分子按能量分布定律),d ~,d ~,d ~z z z y y y x x x v v v v v v v v v +++p222p 2p k )(2121E m E m E E E z y x +++=+=+=v v v v ,d ~,d ~,d ~z z z y y y x x +++x ),,(z y x ),,(z y x v v v ..(p )k d eE E kTN C -+∝⋅3)重力场中微粒按高度分布根据麦克斯韦速度分布函数的归一化性质则玻耳兹曼分布可以写为:(粒子数密度按势能的分布)3k 2- ()e d d d 12πE kT x y z m kT +∞-∞⋅=⎰⎰⎰v v v p- 0d ed d d E kTN n x y z=⋅zy x N n d d d d =P 0eE kTn n -=分子按势能的分布规律是玻耳兹曼分布律的另一常用形式.//3/20[d d d ]()d d d 2πp k E kTE kTVm n ex y z e kT --⎰⎰⎰⎰⎰⎰ x y z vv v v N=如果保守外力场为重力场,势能为 E p =mgz (z 为高度),则(重力场中粒子数密度按高度的分布)将其代入理想气体状态方程有0emgzkTp n kT -=⋅- 0emgz kTp = 0eM RTgz p -=kTgzm kTE en en n --==00pnkT p =(p )3k 20d ()e d d d d d d 2πE E kT x y z m N n x y zkT-+=⋅v v v 其中n 0 表示E p =0处气体分子的数密度.玻耳兹曼分子按能量分布定律,d ~,d ~,d ~z z z y y y x x x v v v v v v v v v +++,d ~,d ~,d ~z z z y y y x x +++x 谢谢大家!。
玻尔兹曼分布就是最概然分布
玻尔兹曼分布就是最概然分布
《玻尔兹曼分布就是最概然分布》
玻尔兹曼分布(Boltzmann Distribution)是指给定温度下,一定物质的不同能级的分布情况,它是一种随机分布,它可以描述物质在不同温度下的能量分布,这是一种最概括的分布。
玻尔兹曼分布可以用来描述物质中的原子或分子的能量状态,它可以用来描述物质中的原子或分子的活动状态。
在实际应用中,玻尔兹曼分布可以用来描述热力学系统的熵、热容、热导等物理量的变化规律,也可以用来描述热力学系统的热效应。
玻尔兹曼分布是一种最概括的分布,它可以描述物质在不同温度下的能量分布,可以用来描述热力学系统的熵、热容、热导等物理量的变化规律,也可以用来描述热力学系统的热效应。
由此可见,玻尔兹曼分布确实是最概括的分布,它可以用来更好地理解物质在不同温度下的性质。
玻尔兹曼分布定律是覆盖系统各种状态的概率分布,概率测量或频率分布。
当存在保守的外力(例如重力场,电场等)时,气体分子的空间位置不再均匀分布,并且在不同位置分子数密度也不同。
玻尔兹曼分布定律描述了在保守外力或保守外力场的作用下处于热平衡状态的理想气体分子的能量分布。
L. E. Boltzmann将麦克斯韦分布定律扩展到外力场的情况。
在相同的宽度范围内,如果E1> E2,则能量DN1大的粒子的数量少于能量DN2小的粒子的数量,并且状态是粒子优先占据较小的能量,这是玻尔兹曼的重要结果分配法。
经过近一个世纪的传播,物理和化学界逐渐接受道尔顿的“原子分子模型”,但是原子和分子的确凿证据尚未得到发现。
这时,出现了更强大的科学成就,即热力学的第一定律和第二定律。
热力学原则上解决了化学平衡的所有问题。
1892年,物理化学家奥斯特瓦尔德(Ostwald)试图证明没有必要将物理和化学问题减少到原子或分子之间的机械关系。
他试图赋予“能量”与物质对象相同的状态,甚至使物质恢复能量。
他提出“世界上所有现象都仅由时空的能量变化构成”。
在统计中,麦克斯韦·玻尔兹曼分布是一种特殊的概率分布,以詹姆斯·克拉克·麦克斯韦和路德维希·玻尔兹曼的名字命名。
它首先被定义并在物理学中用于描述(特别是在统计力学中)粒子在理想气体中自由移动而不与固定容器中的其他粒子相互作用的速度,除了粒子与其热环境之间的非常短时间的碰撞之外通过交换能量和动力。
在这种情况下,粒子是指气态粒子(原子或分子),并且假定粒子系统达到了热力学平衡。
当这种分布最初是从1960年的麦克斯韦启蒙运动中获得的时,玻尔兹曼对这种分布的物理起源进行了许多重要的研究。
粒子速度的概率分布表明哪个速度更有可能:粒子具有从分布中随机选择的速度,并且比其他选择方法更有可能处于速度范围内。
分布取决于系统温度和颗粒质量。
Maxwell Boltzmann分布适用于经典理想气体,这是理想的真实气体。
玻尔兹曼分布,玻色分布,和费米分布的关系
玻尔兹曼分布、玻色分布和费米分布是统计物理中描述粒子分布的三种基本分布。
玻尔兹曼分布是描述经典粒子在能量状态间的分布情况的分布函数。
根据玻尔兹曼分布,粒子在不同能级上的分布概率与能级的能量成反比。
玻色分布是描述玻色子(具有整数自旋)的分布情况的分布函数。
根据玻色分布,玻色子能够在同一能级上具有任意多个粒子,并且各个粒子之间没有排斥作用。
费米分布是描述费米子(具有半整数自旋)的分布情况的分布函数。
根据费米分布,费米子不能在同一个能级上具有多个粒子,并且各个粒子之间存在排斥作用。
三种分布函数在经典极限情况下可以相互转化。
当粒子间的相互作用很弱或忽略不计时,玻色分布和费米分布在高温极限下会趋向于玻尔兹曼分布。
而在低温极限下,玻尔兹曼分布则趋向于费米分布(保守统计中的玻尔兹曼-玻色平衡)。
综上所述,玻尔兹曼分布、玻色分布和费米分布是三种不同情况下的统计分布,它们在特定条件下可以相互转化或者趋于相似的分布模式。
玻尔兹曼分布定律是一个描述一定温度下微观粒子运动速度的概率分布的定律,以奥地利物理学家路德维希·玻尔兹曼命名。
在物理学和化学中,这个定律被广泛应用于描述气体分子的速度分布。
任何宏观物理系统的温度都是组成该系统的分子和原子的运动的结果。
这些粒子有一个不同速度的范围,而任何单个粒子的速度都因与其他粒子的碰撞而不断变化。
然而,对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例几乎不变,如果系统处于或接近处于平衡状态。
玻尔兹曼分布定律具体说明了处于任何速度范围的粒子数量与系统温度的关系,这个关系由一个数学公式表示。
这个公式表明,随着系统温度的升高,高速运动的粒子数量会增加,而低速运动的粒子数量会减少。
这个定律在物理学中有广泛应用,不仅限于气体分子的研究,还涉及到其他领域如电磁学、热力学等。
此外,它也为统计力学的理论框架提供了基础,使得我们能够更好地理解物质的热性质和动力学行为。
玻尔兹曼分布
在物理学(特别是统计力学)中,麦克斯韦 - 玻尔兹曼分布是以詹姆斯·克拉克斯·马克斯韦尔和路德维希·波兹曼命名的特定概率分布。
这是第一次定义,并且用于描述颗粒速度在理想化的气体,其中所述颗粒的固定容器内自由移动,而不会彼此互动,除了非常简短的碰撞,其中它们与彼此或与它们的热环境交换能量和动量。
在该上下文中,术语“颗粒”仅指气态颗粒(原子或分子),并且假设颗粒系统已达到热力学平衡。
[1]这种粒子的能量遵循所谓的麦克斯韦 - 玻尔兹曼统计通过将粒子能量与动能等同来推导出速度的统计分布。
在一个封闭的空间中,温度为T,里面只有两种能级,粒子的总数为N,且两种能级对应的个数分别
为:,所以能级的粒子总和为。
那么N个粒子的不同状态组合数记为,且为:
通过组合数计算一下熵,熵是来源热力学的概念,熵是衡量物质的混乱程度的量,通常和物质的状态有关,我们知道当物质的能量越高时混乱程度也越高,能量越低时混乱程度也越低,下面给出熵的定义:
其中是玻尔兹曼常数,取log就是熵的来源。
把带进上式的:
现在我给空间增加少了的能量,此时封闭的空间的低
能级的粒子就会越变到高能级,也就是说会有少量的变为即:
,其中是变化的粒子数,由此我们从新计算熵为:
得到:
我们知道上式的分子和分母项是一样多的,同时在封闭的空间中是足够大的,是很小的,因此可以
把化简为:
然而从热力学角度,熵的变化量和温度以及加入的能量有关(参考维基百科),因此有如下的公式;
联立和两式的到:
化简得到为:
从上式我们看到,不同能级的比值和能量、温度T、玻尔兹曼常数都有关系,上式就称为玻尔兹曼分布。