第4章__MEMS设计中的尺度效应
- 格式:ppt
- 大小:951.50 KB
- 文档页数:52
《微机电系统》复习参考题目1、微机电系统(MEMS)的英文全称?2、微机电系统得内涵和特点?3、LIGA技术包含内容?4、DEM技术包含内容?5、什么是MEMS微尺度效应?6、MEMS的设计涉及那些学科?简述MEMS的设计方法及特点7、工程系统设计通常有几种方法?其主要思路是什么?试举例说明。
8、集成电路基本制造基本程序?9、薄膜制备的方法有哪两类?10、什么是外延技术?常用的外延技术有哪几种?11、什么是掺杂工艺?有哪些方法?12、氮化硅的性质,用途和制备方法是什么?13、什么是光刻工艺?典型的光刻工艺流程?14、简述干法腐蚀的特点?15、MEMS制造工艺有哪两类主要技术?叙述各类技术的主要内容。
16、叙述硅刻蚀的湿法技术的主要工艺流程。
各向同性刻蚀的特点是什么?各向异性刻蚀的机理是什么?17、叙述硅刻蚀的干法技术主要工艺流程。
18、简要叙述电化学自停止腐蚀技术。
19、LIGA体微加工技术的组成部分是什么?及其主要工艺流程。
20、什么是微电铸工艺?微电铸工艺的难点是什么?如何解决?21、什么是微复制工艺及其工作原理?22、什么是阳极键合技术,其机理及阳极键合质量的影响因素。
23、目前加速度微传感器测试机理有几种?简述阵列式加速度微传感器的设计思路。
24、磁微传感器的基本特点? 举例说明磁微传感器应用?25、光微传感器的物理机理是什么?光纤传感器的特点?26、简述磁致伸缩金属的物理特性,为什么可以用做微执行器的材料。
27、记忆合金材料的特点是哪些?其应用方面有哪些?28、说明静电微马达的工作原理。
29、为何在宏观电机中主要采用电磁驱动,而在MEMS电机中主要采用静电力驱动?。
30、梳状微谐振器的结构和工作原理是什么?31、无阀微泵泵腔容积经过“吸入-排出”一个周期后,会沿泵的入口到出口形成流量,画出其工作原理示意图,说明其工作原理?其优点是什么?32、举例说明MEMS产品在军事或民用中的应用,它们的特点以及未来发展趋势。
mems传感器、执行装置等应用领域,关键技术与国内外发展概况MEMS传感器是采用微电子和微机械加工技术制造出来的新型传感器。
与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。
同时,微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。
第一个微型传感器诞生于1962年,至此开启了MEMS技术的先河。
此后,MEMS传感器作为MEMS技术的重要分支发展速度最快,长期受到美、日、英、俄等世界大国的高度重视,各国纷纷将MEMS传感器技术作为战略性技术领域之一,投入巨资进行专项研究。
随着微电子技术、集成电路和加工工艺的发展,传感器的微型化、智能化、网络化和多功能化得到快速发展,MEMS传感器逐步取代传统的机械传感器,占据传感器主导地位,并在消费电子、汽车工业、航空航天、机械、化工、医药、生物等领域得到了广泛应用。
1 MEMS传感器及分类从微小化和集成化的角度,MEMS(或称微系统)指可批量制作的、集微型机构、微型传感器、微型执行器以及信号处理和控制电路,直至接口、通讯和电源等于一体的微型器件或系统。
微机电系统(MEMS)是在微电子技术的基础上发展起来的,融合了硅微加工和精密机械加工等多种微加工技术,并应用现代信息技术构成的微型系统。
是20世纪末、21世纪初兴起的科学前沿,是当前十分活跃的研究领域,涉及多学科的交叉,如物理学、力学、化学、生物学等基础学科和材料、机械、电子、信息等工程技术学科。
该领域研究时间虽然很短,但是已经在工业、农业、机械电子、生物医疗等方面取得很大的突破,同时产生了巨大的经济效益。
2.1 MEMS传感器MEMS传感器是采用微机械加工技术制造的新型传感器,是MEMS 器件的一个重要分支。
依赖于MEMS技术的传感器主要有以下技术特点:1)微型化:体积微小是MEMS器件最为明显的特征,其芯片的尺度基本为纳米或微米级别。
MEMS设计中的尺度效应MEMS(微机电系统)是一种将微观尺度上的机电元件集成到微型芯片中的技术。
在MEMS设计中,尺度效应是一个重要的考虑因素。
尺度效应指的是当材料或结构的尺寸减小到微观尺度时,与宏观尺度相比会出现新的物理现象和行为。
本文将详细介绍MEMS设计中的尺度效应。
尺度效应在MEMS设计中有着广泛的应用。
一方面,尺度效应可以改变材料的力学特性。
例如,当材料尺寸减小到纳米尺度时,材料的力学刚度将会增加。
这是因为在小尺度下,表面效应变得更加重要,原子之间的相互作用力增强。
这种尺度效应在MEMS设计中需要考虑,因为它会直接影响到微弹性体的材料刚度和弹性模量。
另一方面,尺度效应也可以改变材料的电学和热学特性。
当材料尺寸减小到纳米尺度时,电子和热传输会受到限制,从而出现新的效应。
例如,纳米材料的电阻会随着尺寸的减小而增加,导致电流密度增大。
这种尺度效应在MEMS设计中需要考虑,因为它会影响到微电子元件的电性能和热性能。
此外,尺度效应还会改变材料的光学特性。
当材料尺寸减小到纳米尺度时,光在材料中的传播方式会发生变化。
例如,纳米颗粒会显示出新的光学性质,如表面等离子共振。
这种尺度效应在MEMS设计中需要考虑,因为它可以用于各种光学传感器和光学器件。
在MEMS设计中考虑尺度效应是非常重要的,因为它可以提供新的功能和性能。
例如,利用尺度效应改变材料的力学特性可以设计出更加敏感的力传感器和加速度计。
利用尺度效应改变材料的电学特性可以设计出更小、更快速的微电子器件。
利用尺度效应改变材料的光学特性可以设计出更高灵敏度的光学传感器和光学开关。
尺度效应还可以帮助设计出更稳定和可靠的MEMS器件。
由于尺度效应会改变材料的性质,因此可以利用它来减少MEMS器件的热漂移和机械失配问题。
例如,通过选择尺寸合适的材料,可以使MEMS器件在温度变化或振动环境下保持稳定的性能。
然而,尺度效应也会带来一些挑战。
首先,由于材料尺寸的减小,制造和测试过程变得更加困难。
第1、2xx习题及参考答案1.MEMS的设计涉及那些学科?简述MEMS的设计方法及特点。
MEMS综合了机、电、磁、光、声、热、液、气、生物、化学与多种学科而构成了一门独立的交叉学科。
它研究多种学科各自的特征参量相互之间的耦合关系,应用这些物理联系和耦合关系去分析和解决MEMS设计与制造中的问题。
MEMS研究多种学科各自的特征参量相互之间的耦合关系,应用这些物理联系和耦合关系去分析和解决MEMS设计与制造中的问题。
因此,在MEMS的设计中必须考虑系统设计方法,信息流程设计方法,建立统一物理特征参量设计方法。
1.MEMS设计与制造的研究和分析,MEMS产品分成系统,子系统、元件(元素)三个层次。
2.信息流程是指MEMS产品中各种信息或物理量传递的次序关系,这种传递关系是以程序形式表达的。
3.建立统一的物理特征参量,应该对所需设计对象涉及的各种物理特征参量都相对参照于同一概念的物理特征参量,即相对于系统能量变化而确定。
这样系统内各子系统和元件(元素)的物理特征都可以用相同的物理特征参量描述。
2.工程系统设计通常有几种方法?其主要思路是什么?试举例说明。
工程系统设计通常有:1.K.J法。
K.J法是由底向上处理大量数据之间关系的一种假设。
K.Jxx思路步骤:(1)标签制作:收集有关问题的所有事实和信息,并且在单个标签上或者纸片上书写每个事实。
(2)标签归类:对所有的标签进行分组,并仔细阅读。
相同属性的标签归在一起,不同属性的个别标签(孤独的狼)放在后面。
对每一组标签给定合适的名称,并把它放在面上。
在更高的水平上重复以及处理孤狼。
重复上述迭代过程,以及归类的类型数少于10个。
(3)范围制作:在恰当的空间图样内,仔细布阵最后确定的标签组,给出标签组结构总的了解,用符号描述标签组之间的关系。
对纸上图表进行转移排列,以同样的做法处理布阵子标签组。
(4)说明:用简短动词说明,构筑问题的一般情况,依据简图的事实内容,试图用文字表达、描述简图,并仔细区别个性说明。
08’MEMS复习题1.MEMS的概念,MEMS产品应用。
MEMS(Micro-Electro-Mechanical Systems)是指微型化的器件或器件组合,把电子功能与机械的、光学的或其他的功能形结合的综合集成系统,采用微型结构(集微型传感器、微型执行器、信号处理和控制电路、接口电路、通信系统以及电源),使之能在极小的空间内达到智能化的功效。
MEMS 是Micro Electro Mechanincal System 的缩写,即微机电系统,专指外形轮廓尺寸在毫米级以下,构成它的机械零件和半导体元器件尺寸在微米至纳米级,可对声、光、热、磁、压力、运动等自然信息进行感知、识别、控制和处理的微型机电装置。
微机电系统(MEMS)主要特点在于:(1)体积小、精度高、质量轻;(2)性能稳定、可靠性高;(3)能耗低,灵敏度和工作效率高;(4)多功能及智能化;(5)可以实现低成本大批量生产。
民用:MEMS对航空、航天、兵器、水下、汽车、信息、环境、生物工程、医疗等领域的发展正在产生重大影响,将使许多工业产品发生质的变化和飞跃。
军用:精确化、轻量化、低能耗是武器装备的主要发展趋势,这些特点均需以微型化为基础。
微型化的单元部件广泛应用于飞行器的导航和制导系统、通信设备、大气数据计算机、发动机监测与控制、“智能蒙皮”结构和灵巧武器中。
由硅微机械振动陀螺和硅加速度计构成的MEMS惯性测量装置已用于近程导弹,并显著提高导弹的精确打击能力。
微型化技术在武器装备上的另一个重要发展是微小型武器,如微型飞行器、微小型水下无人潜水器、微小型机器人和微小型侦察传感器等。
具体应用:打印机喷嘴——用于打印机;微加速度计和角速度计——应用于汽车安全气囊;微加工压力传感器——用于进气管绝对压力传感器;由硅微振动陀螺和硅加速度计构成的MEMS惯性测量装置——用于军品中的近程导弹。
2.湿法刻蚀和干法刻蚀的概念,两者异同点以及在MEMS中的应用。