城市轨道交通车辆--辅助供电系统
- 格式:pptx
- 大小:3.37 MB
- 文档页数:45
地铁列车供电系统研究与分析摘要:城市轨道的车辆辅助电源系统是控制系统的重要组成部分,其主要任务是产生能够满足车辆控制用的低压电源、客室照明、空调及通风机组以及其它低压用电设备所需的各种不同电压和电功率。
辅助供电系统的供电质量与可靠性将直接影响到车辆运行安全及旅客舒适度。
研究和完善辅助供电系统性能,确保稳定、安全的列车供电是研究和设计人员主要的任务。
城轨列车供电系统包括牵引供电系统和辅助供电系统两部分。
牵引供电系统主要负责为机车提供牵引动力;辅助供电系统则负责为列车上除牵引系统主回路以外的辅助装置供电。
辅助供电系统主要包括辅助逆变器(DC/AC 变换器,简称 SIV)和低压电源(DC/DC 斩波器和蓄电池)。
其中,辅助逆变器提供 AC 380V 电源,主要负载有空调机、压缩机等;低压电源包括 DC 110V 和DC24V,负责给控制系统和应急负载供电。
辅助电源的运行性能直接影响到主电路的运行状态,列车的环境条件乃至整个列车的性能。
髙性能的辅助电源系统是保证列车稳定、安全运行的重要因素,因此对辅助逆变器的输出性能、可靠性以及使用寿命等性能指标也有较高的要求。
关键词:城轨车辆;牵引供电;辅助供电;逆变器前言:城市是人类活动的中心,是社会进步的标志。
随着经济和科技的快速发展,城市人口不断的增多,城市轨道交通日益演变成为城市公共交通客运系统的骨干,它主要包括地铁和轻轨。
在列车供电系统中,以电力电子器件为主的变流器控制系统也担当者重要角色。
列车的供电系统是列车能源和动力的提供者,更是列车安全高速运行的重要保障。
城市轨道车辆是在城市中运行于地下、地面或高架铁路上的公共交通运输工具。
城市轨道车辆通常为电力牵引,它主要包括城市快速列车、地铁车辆、轻轨车辆和有轨电车等[1]。
辅助供电系统是城轨车辆的一个重要组成部分,安装于拖车构架上。
当供电系统供电正常时,输入的直流电源经辅助逆变器逆变为交流电源,并向通风机、空调设备、电加热器、电动刮雨器、空气压缩机等三相负载和客室照明系统及控制系统设备供电;经直直变换器变换的直流电源供蓄电池充电及其他直流负载用电。
城市轨道交通车辆电气系统分析及研究摘要:社会经济的发展使人们对美好生活的向往变得更加热切,交通生活作为美好生活中的重要部分,其便利程度将在一定程度上影响人们对生活质量的评价。
城市轨道交通作为快速、便捷的现代交通工具,已经在我国交通系统中得到应用。
本文将针对城市轨道交通展开论述,集中分析城市轨道交通车辆电气系统,以便为相关运营活动提供参考。
关键词:轨道车辆;电气系统;辅助供电系统引言:城市交通堵塞是城市治理中的顽疾,并且随着人均车辆保有量逐渐提高,交通堵塞现象也变得更加频繁、严重。
在这种情况下,强化城市轨道交通的应用就显得极为重要。
城市轨道交通车辆优势显著,独立行驶轨道、信号控制等,可以有效缓解交通堵塞,帮助城市布局结构优化等。
现如今,人们越来越倾向于选择城市轨道交通作为出行方式。
一、城市轨道交通供电系统采用的模式1.集中供电方式这种供电方式需要设置专用主变电所,变电所会将城市电网输送而来的电源进行降压处理,然后再向城市轨道交通供电。
就目前来看,国内一线城市的轨道交通系统已经广泛使用了集中供电方式。
2.分散供电方式不同于集中供电方式,分散供电方式没有设置专用主变电所,所以牵引变电所和降压变电所会直接从城市电网中接入电源。
不过需要注意的是,这种供电方式有一定的设备要求,即轨道交通沿线必须分布足够的电源接入点,并且这种供电方式需要投入进行改造和管理,当前只有少数城市轻轨采用这种供电方式。
3.混合供电方式顾名思义,混合供电方式结合了集中、分散供电方式,根据交通沿线不同的环境作出了调整,但是这也将导致继电保护和运营管理难度增加。
二、城市轨道交通车辆电气系统的组成城市轨道交通车辆电气系统的重要性不言而喻,其中包含四大部分,分别是牵引与控制系统、辅助供电系统、车门控制系统、牵引传统系统,以下将对这四个部分进行分析。
1.城市轨道交通车辆牵引与制动控制系统牵引与制动系统是城市轨道系统的重要组成部分,在城市轨道交通车辆控制中发挥着关键作用。
城市轨道交通电客车辅逆系统及辅助供电技术
城市轨道交通电客车辅逆系统及辅助供电技术是城市轨道交通系统中非常重要的一环。
随着城市轨道交通系统的快速发展,电动车已经成为城市轨道交通的主要交通工具。
为了
保证电动车的正常运行,必须对其进行逆变器系统和辅助供电系统的优化设计。
1.辅逆系统
轨道交通电客车辅逆系统主要是指用于调节电动车驱动电机功率输出方向的逆变器系统,其主要作用是将电池直流电转换成交流电,并通过变频控制电机输出功率的大小和方向。
若电动车以一定速度行驶,但驾驶员必须从油门踏板上拿走脚,此时辅逆器将接受来
自电动车的电能而不发热,同时将失控的电能逆向输送给电池,以保证电动车系统的安
全。
辅逆系统可以提高电动车的行驶效率,节省能源,减少对环境的污染。
但逆变器系统
在实际运行中常存在一些限制,例如逆变器的输出功率及工作温度等,这就需要对辅逆系
统进行进一步优化设计以使其更加可靠和稳定。
2.辅助供电系统
城市轨道交通电客车辅助供电系统主要是负责为车内的电子设备和乘客提供所需的电能,例如车内照明,制动灯和空调等。
辅助供电系统采用直流供电方式,由主电池提供电能,通过DC-DC转换器将其转换成所需的低电压直流电。
辅助供电系统是车辆供电系统中
的一个重要组成部分,其安全性和稳定性直接影响到电动车的正常运行。
为了提高辅助供电系统的稳定性和可靠性,必须采用优化设计的转换器和过滤器等电
子元件,以减少系统中出现的电磁干扰和噪音。
同时,对辅助供电系统的维护和保养也至
关重要,例如定期检查并更换设备中的电子元件,保持设备内部通风良好,以防止发生过
热和短路等故障。
城轨车辆辅助供电系统交叉并网供电模式的探讨作者:张帝来源:《中国科技纵横》2018年第15期摘要:城轨车辆的运行,需借助电力资系统而实现。
建立车辆辅助供电系统交叉并网供电模式,有助于提高供电的连续性及稳定性。
基于此,本文简要介绍了城轨车辆辅助供电系统的类型,并对系统的负载及供电需求进行了分析。
重点从并网模式的设备配置、控制方式、参数设计、整流器与逆变器的控制四方面,对该模式的实现方案进行了总结,仅供相关人员参考。
關键词:城轨车辆;辅助供电系统;交叉并网供电模式中图分类号:U231.8 文献标识码:A 文章编号:1671-2064(2018)15-0051-02随着城市轨道交通客流量的不断加大,交通领域对车辆可靠性的要求逐渐提升。
电力能源,是城市轨道车辆运行所需的主要能源。
根据供电系统及供电模式的不同,电力能源的供应效果同样不同。
实践发现,将辅助电路AC 380V以及DC 110V,应用到城轨车辆辅助供电交叉并网供电模式中,可有效提高供电的稳定性。
因此,有必要对上述模式的实现方式加以研究。
1 城轨车辆辅助供电系统的供电模式城轨车辆辅助供电系统的供电模式,包括交叉供电、扩展供电,以及并网供电三种[1]。
不同模式的特点及实现方式如下:(1)交叉供电:该供电模式下,车辆中,每个辅助变流器,均需单独对某一负载进行供电。
此时,如变流器出现故障,负载的功能将无法实现,车辆运行的稳定性,同样会有所下降。
(2)扩展供电:该供电模式下,车辆每个辅助变流器,均需对相应单元的中压负载进行供电。
采用上述方式供电,如变流器出现故障,隔离故障逆变器,会立即将供电接触器进行扩展。
进而确保故障范围内的负载,能够继续稳定的运行。
(3)并网供电:该供电模式下,城轨车辆中,辅助变流器均需由母线供电。
当变流器出现故障后,将其自供电系统中断开,负载则仍能够稳定的运行。
通过对三种供电模式的对比及分析发现,将交叉并网供电模式,应用到城轨车辆的辅助供电系统中,将能够更大程度的满足车辆的运行需求。
第三章辅助供电系统辅助供电系统是城市轨道交通车辆电气系统的重要组成部分,主要任务是产生车辆中、低压电源、客室照明、空调、通风机、空气压缩机以及其他低压用电设备所需的各种不同电压。
辅助逆变器是辅助供电系统的主要部件。
国内城市轨道交通车辆上,辅助逆变器均采用静止式逆变器,它具有输出电压的品质好、功率因数高、工作性能安全可靠等优点。
本章主要介绍城市轨道交通车辆辅助供电系统的组成结构、中压供电分配电路、低压供电分配电路、列车扩展供电电路等。
第一节辅助供电系统概述1.辅助供电系统的功能辅助供电系统(辅助电源系统/辅助电源),是为除牵引系统之外的所有车载用电设备供电的一套系统。
2.辅助供电系统的组成辅助供电系统主要由三部分组成:辅助逆变器、蓄电池充电器、蓄电池。
辅助逆变器一般采用静止逆变器,简称SIV。
辅助逆变器将网压转换成AC380V、50Hz的三相交流电能输出,为车辆上空压机、空调装置等交流负载供电。
蓄电池充电器主要输出DC110V电能给车辆控制、蓄电池充电等直流负载供电。
蓄电池作为直流备用电源,在列车启动和紧急情况下(失去高压电源时)为列车提供DC110V电能。
列车正常运行时,蓄电池处在浮充电状态。
3.辅助供电系统的负载辅助供电系统的负载包括列车上的几乎所有用电设备,可以将这些负载根据使用电能不同分为以下几类。
①AC380V、50Hz三相负载:空气压缩机单元、空调装置、通风冷却装置等。
②AC220V、50Hz单相负载:客室正常照明、司机室方便插座、客室维修用方便插座等。
③DC110V负载:列车控制系统、列车控制电路、列车信号系统、乘客信息系统、客室紧急照明、紧急通风、电动车门驱动电机等。
除了以上三种负载之外,还有极少量的DC24负载,如司机室阅读灯、列车前照灯等。
4.车间电源辅助供电系统在有接触网供电区域,由接触网供电;在没有接触网供电的区域,来自于车间电源。
一般在检修车间内设有车间电源,通过列车车底高压箱内有车间电源插座,向列车提供高压电能。
城市轨道交通电客车辅逆系统及辅助供电技术1. 引言1.1 城市轨道交通电客车辅逆系统及辅助供电技术城市轨道交通电客车辅逆系统及辅助供电技术在城市轨道交通领域扮演着重要的角色,为城市的交通运输系统提供了新的解决方案和技术支持。
随着城市人口的增加和交通需求的不断增长,传统的交通工具已经无法满足现代城市的需求,因此电客车辅逆系统及辅助供电技术的引入成为了必然的选择。
电客车辅逆系统设计原理是将电能转换为交流电并提供给电客车使用,通过逆变器将电能转换为直流电并存储在电池中,以便在需要时供给电客车使用。
辅助供电技术则是通过特殊的供电设备,为城市轨道交通系统提供稳定可靠的电力支持,确保交通系统正常运行。
这些技术的应用使得城市轨道交通更加高效、环保和节能。
未来,随着科技的不断发展,电客车辅逆系统及辅助供电技术也将不断创新和完善,为城市交通运输提供更好的解决方案。
城市轨道交通电客车辅逆系统的重要性不言而喻,对于环境保护和交通运输改善也具有重要的促进作用。
技术创新和市场前景也将为这一领域带来更广阔的发展空间。
2. 正文2.1 电客车辅逆系统设计原理电客车辅逆系统的设计原理是在城市轨道交通系统中,通过逆变器将直流电源转换为交流电源,以供给电动客车的牵引电动机使用。
其主要原理包括以下几个方面:电客车辅逆系统通过电动客车的受电弓接触轨道供电系统,将直流电源输入到逆变器中。
逆变器将直流电源转换为高频交流电源,并通过控制电路调节电压和频率,以适应电动客车牵引电动机的工作需求。
逆变器还具有能量回馈的功能,当电动客车制动时,牵引电动机转为发电机将能量反馈到逆变器中,再经过逆变器转换为直流电源,供给其他电动客车或接入系统使用,实现能量的回收和节约。
电客车辅逆系统还包括了监控和保护功能,通过监测电动客车系统的工作状态和电压、电流等参数,及时发现故障并采取保护措施,确保系统运行稳定可靠。
电客车辅逆系统的设计原理是在城市轨道交通系统中提供高效、可靠的电力供应,为电动客车的运行提供稳定的动力支持,实现能量的回收与节约,为城市轨道交通系统的可持续发展做出贡献。
术创新北京地铁首都机场线辅助供电系统问题分析与改造胡强(北京京城地铁有限公司北京101304)摘要:北京地铁首都机场线列车使用的是庞巴迪公司生产设计的进口辅助供电系统,和现在国际、国内的其他轨道交通运输行业中辅助供电系统内部原理和使用情况基本相同,主要向列车的牵引系统、网络监控系统、制动控制系统、客室照明系统、车辆空调系统、空气压缩机、通信信号控制等车辆使用设备提供工作电源。
辅助供电系统的工作状态正常与否将直接影响整辆列车的运营。
基于辅助供电系统对车辆安全运营有着至关重要的作用,本文将通过对辅助供电系统进行创新改造、故障案例分析,从而提高列车辅助供电系统的可靠性,并降低辅助供电系统在车辆行驶运行过程中发生故障的频率。
关键词:城市轨道交通运输辅助供电系统典型故障案例解析创新与改造中图分类号:U270.381文献标识码:A文章编号:1674-098X(2022)04(c)-0034-03随着城市公共交通工具不断革新,城市轨道交通、有轨电车新技术不断涌现。
从1890年12月18日世界上第一条真正的电气化地铁诞生以来,城市轨道交通成为现代城市必不可少的重要交通工具,是维持城市居民工作、学习和生活正常秩序的重要保障。
北京地铁首都机场线目前使用的是由庞巴迪公司设计制造的早期地铁车辆,采用的是十多年前老式供电方式及陈旧的箱体设计方案,从而无法应对现阶段的使用要求,在车辆运行过程中有着较高的故障率。
本文将重点介绍目前北京机场线列车辅助供电系统技术特点及现状,针对目前车辆辅助供电系统常见的故障案例进行分析,并对车辆辅助供电系统的内部接触器换型并进行控制方式的改造。
1国内外城市轨道交通辅助供电系统现状城市轨道交通车辆中的辅助供电系统是最为重要的一个环节,关系到整个列车的运营。
辅助供电的逆变电压技术大部分采用旋转式电动发电机组供电,主接触轨则是为轨道电动车辆提供直流的高压电,再通过电动机带着发电机进行工作,输出三相交流电为车辆的所有电气元件供电;辅助供电系统再通过使用三相变压器和整流等相关设备对直流电进行变换,并将输出三相交流电转变为低压控制使用的直流110V和直流24V。