初中数学公式和规律速记口诀!快快收藏!
- 格式:docx
- 大小:13.23 KB
- 文档页数:3
初中数学公式速记口诀一、四则运算1.加法减法:同号相加,异号相减,取号看大数。
2.乘法法则:正与正得正,负与负得正,正与负得负。
3.乘方的运算:a的m次方乘以a的n次方等于a的m+n次方。
4.乘方的运算:a的m次方除以a的n次方等于a的m-n次方。
5.指数相同的乘方:a的m次方乘以b的m次方等于(a乘以b)的m 次方。
6. 乘方与开方:a的m次方乘以a的n次方等于a的m+n次方,即(a的m次方)的n次方等于a的mn次方。
7.平方差公式:a²-b²=(a+b)(a-b)。
8. 立方和公式:a³+b³=(a+b)(a²-ab+b²)。
二、代数公式1. 两个数平方和公式:a²+2ab+b²=(a+b)²。
2. 两个数平方差公式:a²-2ab+b²=(a-b)²。
3. 两个数的立方和公式:a³+3a²b+3ab²+b³=(a+b)³。
4. 两个数的立方差公式:a³-3a²b+3ab²-b³=(a-b)³。
5. 平方和的因式分解:a²+b²=(a+b)²-2ab。
6.平方差的因式分解:a²-b²=(a+b)(a-b)。
7. 立方和的因式分解:a³+b³=(a+b)(a²-ab+b²)。
8. 立方差的因式分解:a³-b³=(a-b)(a²+ab+b²)。
9. 二次方程求根公式:根据二次方程ax²+bx+c=0的表达式,求得x=(-b±√(b²-4ac))/2a。
三、几何公式1.直角三角形斜边长:c²=a²+b²。
巧用顺口溜熟记初中数学公式和规律数学公式和规律在初中阶段是非常重要的,它们是解题的基础和指导,也是理解数学概念和思维的关键。
然而,对于许多学生来说,记住这些公式和规律并不容易。
为了帮助学生更好地掌握数学知识,我整理了一些巧妙的顺口溜,通过这些顺口溜,学生能够轻松地记住一些重要的数学公式和规律。
一、顺口溜记代数公式:1. 一元二次方程求根法,b²-4ac你得掌握。
一大再小两个根,<0无实根,=0一个根。
2. x = (-b ± √(b²-4ac))/(2a)二次方程求解都留下。
3.(a+b)(a-b)=a²-b²平方差公式背下来。
4.a²-b²=(a-b)(a+b)平方差公式很容易。
5.二项式展开好简单,我的名字叫齐考公式。
(a+b)ⁿ = C(n,0)aⁿ + C(n,1)aⁿ⁻¹b + ... + C(n,n-1)abⁿ⁻¹ +C(n,n)bⁿ。
二、顺口溜记几何公式:1.长方形底乘高,得到面积的好帮手。
A=l×w,四边都相对。
2.正方形的面积,直接边长相乘。
A=s²,正方形停不住。
3.三角形面积公式,底边高你有。
A=1/2×b×h,底高更容易。
4.圆的面积公式,先半径,再面积。
A=πr²,记住吗?5.圆的弧长、扇形和正圆角,顺口溜心中藏。
L=2πr,S=1/2πr²,360度它很逆。
三、顺口溜记运算规律:1.交换律、结合律勿忘,运算啥都变得容。
a+b=b+a,a+(b+c)=(a+b)+ca×b=b×a,a×(b×c)=(a×b)×c。
2.分配律快记清,a×(b+c)=a×b+a×c(a+b)×c=a×c+b×c,加减乘除好朋友。
初中数学公式速记口诀一、整数运算1.整数加减乘除,运算法则应知晓。
加减不变号,乘除定规则。
同号相减,异号相加,乘除规律应提取。
二、分数运算1.分数加减规则记,通分再运算更有效。
分数的加减要找同,通分后计算省时间。
分子分母最简约,通分结果精准度。
2.分数乘法要分纳,分子分母分别记忆。
分数相乘分子乘,分母分别要记住。
约分最大约,结果就能减小。
3.分数除法要安排,倒数乘法计算准确。
乘以倒数才好求,分子分母都要翻转。
三、百分数运算1.百分数转化快,小数运算不迷路。
将百分数除以100,等于所对应的小数。
2.小数转百分数,运算法则要明白。
给小数扩大100倍,再加上百分号。
3.百分数运算加减乘,同百分数乘除法相通。
加减乘法共一式,分子分母写在一起。
四、比例与倍数1.比例问题考透,先写列比再通约。
比例问题列式写,通约就是减负。
2.比例求一般项,分子分母别换。
求比例分子分母,列式形式不要变。
3.倍数要有个眼,能能就能找到。
两数的倍数有规律,能不能也能判断。
五、代数式运算1.代数式的加减法,同类项加法最简洁。
学习加减同类项,结果表达最简洁。
2.代数式的乘法,交换律先处理。
乘法学会交换律,结果计算最方便。
3.代数式的除法,乘以倒数最高效。
除法乘以逆元,计算就最方便。
六、平面图形1.点是平面基础,直线支配图形。
点是图形基础,直线引出边。
2.双曲线有四类,形状要了解清。
双曲线有四种类,图形特点记心底。
3.多边形分类别,了解特点在脑海。
多边形分类别,记住特点快解题。
4.圆是最特殊,性质记一记。
圆是特殊图形,要记住性质清清楚。
七、空间图形1.立体图形分类记,特点要清透明。
立体图形分类好,解题不成问题。
2.立体图形表面积,底面积加周长。
立体图形表面积,专门公式要统计。
底面积加周长,不用愁答案。
3.空间图形体积,底面积乘高得。
空间图形体积结构密,计算发现就在手。
八、数据统计1.数据整理分组频,频次最高孩子记。
统计数据分组频,频次最高记在心。
以下是初中数学中一些重要的定理、定义和公式的顺口溜,可以帮助记忆:
1、乘法分配律:
乘法分配律,两数和乘一个数,等于分别乘和加。
示例:a ×(b + c) = a ×b + a ×c。
2、乘法交换律和结合律:
交换律:交换两个因数位置,积不变;
结合律:三个因数相乘,谁前谁先乘。
3、加法交换律和结合律:
交换律:加法交换律,两数相加换位置;
结合律:三个数相加,先把前两数相加。
4、幂的性质:
a 的m 次方,等于m 个a 相乘;
a 的m 次方,除以a 的n 次方,等于a 的m-n 次方。
5、正负数:
正数是大于零的数,负数是小于零的数;
正数大于一切负数,两个负数绝对值大的反而小。
6、分数加减法:
同分母分数相加减,分母不变分子相加减;
异分母分数相加减,先通分再按同分母加减。
7、平面几何初步知识:
线段垂直平分线性质定理:线段垂直平分线上的点与线段两个端点的距离相等;
圆的性质定理:半径相等是等圆,直径相等是等圆,同圆或等圆中半径是直径的一半。
8、三角形:
三角形内角和定理:三角形内角和是180度;
三边关系定理:三角形任意两边之和大于第三边,任意两边之差小于第三边。
初中数学知识点速记口诀大全一、整数的概念和性质:正数负数概不忘零在其中别忘了。
同号相加取原号异号相加看绝对。
加减乘除顺利解取余是除的剩余。
二、运算顺序和公式:先括号后指数再乘除加减。
加减法交换律乘除法不变形。
分配律左右扩结合律加括号。
三、四则运算的口诀:口诀之一:两正相除,两负相除,一正一负取负。
口诀之二:正与负相加,大者的符号要保持。
口诀之三:括号后面要考,负号化为减号。
四、分数的运算:分母相同乘或除分子相同加或减。
分母乘得大分小分母除得小分大。
约分先后要整除约尽互素好约。
五、比例与类比:比例两项对两项乘积相等不错。
调换项的顺序它还是要成立。
比例是否成立你可以算一算。
类比只比一比第三项不参与。
六、百分数的计算:百分之一变小数移动两位是怎样?百分放大一百倍移动两位不累。
七、平方与平方根:平方根是平方的倒开平方先四后五括号里的数要加减正负两种情况。
四个相乘得平方二个相乘得平根。
八、图形的计算:周长长度加减乘除体积适用乘法。
小数点的位置要看好精确度别忘了。
形状知识要弄清楚计算时更从容。
九、坐标系和二次函数:直角坐标系有四象限二次函数翻转两个方向。
顶点坐标先写y后写x图形特点要掌握。
关于y轴情况对称关于x轴形状升降。
对称轴是x等于b开口方向看系数。
十、平行线和平面几何:平行线一窄一宽斜率相同线平行。
直线之间垂直就是斜率乘积为负是。
角度大于90°是钝角别忘记。
内角之和180°外角之和360°。
对于三角形求周长边长之和是关键。
熟记初中数学公式和规律顺口溜有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好.【注】“大”减“小”是指绝对值的大小.合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样.去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号.一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变.(a-b)2n+1=-(b-a)2n+1,(a-b)2n=(b-a)2n 平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央.因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚.“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大).单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了.一元一次不等式组的解集:大大取较大,小小取较小,小大、大小取中间,大小、小大无处找.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊.最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点.特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x轴上y为0,x为0在y轴.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧.对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.函数图象的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷(余邻)直刀切.”正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成.梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n 边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键.反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线,x、y的顺序可交换.二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便, x轴上数交点,a、b同号轴左边,抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键.。
(完整版)初中数学中常见公式口诀直角三角形- 勾股定理:直角三角形的两直角边的平方和等于斜边的平方。
- 正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c分别为三角形的边长,A、B、C分别为对应的内角。
- 余弦定理:c² = a² + b² - 2ab·cosC,其中a、b、c分别为三角形的边长,C为对应的内角。
圆- 圆的周长:C = 2πr,其中r为圆的半径。
- 圆的面积:A = πr²,其中r为圆的半径。
- 弧长公式:L = 2πr·(m/360°),其中L为弧长,r为圆的半径,m为对应的圆心角的度数。
反比例函数- 反比例函数的特点:y = k/x,其中k为常数。
- 两个变量间的比例关系:x1·y1 = x2·y2,其中x1、y1为第一组的值,x2、y2为第二组的值。
直线与平面- 平行线特征:对于两条直线l1和l2,如果有一条直线l3与l1和l2都平行,则l1和l2也平行。
- 垂直线特征:对于两条直线l1和l2,如果l1和l2的斜率乘积为-1,则l1和l2互相垂直。
- 平面的角的性质:平面上两直线平分同一角的直线互相平行。
平移、旋转、翻折- 平移变换:平移不改变图形的大小和形状,只改变图形的位置。
- 旋转变换:以某一点为中心,将图形按一定角度旋转,得到新的图形。
- 翻折变换:将图形关于直线对称,得到新的图形。
统计与概率- 均值:将一组数据相加,再除以数据的个数。
- 中位数:将一组数据按从小到大的顺序排列,位于中间位置的数。
- 众数:一组数据中出现次数最多的数。
- 百分比:百分之一表示1%,百分之十表示10%,以此类推。
以上是初中数学中常见的公式口诀,希望对你有所帮助!。
初中数学公式和规律口诀大全一、整数的口诀:1.两个整数的加减法,不变是两整数,带符号是两数符。
2.乘法算时前念符号,同号得正,异号得负。
3.除法算得到,除数零不行。
同符号为正数,异符号为负号。
二、分数的口诀:1.分数加减小学概念,分数化成相同数。
2.分数乘法口诀记住,分子分母分别算。
3.分数除法公式清楚,倒数相乘有规律。
三、小数的口诀:1.小数乘法口诀记住,位数相加后小数点。
2.商为小数常用口诀,除法后面附小数。
四、代数式的口诀:1.同类项相加合,合并同类项。
2.同异号相乘,用规律记忆。
3.同指数幂相乘,底数相乘,指数相加。
4.零幂指数记住,底数不变,指数为1五、二次方程的口诀:1.二次方程有根求法,先判定算式中。
b²-4ac大于0,两根不相等。
等于0,两根相等。
小于0,无解。
六、平面几何的口诀:1.两角和必为90度,角互余线要记住。
2.同心离心别混淆,切线平分小角。
3.半径是弦的中垂线,扇形面积底乘角。
七、立体几何的口诀:1.立体图形先认识,桶锥球棱边角。
2.正方体八个顶,十二个棱,六个面。
3.五正五顶六棱面,八面体有六棱面。
八、百分数的口诀:1.百分数想入头,意为百分之几。
2.百分比化小数,除以100就好使。
3.小数化百分数,乘以100倍。
九、利率、利息口诀:1.年利率除12,月利率的意思。
2.用月利率才是标准,计算利息很方便。
十、统计的口诀:1.各种统计知得多,平均数、中位数、众数。
平均数和中位数,个数是奇数中间数。
初中数学知识点口诀总结一、数与代数1. 整数运算口诀加法法则很简单,数位对齐一起算。
借位减法要记牢,个位不够向前借。
乘法表要勤练习,九九八十一不错。
除法法则看除数,商乘除数加余数。
2. 分数运算口诀分数乘法分母乘,分子相乘记心中。
分数除法不一般,乘以倒数要转换。
加减法则先通分,找公分母再算清。
有理数运算同,注意符号要分清。
3. 代数表达式单项式是数与字母,系数次数要认清。
多项式要排序,从高到低依次行。
合并同类项要记,系数相加字母留。
4. 一元一次方程一元一次解法明,先消括号再移项。
系数化为一来解,方程两边同除行。
5. 不等式与不等式组不等式解集要找准,大于小于记心中。
不等式组解要联,同大取大,同小取小。
大大小小中间找,无解情况要记牢。
二、几何知识1. 点线面基本点动成线线动面,基本图形要记全。
直线无端无限长,射线有端无尽头。
线段有限两端点,角分直角和钝锐。
2. 三角形性质三角和为一百八,内角外角有关联。
等边等角记心间,直角三角三六七十。
三角形面积算,底乘高除以二。
3. 四边形性质四边形对边等,平行四边形记心中。
矩形对角相等,菱形对边平行且等。
面积计算有方法,长乘宽或对角半乘。
4. 圆的基本性质圆心到边距离同,半径名称要记清。
直径半径两倍长,圆周率记心中。
圆的面积公式记,半径平方乘二π。
5. 空间几何立方体六面同,长宽高相等记心中。
长方体相对面,面积相等记清楚。
圆柱圆锥球,体积计算公式别忘记。
三、统计与概率1. 统计知识数据收集要全面,平均数、中位数、众数分。
图表绘制要清晰,条形饼图各有用。
离散数据用条形,占比关系饼图明。
2. 概率知识概率计算基础,可能性大小来衡量。
等可能事件概率算,总数除以可能数。
不规则事件难计算,列表树状来帮忙。
以上是初中数学知识点的口诀总结,通过这些口诀可以帮助学生更好地记忆和理解数学概念、公式和解题方法。
在实际学习过程中,学生应结合具体的数学题目和应用场景,不断地练习和巩固,以达到熟练掌握初中数学知识的目的。
特殊点的坐标特征坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x轴上y为0,x为0在y轴。
象限角的平分线象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
自变量的取值范围分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
最简根式的条件最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
平行某轴的直线平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧。
函数图象的移动规律若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀:左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了。
一次函数的图象与性质的口诀一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数的图象与性质的口诀二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数的图象与性质的口诀反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。
图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边。
巧记三角函数定义初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的.一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷(余邻)直刀切。
01有理数的加法同号相加一边倒;异号相加"大"减"小" 符号跟着大的跑,绝对值相等"零"正好02合并同类项合并同类项,法则不能忘,只求系数和,字母、指数不变样.03去、添括号去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号.04一元一次方程已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.05平方差公式平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.06完全平方公式完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央.07因式分解一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚.08单项式运算加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行.09一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了.10一元一次不等式组一元一次不等式组的解集:大大取较大,小小取较小,小大、大小取中间,大小、小大无处找一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.11分式混合运算分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.12分式方程同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍,别含糊.13最简根式的条件最简根式三条件,号内不把分母含,幂指数(根指数)要互质、幂指比根指小一点.14特殊点的坐标特征坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x轴上y为0,x为0在y轴.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵却相反.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧15对称点的坐标对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称x相反;原点对称最好记,横纵坐标全变号.16自变量的取值范围分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.17函数图象函数图象的移动规律:若把一次函数的解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”18一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远19二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见;b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线;左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现;横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.20反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.21特殊三角函数首先记住30度、45度、60度的正弦值、余弦值的分母都是2,正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.三角函数的增减性:正增余减22数字巧记(下面的数字均是约等于,都是无理数!)=1.414(意思意思而已),=1.7321(三人一起商量),=2.236(吾量量山路),=2.449(粮食是酒),=2.645(二流是我),=2.828(二爸二爸),=3.16(山药,六两)23平行四边形的判定要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成.24梯形问题的辅助线移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.2525添加辅助线歌辅助线,怎么添?找出规律是关键.题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连;三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番.26圆的证明歌圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连. 同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.。
3分钟记完初中数学解题规律!小口诀,有大用~数学解题有规律,但是很多同学记不住,小编给大家总结了一些口诀,赶紧背起来吧!1、有理数的加法运算同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
2、有理数的减法运算减正等于加负,减负等于加正。
3、有理数的乘法运算符号法同号得正异号负,一项为零积是零。
4、合并同类项说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
5、去、添括号法则去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
6、解方程已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
7、平方差公式两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
8、完全平方公式二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
9、完全平方公式首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
10、解一元一次方程先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
11、解一元一次方程先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
12、因式分解与乘法和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
13、因式分解两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
14、因式分解一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式)15、因式分解一提二套三分组,叉乘求根也上数。
初中数学找规律常见公式找规律和常见公式是初中数学的重要内容之一,掌握了这些规律和公式可以帮助我们更快地解题,提高解题效率。
下面是一些常见的找规律和公式,供你参考:一、四则运算中的规律1.加法规律:a+b=b+a(交换律)(a+b)+c=a+(b+c)(结合律)a+0=a(零元素)2.乘法规律:a×b=b×a(交换律)(a×b)×c=a×(b×c)(结合律)a×1=a(单位元素)a×0=0(零元素)a×(b+c)=a×b+a×c(分配律)3.减法规律:a-b≠b-a(减法没有交换律)4.除法规律:a÷b≠b÷a(除法没有交换律)a÷0是没有意义的(除数不能为0)二、尺规作图中的规律1.垂直线和水平线的交点为直角。
2.两直线相交,相对角相等,即对顶角互等。
3.两直线平行,对应角相等。
4.两直线平行,交叉线与其中一条直线所成的内角和为180°。
三、等差数列和等比数列中的公式1.等差数列(通项公式):an = a1 + (n - 1) × d其中,an 表示第n项,a1 表示首项,d 表示公差。
2.等差数列(前n项和公式):Sn = (a1 + an) × n ÷ 2其中,Sn表示前n项和。
3.等比数列(通项公式):an = a1 × q^(n - 1)其中,an 表示第n项,a1 表示首项,q 表示公比。
4.等比数列(前n项和公式):Sn=a1×(q^n-1)÷(q-1)其中,Sn表示前n项和。
四、平面图形中的规律和公式1.正方形的对角线相等。
2.矩形的对角线相等。
3.平行四边形的对角线互相平分。
4.直角三角形中,斜边的平方等于两直角边的平方和。
5.等腰三角形中,底边上的高相等。
6.面积公式:长方形的面积:S=长×宽三角形的面积:S=底×高÷2平行四边形的面积:S=底×高梯形的面积:S=(上底+下底)×高÷2圆的面积:S=π×r^2其中,S表示面积,π表示圆周率,r表示半径。
初中数学记忆顺口溜大全1、有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好.【注】“大”减“小”是指绝对值的大小.2、合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样.3、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号.4、一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.5、恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变.(a-b)2n+1=-(b-a)2n+1,(a-b)2n=(b-a)2n6、平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.7、完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央.8、因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚.9、“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)10、单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行.11、一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了.12、一元一次不等式组的解集:大大取较大,小小取较小,小大、大小取中间,大小、小大无处找.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.13、分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.14、分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊.15、最简根式的条件:最简根式三条件,幂指、根指号内不把分母含,(数)(数)要互质,幂指比根指小一点.16、特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x 轴上 y 为 0,x 为0 在 y 轴.17、象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.18、平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行 x 轴,纵坐标相等横不同;直线平行于 y 轴,点的横坐标仍照旧.19、对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x 轴对称 y 相反,y 轴对称,x 前面添负号;原点对称最好记,横纵坐标变符号.20、自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.21、函数图象的移动规律:若把一次函数解析式写成 y?k(x?0)?b,二次函数的解析式写成y?a(x?h)2?k的形式,则可用下面的口诀(此处符号编辑错误)左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.22、一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数 k 与 b,作用之大莫小看,k 是斜率定夹角,b 与 y 轴来相见,k 为正来右上斜,x 增减 y 增减;k 为负来左下展,变化规律正相反;k 的绝对值越大,线离横轴就越远.23、二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由 a 断,c 与 y 轴来相见,b 的符号较特别,符号与 a 相关联;顶点位置先找见,y 轴作为参考线,左同右异中为 0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.24、反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k 为正,图在一、三(象)限,k 为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.25、巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷(余邻)直刀切.”正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.26、三角函数的增减性:正增余减特殊三角函数值记忆:首先记住 30 度、45度、60 度的正弦值、余弦值的分母都是 2、正切、余切的分母都是 3,分子记口诀“123,321,三九二十七”既可.27、平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成.28、梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.29、添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.30、圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.31、圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.32、正多边形诀窍歌:份相等分割圆,n 值必须大于三,依次连接各分点,内接正 n 边形在眼前.经过分点做切线,切线相交 n 个点.n 个交点做顶点,外切正 n 边形便出现.正 n 边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果 n 值为偶数,中心对称很方便.正 n 边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形 2n 个整,依此计算便简单.33、函数学习口决:正比例函数是直线,图象一定过原点,k 的正负是关键,决定直线的象限,负 k 经过二四限,x 增大 y 在减,上下平移 k 不变,由引得到一次线,向上加 b 向下减,图象经过三个限,两点决定一条线,选定系数是关键.反比例函数双曲线,待定只需一个点,正 k 落在一三限,x 增大 y 在减,图象上面任意点,矩形面积都不变,对称轴是角分线,x、y 的顺序可交换.二次函数抛物线,选定需要三个点,a 的正负开口判,c 的大小 y 轴看,△的符号最简便,x 轴上数交点,a、b 同号轴左边,抛物线平移 a 不变,顶点牵着图象转,三种形式可变换,配方法作用最关键.34、实数定义域:实数讲究定义域,四项原则须注意。
《初中数学公式和规律口诀全》初中数学公式和规律是学习数学的基础,掌握好这些公式和规律,能够在解题过程中更加得心应手。
下面是初中数学公式和规律的全面总结:一、整数的运算规律:1.加法的交换律:a+b=b+a2.加法的结合律:(a+b)+c=a+(b+c)3.减法的运算规律:a-b=a+(-b)4.减法与加法的对照法则:a-b+b=a5.减法的结合律:(a-b)-c=a-(b+c)6.乘法的交换律:a×b=b×a7.乘法的结合律:(a×b)×c=a×(b×c)8.乘法的分配率:a×(b+c)=a×b+a×c9.除法的运算规律:a÷b=a×1/b(b≠0)10.除法与乘法的对照法则:a÷b×b=a(b≠0)二、分数的运算规律:1.分数的乘法规律:a/b×c/d=(a×c)/(b×d)2. 分数的除法规律:a/b ÷ c/d = a/b × d/c = ad/bc (c、d ≠ 0)3. 分数的加法规律:a/b + c/d = (ad + bc)/bd4. 分数的减法规律:a/b - c/d = (ad - bc)/bd三、代数运算法则:1.加法法则:a+0=a2.减法法则:a-a=03.乘法法则:a×1=a4.除法法则:(a×b)/b=a(b≠0)四、乘方公式:1.积的乘方:(a×b)^n=a^n×b^n2.除法的乘方:(a/b)^n=a^n/b^n(b≠0)3.幂的乘方:(a^n)^m=a^(n×m)五、根式的运算公式:1.乘方与开方:(a^m)^(1/n)=a^(m/n)2.分子同根:a^m×a^n=a^(m+n)3.分母同根:a^m/a^n=a^(m-n)4.分子分母同根:(a/b)^m=a^m/b^m(b≠0)5.开方的运算:√a×√b=√(a×b)6.无理数的加法:√a+√b≠√(a+b)六、平行线与三角形:1.平行线的性质:对称的两组锐角相等2.相交线角度关系:同位角、内错角、同旁内角互等3.三角形内角和:三角形内角和等于180°4.直角三角形勾股定理:a^2+b^2=c^25.等腰三角形的性质:两底角相等,两腰相等6.等边三角形的性质:三个内角相等七、圆的运算规律:1.圆周率π的近似值:π≈3.142.圆的周长公式:C=2πr或C=πd3.圆的面积公式:S=πr^2以上是初中数学公式和规律的全面总结,通过反复的练习和应用,可以更深入地理解和掌握这些公式和规律,提高解题的能力。
初中数学公式记忆口诀一、代数基础公式1.同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;不同底数幂相乘,指数相加再把底数放在前面;不同底数幂相除,指数相减再把底数放在前面。
2.a的m次方与a的n次方,指数相加成a的m+n次方;a的m次方与b的m次方,底数相同就是a的m次方。
3.平方的平方是四次方,立方的立方是六次方。
4.分式加减很简单,将分母相同再加减。
5.分式相乘很轻松,将分子分母相乘。
6.分式相除要注意,分子乘以分母倒。
7.平方差公式记住,两平方相减两次方。
8.和差化积很重要,两个数相加相减就可以。
9.看是不是相反数,互为倒数记住。
10.分式的运算要约,最大公约数约到底。
二、方程与不等式1.开平方只留一个符号,方程右边也开放。
2.方程求根普遍法,两边同时加减移项法。
3.方程只有两项,两项系数交换。
4.得到最简分数,最大公约约到底。
5.分式方程思路清,通分消分运算简。
三、平方根和勾股定理1.辅助判断平方根,中间数法选择标准。
2.勾股定理绝不差,两边平方边最长。
四、比例与相似1.比例记住基本要,等比记分数。
2.善用等比的性质,单个全等也行。
3.相似多运利用,定理各较重。
五、线性函数与一次函数1.研究函数首看导,线性的导是定值。
2.函数给的表明式,分形单项的常数项。
3.已知函数求函数,带入关系条件。
六、二次函数与抛物线1.二次函数性态顶,开口纵轴往下。
2.方程转移到左边,零点交接即。
3.最值只看a符号,负号则为正最大值。
4.求顶点坐标别忘,纵坐标直接带入。
七、统计与概率1.概率都有范围,介于0和1之间。
2.抽样必得标准差,离散程度能调和。
3.结果对应模式查,频数代表样本量。
4.排列组合方法清,适应条件做处理。
5.求百分比很简单,对应数字相乘。
八、三角形与平行四边形1.三角形边角关联连,一样面积既是等。
2.正弦定理记弦数,余弦定理记邻边。
3.画图标注数边心,题目求谁看清楚。
4.平行四边形记所有,二等边的角相同。
初中数学26个知识点口诀!方便实用!2倍记忆效果1.有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好.2.合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样.3.去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号.4.一元一次方程:已知未知要别离,别离方法就是移,加减移项要变号,乘除移了要颠倒.5.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.6.完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央.7.因式分解:一提〔公因式〕二套〔公式〕三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,假设有三个平方数〔项〕,就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上假设都行不通,拆项、添项看清楚.8.单项式运算:加、减、乘、除、乘〔开〕方,三级运算分得清,系数进行同级〔运〕算,指数运算降级〔进〕行.9.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除〔以〕负数时,不等号改向别忘了.10.一元一次不等式组的解集:大大取较大,小小取较小,小大、大小取中间,大小、小大无处找.一元二次不等式、一元一次绝对值不等式的解集:大〔鱼〕于〔吃〕取两边,小〔鱼〕于〔吃〕取中间.11.分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变〔乘〕;乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.12.分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原〔根〕留、增〔根〕舍,别含糊.13.最简根式的条件:最简根式三条件,号内不把分母含,幂指数〔根指数〕要互质、幂指比根指小一点.14.特殊点的坐标特征:坐标平面点〔x,y〕,横在前来纵在后;〔+,+〕,〔-,+〕,〔-,-〕和〔+,-〕,四个象限分前后;x轴上y为0,x为0在y轴.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵却相反.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧.15.对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称x相反;原点对称最好记,横纵坐标全变号.16.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.17.函数图象的移动规律:假设把一次函数的解析式写成y=k〔x+0〕+b,二次函数的解析式写成y=a〔x+h〕2+k的形式,则可用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.18.一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.19.二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见;b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线;左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现;横标即为对称轴,纵标函数最值见.假设求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.20.反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三〔象〕限,k为负,图在二、四〔象〕限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.21. 特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2,正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.三角函数的增减性:正增余减22.数字巧记:=1.414〔意思意思而已〕,=1.7321〔三人一起商量〕,=2.236〔吾量量山路〕,=2.449〔粮食是酒〕, =2.645〔二流是我〕, =2.828〔二爸二爸〕, =3.16〔山药,六两〕.23.平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成.24.梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.25.添加辅助线歌:辅助线,怎么添?找出规律是关键.题中假设有角〔平〕分线,可向两边作垂线;线段垂直平分线,引向两端把线连;三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番.26.圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它假设垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中假设有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;假设是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.。
初中数学公式和规律速记口诀!快快收藏!
最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x轴上y为0,x为0在y轴。
象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧。
对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图象的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a 相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标
最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边。
巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的。
一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷(余邻)直刀切.”正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。
三角函数的增减性:正增余减。
特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。
平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成。
梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。
添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番。
圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分
弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.
圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。
正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单。
函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。
反比例函数双曲线:待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线,x、y的顺序可交换。
二次函数抛物线:选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边,抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。