vasp经验总结
- 格式:ppt
- 大小:177.50 KB
- 文档页数:24
VASP表面计算步骤小结(侯博士)一、概述vasp用“slab”模型来模拟表面体系结构。
vasp计算表面的大概步骤是:材料体性质的计算;表面模型的构造;表面结构的优化;表面性质的计算。
二、分步介绍1、材料体性质计算:本步是为了确定表面计算时所需的一些重要参数:ENCUT、SIGMA(smearing 方法为ISMEAR=1 或0时;而通常表面体系结构优化时选择这种smearing方法)、晶格参数。
<一>在计算前,要明确:何种PP;ENCUT;KPOINTS ;SIGMA;PREC;EX-CO,这其实是准备proper input files。
a. 何种PP选择的PP能使计算得到的单个原子能量值在1meV~10meV之间。
[参见P 21]所求得的单原子能量(对称性破缺时)可用来提高结合能的精度。
b. ENCUT [ 参见P 14 ]选择的ENCUT应使得总能变化在0.001eV左右为宜。
注意:试探值最小为POTCAR中的ENMAX(多个时,取最大的),递增间隔50;另外,在进行变体积的结构优化时,最好保证ENCUT=1.3ENMAX,以得到合理精度。
c. PREC [参见P 16]控制计算精度的最重要参数,决定了(未指定时)ENCUT、FFT网格、ROPT取值。
一般计算取NORMAL;当要提高Stress tensor计算精度时,HIGH 或ACCURATE,并手动设置ENCUT。
d. EDIFF & EDIFFG [参见P16]EDIFF 判断电子结构部分自恰迭代时自恰与否,一般取默认值=1E-4;EDIFFG 控制离子部分驰豫e. ISTART & ICHARGE [参见P 16]ISTART = 1, ICHARG = 11:能带结构、电子态密度计算时;ISTART =0, ICHARG = 2:其余计算ISTART = 1,ICHARG = 1(其他所有不改变):断点后续算设置f. GGA & VOSKOWN [参见P 16]GGA=91: Perdew -Wang 91;GGA=PE: Perdew-Burke-ErnzerhofVOSKOWN=1( GGA=91时);VOSKOWN=默认(其余情况)g. ISIF [参见P 16]控制结构参数之优化。
VASP磁性计算总结篇以下是从VASP在线说明书整理出来的非线性磁矩和自旋轨道耦合的计算说明。
非线性磁矩计算:1)计算非磁性基态产生WAVECAR和CHGCAR文件。
2)然后INCAR中加上ISPIN=2ICHARG=1 或 11 !读取WAVECAR和CHGCAR文件LNONCOLLINEAR=.TRUE.MAGMOM=注意:①对于非线性磁矩计算,要在x, y 和 z方向分别加上磁矩,如MAGMOM = 1 0 0 0 1 0 !表示第一个原子在x方向,第二个原子的y方向有磁矩②在任何时候,指定MAGMOM值的前提是ICHARG=2(没有WAVECAR和CHGCAR 文件)或者ICHARG=1 或11(有WAVECAR 和CHGCAR文件),但是前一步的计算是非磁性的(ISPIN=1)。
磁各向异性能(自旋轨道耦合)计算:注意: LSORBIT=.TRUE. 会自动打开LNONCOLLINEAR= .TRUE.选项,且自旋轨道计算只适用于PAW赝势,不适于超软赝势。
自旋轨道耦合效应就意味着能量对磁矩的方向存在依赖,即存在磁各向异性能(MAE),所以要定义初始磁矩的方向。
如下:LSORBIT = .TRUE.SAXIS = s_x s_y s_z (quantisation axis for spin)默认值:SAXIS=(0+,0,1),即x方向有正的无限小的磁矩,Z方向有磁矩。
要使初始的磁矩方向平行于选定方向,有以下两种方法:MAGMOM = x y z ! local magnetic moment in x,y,zSAXIS = 0 0 1 ! quantisation axis parallel to zorMAGMOM = 0 0 total_magnetic_moment ! local magneticmoment parallel to SAXIS (注意每个原子分别指定)SAXIS = x y z !quantisation axis parallel to vector (x,y,z),如 0 0 1两种方法原则上应该是等价的,但是实际上第二种方法更精确。
VASP计算DOS和能带个人总结一:VASP计算DOS和能带1.计算DOS①POSCAR②POTCAR③KPOINTS(建议以Gamma为中心取点,通常K×a≈45即可)④INCAR(越简洁越好)第一步:结构优化SYSTEM=**ISTART=0ENCUT=500(最好对其进行测试)EDIFF=1E-5EDIFFG=-0.01NSW=100ISIF=2IBRION=2【优化后计算DOS可以一步完成,也可以分为两步来完成,主要是计算量涉及到计算时间的差别】第二步:静态自洽(此时可稍微降低K点数,用第一步优化得到的CONTCAR作为POSCAR进行计算)SYSTEM=**ISTART=0PREC=AccurateEDIFF=1E-5EDIFFG=-0.01ENCUT=500ISMEAR=-5LCHARG=.TRUE.注意:此时得到的E-feimi是准确的,需要记下(grep ‘E-fermi’OUTCAR)第三步:非自洽计算(采用高密度K点)SYSTEM=**ISTART=1ICHARG=11LMAXMIX=2/4/6(VASP官网原话:If ICHARG is set to 11 or 12, it is strongly recommened to set LMAXMIX to twice the maximum l-quantum number in the pseudpotentials. Thus for s and p elements LMAXMIX should be set to 2, for d elements LMAXMIX should be set to 4, and for f elements LMAXMIX should be set to 6)PREC=AccurateEDIFF=1E-5EDIFFG=-0.01ENCUT=500(截断能最好与上一步保持一致)ISMEAR=-5LORBIT=10/11(推荐11,可以得到能级分裂的数据)优化后计算DOS一步完成:(采用高密度K点)SYSTEM=**ISTART=1PREC=AccurateEDIFF=1E-5EDIFFG=-0.01ENCUT=500ISMEAR=-5LORBIT=10/112.计算能带①POSCAR②POTCAR③KPOINTS:使用Line-mode格式,给出高对称性K点之间的分割点数,分割越密,路径积分就越准确。
在线说明书整理出来的非线性磁矩和自旋轨道耦以下是从VASP合的计算说明。
非线性磁矩计算:和CHGCAR文件。
1)计算非磁性基态产生WAVECAR)然后INCAR中加上2ISPIN=2文件和CHGCAR11 !读取WAVECAR ICHARG=1 或LNONCOLLINEAR=.TRUE. MAGMOM=注意:①对于非线性磁矩计算,要在x, y 和 z方向分别加上磁矩,如MAGMOM = 1 0 0 0 1 0 !表示第一个原子在x方向,第二个原子的y方向有磁矩②在任何时候,指定MAGMOM值的前提是ICHARG=2(没有WAVECAR和CHGCAR文件)或者ICHARG=1 或11(有WAVECAR和CHGCAR文件),但是前一步的计算是非磁性的(ISPIN=1)。
磁各向异性能(自旋轨道耦合)计算:注意: LSORBIT=.TRUE. 会自动打开LNONCOLLINEAR= .TRUE.选项,且自旋轨道计算只适用于PAW赝势,不适于超软赝势。
.自旋轨道耦合效应就意味着能量对磁矩的方向存在依赖,即存在磁各向异性能(MAE),所以要定义初始磁矩的方向。
如下:LSORBIT = .TRUE.SAXIS = s_x s_y s_z (quantisation axis for spin)默认值: SAXIS=(0+,0,1),即x方向有正的无限小的磁矩,Z方向有磁矩。
要使初始的磁矩方向平行于选定方向,有以下两种方法:MAGMOM = x y z ! local magnetic moment in x,y,zSAXIS = 0 0 1 ! quantisation axis parallel to zorMAGMOM = 0 0 total_magnetic_moment ! local magnetic moment parallel to SAXIS (注意每个原子分别指定)SAXIS = x y z ! quantisation axis parallel to vector (x,y,z),如 0 0 1两种方法原则上应该是等价的,但是实际上第二种方法更精确。
精析V ASP目录第一章LINUX命令11.1 常用命令11.1.1 浏览目录11.1.2 浏览文件11.1.3 目录操作11.1.4 文件操作11.1.5 系统信息1第二章SSH软件使用22.1 软件界面22.2 SSH transfer的应用32.2.1 文件传输32.2.2 简单应用3第三章VASP的四个输入文件33.1 INCAR 33.2 KPOINTS 43.3 POSCAR 43.4 POTCAR 5第四章实例54.1 模型的构建54.2 VASP计算84.2.1 参数测试(VASP)参数设置这里给出了赝势、ENCUF、K点、SIMGA一共四个参数。
是都要验证吗?还是只要验证其中一些?84.2.2 晶胞优化(Cu) 134.2.3 Cu(100)表面的能量144.2.4 吸附分子CO、H、CHO的结构优化154.2.5 CO吸附于Cu100表面H位174.2.6 H吸附于Cu100表面H位184.2.7 CHO吸附于Cu100表面B位194.2.8 CO和H共吸附于Cu100表面204.2.9 过渡态计算21第一章Linux命令1.1 常用命令1.1.1 浏览目录cd: 进入某个目录。
如:cd /home/songluzhi/vasp/CH4 cd .. 上一层目录;cd / 根目录;ls: 显示目录下的文件。
注:输入目录名时,可只输入前3个字母,按Tab键补全。
1.1.2 浏览文件cat:显示文件内容。
如:cat INCAR如果文件较大,可用:cat INCAR | more (可以按上下键查看) 合并文件:cat A B > C (A和B的内容合并,A在前,B在后) 1.1.3 目录操作mkdir:建立目录;rmdir:删除目录。
如:mkdir T-CH3-Rh1111.1.4 文件操作rm:删除文件;vi:编辑文件;cp:拷贝文件mv:移动文件;pwd:显示当前路径。
如:rm INCAR rm a* (删除以a开头的所有文件)rm -rf abc (强制删除文件abc)tar:解压缩文件。
个人非常好的VASP学习与总结VASP(Vienna Ab initio Simulation Package)是一种用于计算材料电子结构和材料性质的第一性原理软件包。
它是由奥地利维也纳大学的Peter Blöchl教授和Jürgen Hafner教授等人开发的。
VASP广泛应用于材料科学、凝聚态物理、表面科学、催化化学等领域,并且已成为当前计算材料科学研究中的重要工具。
我的VASP学习与总结主要包括以下几个方面:一、理论基础在学习VASP之前,我首先了解了从头计算的理论基础。
这包括了量子力学、自旋极化的密度泛函理论、平面波基组和赝势等关键概念。
我通过阅读相关文献和教材,深入理解了这些理论基础,并通过编程实现了一些基本的从头计算算法,如Hartree-Fock法和密度泛函理论。
二、VASP软件架构和输入文件学习VASP的过程中,我详细了解了VASP的软件架构和输入文件的格式。
VASP的软件架构分为主程序和一系列的预处理工具、后处理工具和与其他软件的接口。
对于输入文件,我了解了INCAR文件中的各种参数,如体系的描述、计算方法、收敛准则等;POSCAR文件中的晶体结构描述;KPOINTS文件中的k点网格描述等。
我还学习了如何使用VASP进行周期性边界条件下的能带计算、电子密度计算和弛豫力计算等。
三、VASP计算结果的解析和可视化VASP计算得到的结果需要进一步解析和可视化。
我学习了使用一些常用的后处理工具,如VASP可视化工具、VESTA和XCrysDen等,来分析和可视化VASP计算的结果。
这些工具可以帮助我理解晶体结构、电子能带结构以及电荷分布等。
四、VASP参数优化和计算效率为了得到准确的计算结果,我尝试了调整VASP计算中的一些参数,如波函数截断、k点密度、能量收敛准则等,以获得更准确的计算结果。
此外,我还学习了使用并行计算技术来提高VASP计算的效率,如MPI和OpenMP等,并了解了VASP在高性能计算集群上的使用方法。
VASP计算的理论及实践总结一、赝势的选取二、收敛测试1、VASP测试截断能和K 点2、MS测试三、结构弛豫四、VASP的使用流程(计算性质)1、VASP的四个输入文件的设置2、输出文件的查看及指令3、计算单电能(1) 测试截断能(2) 测试K点4、进行结构优化5、计算弹性常数6、一些常用指令一、赝势的选取VASP赝势库中分为:PP和PAW两种势,PP又分为SP(标准)和USPP(超软)。
交换关联函数分为:LDA(局域密度近似)和GGA(广义梯度近似)。
GGA 又分为PW91和PBE。
在VASP中,其中pot ,pot-gga是属于超软势(使用较少)。
Paw, paw-pbe ,和paw-gga是属于PAW。
采用较多的是PAW-pbe 和PAW-gga。
此外vasp 中的赝势分为几种,包扩标准赝势(没有下标的)、还有硬(harder)赝势(_h)、软(softer)赝势(_s), 所谓的硬(难以赝化),就是指该元素原子的截断动能比较大,假想的势能与实际比较接近,计算得到的结果准确,但比较耗时,难以收敛。
软(容易赝化),表示该元素原子的截断动能比较小,赝势模型比较粗糙,但相对简单,可以使计算很快收敛(比如VASP开发的超软赝势)。
即硬的赝势精度高,但计算耗时。
软的精度低,容易收敛,但节省计算时间。
另一种情况:如Gd_3,这是把f电子放入核内处理,对于Gd来说,f电子恰好半满。
所以把f电子作为价电子处理的赝势还是蛮好的(类似还有Lu,全满)。
(相对其他的4f元素来说,至于把f电子作为芯内处理,是以前对4f元素的通用做法。
计算结果挺好)常用的做法是:用两种赝势测试一下对自己所关心的问题的影响情况。
在影响不大的情况下,选用不含4f电子的赝势(即后缀是3),一来减少计算量,二来避免DFT对4f电子的处理。
【1.赝势的选择:vasp的赝势文件放在目录~/vasp/potentials 下,可以看到该目录又包含五个子目录pot pot_GGA potpaw potpaw_GGA potpaw_PBE ,其中每一个子目录对应一种赝势形式。
VASP计算的理论及实践总结一、赝势的选取二、收敛测试1、VASP测试截断能和K 点2、MS测试三、结构弛豫四、VASP的使用流程(计算性质)1、VASP的四个输入文件的设置2、输出文件的查看及指令3、计算单电能(1)测试截断能(2) 测试K点4、进行结构优化5、计算弹性常数6、一些常用指令一、赝势的选取VASP赝势库中分为:PP和PAW两种势,PP又分为SP(标准)和USPP(超软)。
交换关联函数分为:LDA(局域密度近似)和GGA(广义梯度近似)。
GGA又分为PW91和PBE.在VASP中,其中pot ,pot—gga是属于超软势(使用较少)。
Paw,paw—pbe ,和paw-gga 是属于PAW.采用较多的是PAW-pbe 和PAW—gga。
此外vasp 中的赝势分为几种,包扩标准赝势(没有下标的)、还有硬(harder)赝势(_h)、软(softer)赝势(_s), 所谓的硬(难以赝化),就是指该元素原子的截断动能比较大,假想的势能与实际比较接近,计算得到的结果准确,但比较耗时,难以收敛。
软(容易赝化),表示该元素原子的截断动能比较小,赝势模型比较粗糙,但相对简单,可以使计算很快收敛(比如VASP 开发的超软赝势)。
即硬的赝势精度高,但计算耗时。
软的精度低,容易收敛,但节省计算时间。
另一种情况:如Gd_3,这是把f电子放入核内处理,对于Gd来说,f电子恰好半满。
所以把f电子作为价电子处理的赝势还是蛮好的(类似还有Lu,全满)。
(相对其他的4f元素来说,至于把f电子作为芯内处理,是以前对4f元素的通用做法。
计算结果挺好)常用的做法是:用两种赝势测试一下对自己所关心的问题的影响情况。
在影响不大的情况下,选用不含4f电子的赝势(即后缀是3),一来减少计算量,二来避免DFT对4f电子的处理。
【1.赝势的选择:vasp的赝势文件放在目录~/vasp/potentials 下,可以看到该目录又包含五个子目录pot pot_GGA potpaw potpaw_GGA potpaw_PBE ,其中每一个子目录对应一种赝势形式。
VASP计算的过程遇到的问题01、第一原理计算的一些心得(1)第•性原理其实是包括基于密度泛函的从头算和基于Hartree-Fock 洽计算的从头算,前者以电了密度作为基本变量(霍亨伯格-科洪定理),通过求解Kolm-Sham方程,迭代自洽得到体系的基态电了密度,然后求体系的基态性质:后考则通过自洽求解Hartree-Fock方程,获得体系的波函数,求基态性质:评述:K-S方程的计算水平达到了H-F水平,同时还考虑了电了间的交换关联作用。
(2)关于DFT中密度泛函的Functional,其实是交换关联泛函包括LDA, GGA,杂化泛函等等•般LDA为局域密度近似,在空间某点用均匀电了•气密度作为交换关联泛函的唯•变量,多数为参数化的CA-PZ方案;GGA为广义梯度近似,不仅将电『•密度作为交换关联泛函的变量,也考虑了'密度的梯度为变量,包括PBE.PWRPBE等方案,BLYP泛函也属于GGA:此外还有•些杂化泛函,B3LYP等。
(3)关于膜势在处理计算体系中原f的电了态时,有两种方法,•种是考虑所有电/,叫做全电了法,比如WIEN2K 中的FLAPW方法(线性缀加平面波);此外还有•种方法是只考虑价电(,而把芯电了和原(核构成离f实放在•起考虑,即晦势法,•般膊势法是选取•个截断半径,截断半径以内,波函数变化较平滑,和真实的不同,截断半径以外则和真实情况相同,而且禰势法得到的能量本征值和全电子法应该相同。
鹰势包括模守恒和超软,模守恒较皱,-般需要较人的截断能,超软势则可以用较小的截断能即可。
另外,模守恒势的散射特性和全电了相同,因此•般红外,拉曼等光谱的计算需要用模守恒势。
馥势的测试标准应是腹势与全电f法计算结果的匹配度,而不是膻势与实验结果的匹配度,因为和实验结果的匹配可能是偶然的。
(4)关于收敛测试(a)Ecut,也就是截断能,•般情况下,总能相对于不同Ecut做计算,当Ecut增人时总能变化不明显了即可;然而,在需要考虑体系应力时,还需对应力进行收敛测试,而且应力相对于Ecut 的收敛要比总能更为苛刻,也就是某个藏断能下总能已经收敛了,但应力未必收敛。
VASP使用总结VASP(Vienna Ab initio Simulation Package)是一款基于密度泛函理论(DFT)的第一性原理计算软件,主要用于材料科学和凝聚态物理领域的计算。
它提供了丰富的功能和工具,可以用于模拟和研究各种材料的物理和化学性质。
以下是对VASP使用的总结:1.输入文件的准备在进行VASP计算之前,首先需要准备好输入文件。
VASP使用的输入文件包括POSCAR、INCAR、POTCAR等。
POSCAR文件用于定义晶体结构和原子坐标,INCAR文件用于定义计算参数和设置计算方法,POTCAR文件用于定义原子的赝势。
2.材料结构的优化VASP可以通过结构优化计算来确定材料的最稳定结构。
结构优化计算通过改变原子位置和晶胞大小,寻找最低能量的结构。
可以使用ISIF 参数来设置优化类型,如禁止移动原子、禁止改变晶胞大小等。
3.能带结构的计算VASP可以计算材料的能带结构,从而提供关于能带轨道和能带间隙的信息。
能带结构计算需要先进行结构优化计算,然后再进行自洽计算和能带计算。
可以通过设置KPOINTS和NBANDS参数来控制计算的精度和效率。
4.密度状态的计算VASP可以计算材料的密度状态,包括电荷密度、电荷分布和电子态密度等。
通过密度状态计算,可以了解材料的电子结构和性质。
可以通过设置LSORBIT、IALGO和NPAR等参数来控制计算的模式和效率。
5.势能面的计算VASP可以计算材料的势能面,并通过构建势能面图像来显示材料的稳定性和反应性。
势能面计算需要进行结构优化计算,然后通过改变原子位置和晶胞大小来势能面上的最低能量和结构。
6.热力学性质的计算VASP可以通过计算自由能、热容和热膨胀系数等热力学性质来了解材料的热稳定性和热响应。
热力学性质的计算需要进行结构优化计算和自洽计算,然后使用VASP提供的工具和脚本进行热力学性质的分析和计算。
7.计算结果的解析和可视化VASP提供了丰富的工具和脚本,可以用于解析和可视化计算结果。
VASP 计算过程中遇到的问题总结01、第一原理计算的一些心得(1)第一性原理其实是包括基于密度泛函的从头算和基于Hartree-Fock自洽计算的从头算,前者以电子密度作为基本变量(霍亨伯格-科洪定理),通过求解Kohn-Sham方程,迭代自洽得到体系的基态电子密度,然后求体系的基态性质;后者则通过自洽求解Hartree-Fock 方程,获得体系的波函数,求基态性质;评述:K-S方程的计算水平达到了H-F水平,同时还考虑了电子间的交换关联作用。
(2)关于DFT中密度泛函的Functional,其实是交换关联泛函包括LDA,GGA,杂化泛函等等一般LDA为局域密度近似,在空间某点用均匀电子气密度作为交换关联泛函的唯一变量,多数为参数化的CA-PZ方案;GGA为广义梯度近似,不仅将电子密度作为交换关联泛函的变量,也考虑了密度的梯度为变量,包括PBE,PW,RPBE等方案,BLYP泛函也属于GGA;此外还有一些杂化泛函,B3LYP等。
(3)关于赝势在处理计算体系中原子的电子态时,有两种方法,一种是考虑所有电子,叫做全电子法,比如WIEN2K中的FLAPW方法(线性缀加平面波);此外还有一种方法是只考虑价电子,而把芯电子和原子核构成离子实放在一起考虑,即赝势法,一般赝势法是选取一个截断半径,截断半径以内,波函数变化较平滑,和真实的不同,截断半径以外则和真实情况相同,而且赝势法得到的能量本征值和全电子法应该相同。
赝势包括模守恒和超软,模守恒较硬,一般需要较大的截断能,超软势则可以用较小的截断能即可。
另外,模守恒势的散射特性和全电子相同,因此一般红外,拉曼等光谱的计算需要用模守恒势。
赝势的测试标准应是赝势与全电子法计算结果的匹配度,而不是赝势与实验结果的匹配度,因为和实验结果的匹配可能是偶然的。
(4)关于收敛测试(a)Ecut,也就是截断能,一般情况下,总能相对于不同Ecut做计算,当Ecut增大时总能变化不明显了即可;然而,在需要考虑体系应力时,还需对应力进行收敛测试,而且应力相对于Ecut的收敛要比总能更为苛刻,也就是某个截断能下总能已经收敛了,但应力未必收敛。
个人总结一:VASP计算DOS和能带1.计算DOS①POSCAR②POTCAR③KPOINTS(建议以Gamma为中心取点,通常K×a≈45即可)④INCAR(越简洁越好)第一步:结构优化SYSTEM=**ISTART=0ENCUT=500(最好对其进行测试)EDIFF=1E-5EDIFFG=-0.01NSW=100ISIF=2IBRION=2【优化后计算DOS可以一步完成,也可以分为两步来完成,主要是计算量涉及到计算时间的差别】第二步:静态自洽(此时可稍微降低K点数,用第一步优化得到的CONTCAR作为POSCAR进行计算)SYSTEM=**ISTART=0PREC=AccurateEDIFF=1E-5EDIFFG=-0.01ENCUT=500ISMEAR=-5LCHARG=.TRUE.注意:此时得到的E-feimi是准确的,需要记下(grep ‘E-fermi’OUTCAR)第三步:非自洽计算(采用高密度K点)SYSTEM=**ISTART=1ICHARG=11LMAXMIX=2/4/6(VASP官网原话:If ICHARG is set to 11 or 12, it is strongly recommened to set LMAXMIX to twice the maximum l-quantum number in the pseudpotentials. Thus for s and p elements LMAXMIX should be set to 2, for d elements LMAXMIX should be set to 4, and for f elements LMAXMIX should be set to 6)PREC=AccurateEDIFF=1E-5EDIFFG=-0.01ENCUT=500(截断能最好与上一步保持一致)ISMEAR=-5LORBIT=10/11(推荐11,可以得到能级分裂的数据)优化后计算DOS一步完成:(采用高密度K点)SYSTEM=**ISTART=1PREC=AccurateEDIFF=1E-5EDIFFG=-0.01ENCUT=500ISMEAR=-5LORBIT=10/112.计算能带①POSCAR②POTCAR③KPOINTS:使用Line-mode格式,给出高对称性K点之间的分割点数,分割越密,路径积分就越准确。