奥数计算公式大全讲课教案
- 格式:doc
- 大小:66.50 KB
- 文档页数:23
小学四年级奥数教案课时安排:课时一计算的奥秘(一)课时二计算的奥秘(二)课时三细观察、找规律课时四和倍问题课时五差倍问题课时六复习课课时七和差问题课时八巧解算术谜课时九盈亏问题课时十鸡兔同笼问题课时十一趣味数阵图课时十二复习考试课时一第一讲计算的奥秘(一)教学目的:理解掌握巧算方法教学重点:掌握巧算方法教学难点:掌握分解与组合方法、裂项法巧算。
教学过程例1 计算9+99+999+9999+99999【解析】在涉及所有数字都是9的计算中,常使用凑整法。
例如将999化成1000—1去计算。
这是小学数学中常用的一种技巧。
9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105例2 计算199999+19999+1999+199+19【解析】此题各数字中,除最高位是1外,其余都是9,仍使用凑整法。
不过这里是加1凑整。
(如199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225例3计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)【分析】:题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦。
但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…1000-999=1,因此可以对算式进行分组运算。
解:解法一、分组法(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2-1)+(4-3)+(6-5)+…+(996-995)+(998-997)+(1000-999)=1+1+1+…+1+1+1(500个1)=500解法二、等差数列求和(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2+1000)×500÷2-(1+999)×500÷2=1002×250-1000×250=(1002-1000)×250=500练习:(1)1-2+3-4.....+1997-1998+1999(2)89998+8998+898+88(3)462+457+461+459+463+460课时二第二讲计算的奥秘(二)教学目标:1.学会掌握乘除法中的速算与巧算2.熟练掌握乘除法中的法则、定律、性质。
教师辅导讲义一、基本运算律及公式876+124=1000 375+615=1000原式=(876+124)+(385+615)=1000+1000=20002.巧算673+288【解析】这道题目乍看起来,不具备巧算的条件,那怎么办呢?我们可以利用转化的思考方法,把其中一个加数折分成两部分,其中一部分刚好是另一个加数的补数,能与另一个加数凑整,这样计算比较简便。
原式=661+12+288=661+(12+288)=661+300=9613. 巧算6397+1876-397【解析】我们可利用带符“搬家”的性质,使运算简便。
原式=6397-397+1876=6000+1876=78764.巧算下面各题。
(1)532-(32+184);(2)5283-(283-298);【解析】(1)我们可利用去括的性质,使运算简便。
原式=532-32-184=500-184=316(2)原式=5283-283+298=5000+298=52985.计算(1)1457-399 (2)3572+998。
【解析】可以先把减数或加数“转化”成整十、整百、整千、……的数,再利用“去括”的性质进行运算。
也可以直接加补或减补。
(1)原式=1457-(400-1)=1457-400+1=1057+1=1058(2)原式=3572+(1000-2)=3572+1000-2=4572-2=45706. 计算63+62+58+59+60+6l+58+59+57+64【解析】本题的基准数为60。
原式=(60+3)+(60+2)+(60-2)十(60-11)+60+(60+1)+(60-2)+(60-1)+(60-3)+(60+4) =60×10+(3+2-2-1+1-2-1-3+4)=600+(3+2+1+4)一(2+1+2+1+3)=600+10-9=601课后反击1.巧算(84+37+55)+(16+45+63)【解析】原式=(84+16)+(37+63)+(55+45)=100+100+100=3002..计算9+99+999+9999+6【解析】原式=(9+1)+(99+1)+(999+1)+(9999+1)+2=10+100+1000+10000+2=11110+2=111123.计算5462-1245-462【解析】原式=5462-462-1245=5000-1245=37554.巧算下面的题。
上册第一讲速算与巧算一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56—100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47—100是个整百的数,所以先把+47带着符号搬家,搬到‘+36前然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把3l+69—100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+l+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+l就是因为2+18和l+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6—90=6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“一”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+l=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19—18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91, 3, 5, 7, 92, 4, 6, 8, 103,6,9,12,154,8,12,16,20等等都是等差连续数.1.等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算: l+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中问数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2.等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10-I-12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6—120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“l”,以此类推.(2)计算:102+100+99+101+98解:方法l:仔细观察,可知各个加数都接近100,所以选100为基准数:采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家) 102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.习题一1.计算:(1)18+28+72 (2)87+15+13(3)43+56+17+24 (4)28+44+39+62+56+212.计算:(1)98+67 (2)43+28 (3)75+26 3.计算:(1)82-49+18 (2)82-50+49 (3)41-64+29 4.计算:(1)99+98+97+96+95 (2)9+99+9995.计算:(1)5+6+7+8+9 (2)5+10+15+20+25+30+35(3)9+18+27+36+45+54 (4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50 (2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+l+2+3+4+5+6+1+2+3+4+5习题一解答1.解:(1)18+28+72=18+(28+72)=18+100=118(2)87+15+13=(87+13)+15=100+15=115(3)43+56+17+24=(43+17)+(56+24)=60+80=140(4)28+44+39+62+56+21=(28+62)+(44+56)+(39+21)=90+100+60=2502.解:(1)98+67-98+2+65=100+65=165(2)43+28=43+7+21=50+21=71或43+28=41+(2+28)=41+30=71(3)75+26=75+25+1=100+1=1013.解:(1)82-49+18=82+18-49=100-49=51(2)82-50+49=82-1=81(减50再加49等于减1)(3)4l-64+29=41+29-64=70-64=64.解:(1)99+98+97+96+95=100×5-1-2-3-4-5=500-15=485(每个加数都按100算,再把多加的减去)或99+98+97+96+95=97×5=485(2)9+99+999=10+100+1000-3=1110-3=11075.解:(1)5+6+7+8+9=7×5=35(2)5+10+15+20+25+30+35=20×7=140(3)9+18+27+36+45+54=(9+54)×3=63×3=189(4)12+14+16+18+20+22+24+26=(12+26)×4=38×4=1526.解:(1)53+49+51+48+52+50=50×64-3-1+1—2+2+O=3004-3=303 (2)87+74+85+83+75+77+80+78+81+84=80×10+7-64-54-3-5-3+0-2+1+4=800+4=8047.解:方法l:原式=21+21+21+15=78方法2:原式=21×4-6=84—6=78方法3:原式=(1+2+3+4+5+6)×34-15=2l×3+15=63+15=78。
第1讲加减法的巧算在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。
加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数,再将各组的结果求和。
这种“化零为整”的思想是加减法巧算的基础。
先讲加法的巧算。
加法具有以下两个运算律:加法交换律:两个数相加,交换加数的位置,它们的和不变。
即a+b=b+a,其中a,b各表示任意一数。
例如,5+6=6+5。
一般地,多个数相加,任意改变相加的次序,其和不变。
例如,a+b+c+d=d+b+a+c=…其中a,b,c,d各表示任意一数。
加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。
即a+b+c=(a+b)+c=a+(b+c),其中a,b,c各表示任意一数。
例如,4+9+7=(4+9)+7=4+(9+7)。
一般地,多个数(三个以上)相加,可先对其中几个数相加,再与其它数相加。
把加法交换律与加法结合律综合起来应用,就得到加法的一些巧算方法。
1.凑整法先把加在一起为整十、整百、整千……的加数加起来,然后再与其它的数相加。
例1计算:(1)23+54+18+47+82;(2)(1350+49+68)+(51+32+1650)。
解:(1)23+54+18+47+82=(23+47)+(18+82)+54=70+100+54=224;(2)(1350+49+68)+(51+32+1650)=1350+49+68+51+32+1650=(1350+1650)+(49+51)+(68+32)=3000+100+100=3200。
2.借数凑整法有些题目直观上凑整不明显,这时可“借数”凑整。
例如,计算976+85,可在85中借出24,即把85拆分成24+61,这样就可以先用976加上24,“凑”成1000,然后再加61。
例2计算:(1)57+64+238+46;(2)4993+3996+5997+848。
第1讲 平均数问题: 日期:【知识要点】把几个不相等的数,在总数不变的条件下,通过移多补少,使它们彻底相等,求得的相等的数就是平均数。
如何灵便运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数 总数量=平均数×总份数总份数=总数量÷平均数 平均速度=总路程÷总时间【典型例题】类型一〔概念问题〕例1 求198、190、197、195、194、195、194、193、199、191的平均数是多少?〔巧算〕类型二〔列等式〕例2 有5个数,平均数是18,其中前3个数的平均数是16,后3个数的平均数是20,求第3个数是多少例3 有4箱水果,苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个。
苹果和桃平均每箱37个,求一箱苹果有多少个?一箱桃有多少个?类型三〔行程问题〕例4 一辆汽车上山每小时行20千米,3小时到达山顶。
沿原路下山只用2小时,求这辆汽车往返的平均速度。
例5 一辆汽车以每小时100千米的速度从甲地开往乙地,到达乙地后,又以每小时60千米的速度从乙地开回甲地,这辆汽车往返的平均速度是多少?〔赋值法〕类型四〔算错类型〕例6 五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了,经重新计算后,全班的平均成绩91.7分,五一班有几名学生?例7 6个数的平均数是70,把其中一个数改为6后,这六个数的平均数是65,这个改动的数原来是多少? 类型五〔移多补少〕例8 在一次数学竞赛中,有26名男同学参加,平均分为93分,女生平均分为96分,所有人的总平均数分为94分,求这次竞赛有多少女生参加?随堂练习:成绩:1.小林的语文、数学、英语、社会4门测试的平均分是89分,前3门的平均分为92,后两门的平均分为88,小林英语测试多少分?2.一辆摩托车以每小时20千米的速度行完了120千米的旅程。
教师辅导讲义考点一:分组凑整例1、计算1+2+3+4+5+6+7+8+9+10【解析】观察式子可以发现,1+9=10,2+8=10,3+7=10....先运用加法交换律将和为10的数字分成一组,再运用加法结合律a+b+c=(a+b)+c=a+(b+c),使运算过程简便:原式=1+9+2+8+3+7+4+6+5=(1+9) + (2+8) + (3+7) + (4+6) +5= 10+10+10+10+5=45例2、计算:894-89- 111-95 -105- 94【解析】观察式子可以发现,89+111=200,95 +105=200,894-94=800....可以通过巧括,使运算过程简便,添括时: 如果添加的括前面是“ + ”,那么括内的数的原运算符不变;如果添加的括前面是“-",那么括内的数的原运算符“ + ”变为“―",“-”变为“ + ”。
所以,原式=894- (89+111 ) — ( 95+105) — 94=(894-94) - (89+111 ) — ( 95+105)=800-200-200= 400例3、看到下面的算式不要害怕,仔细考虑,相信你可以找到巧算的方法的^(1+3+5+7+...+99) - (2+4+6+ (98)【解析】观察式子可以发现,因为我们可以直观算出3-2, 5-4,7-6…等算式的值,可以考虑去掉减数的括,再利用以上所讲的分组凑整法,使运算简便,原式=(1+3+5+7+- +99 ) -2-4-6-…-98=1+ (3-2) + (5-4) + (7-6) +…+ (99-98)=1+1+1 + 1+ …+1=49考点二:加补凑整例1、同学们,你们有什么好办法又快又准的算出下面题的答案?298 + 396 + 495 + 691 + 799 + 21【解析】观察式子发现,式中各数都很接近整十、整百,所以考虑通过借数和拆数来进行凑整,原式=(298+2) + (396+4) + ( 495+5) + ( 691+9) + ( 799+1) + 20-2-4-5-9-1+1=300+400+500+800+20- (2+4+5+9)= 2000+20-20= 2000例2、算一算98 — 96—97— 105+ 102+ 101【解析】通过借数和拆数来凑整原式=(100-2) - (100-4) - (100-3) + ( 100+5) + ( 100+2) + ( 100+1)=100+100+100+100+100+100-2+4+3+5+2+1= 613考点三、位值原理例1、计算:123+ 223+423+523+723+823【解析】观察式子发现,式中各数后两位全部相同,只有百位上的数字不同,可以考虑先将数字拆分成整百与另一个数相加的形式,然后将整百相加,剩余数相加,原式=(100+23) + (200+23) + ( 400+23) + ( 500+23) + ( 700+23) + ( 800+23)=100+200+400+500+700+800+23+23+23+23+23+23= 2700+ (20+3) + (20+3) + (20+3) + (20+3) + (20+3) + (20+3)= 2700+ (20+20+20+20+20+20 ) + (3+3+3+3+3+3 )= 2700+120+18= 2838例2、计算:123+234+345+456+567+678 + 789【解析】观察式中各数发现,如果将个位、十位、百位上的数字分别相加,将会简化运算步骤,所以利用位置原则将数进行拆分,再分别相加,原式=(100+200+300+400+500+600+700 ) + (20+30+40+50+60+70+80 ) + ( 3+4+5+6+7+8+9 ) = 2800+350+42= 3192考点四、基准数例1、下面这道题怎样算比较简便呢?看谁算的快!78 76 83 82 77 80 79 85【解析】观察式子发现,式中各数都比较接近于整数80,选80为基准数”(要注意把多加的数减去,把少加的数加上),原式=80+80+80+80+80+80+80+80-2-4+3+2-3-1+5=6400+0= 6400例2、某小组有20人,他们的数学成绩分别是:87、91、94、88、93、91、89、87、92、86、90、92、88、90、91、86、89、92、95、89,求这个组的平均成绩?【解析】根据题意,可以列出如下算式:(87+91+94+88+93+91+89+87+92+86+90+92+88+90+90+91+86+89+92+95+89 ) + 20观察发现,学生的成绩都接近于90,选90为基准数”原式=( 90X20-3+1+4-2+3+1-1-3+2-4+2-2+1-4-1+2+5-1 ) + 20= 1800 + 20=90考点五、数列求和等差数列求和公式:总数 =(首项+末项)头项数攵例1、求1到99共99个连续自然数位上的所有数字之和。
奥数计算公式大全年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;几年后的年龄=大小年龄差÷倍数差—小年龄几年前年龄=小年龄—大小年龄差÷倍数差归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;植树问题鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。
基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
关键问题:确定循环周期。
闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,an, d, n, sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an = a1+(n-1)d;通项=首项+(项数一1)×公差;数列和公式:sn,= (a1+ an)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n= (an+ a1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d =(an-a1))÷(n-1);公差=(末项-首项)÷(项数-1);关键问题:确定已知量和未知量,确定使用的公式;二进制及其应用十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。
所以234=200+30+4=2×102+3×10+4。
=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100注意:N0=1;N1=N(其中N是任意自然数)二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。
(2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7+……+A3×22+A2×21+A1×20注意:An不是0就是1。
十进制化成二进制:①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。
②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。
加法乘法原理和几何计数加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法。
关键问题:确定工作的分类方法。
基本特征:每一种方法都可完成任务。
乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2.......×mn 种不同的方法。
关键问题:确定工作的完成步骤。
基本特征:每一步只能完成任务的一部分。
直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。
直线特点:没有端点,没有长度。
线段:直线上任意两点间的距离。
这两点叫端点。
线段特点:有两个端点,有长度。
射线:把直线的一端无限延长。
射线特点:只有一个端点;没有长度。
①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数质数与合数质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。
质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。
通常用短除法分解质因数。
任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N=,其中a1、a2、a3……an都是合数N的质因数,且a1<a2<a3<……<an。
求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)互质数:如果两个数的最大公约数是1,这两个数叫做互质数。
约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48……;18的倍数有:18、36、54、72……;那么12和18的公倍数有:36、72、108……;那么12和18最小的公倍数是36,记作[12,18]=36;最小公倍数的性质:1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法辗转相除法:先用较小的数除较大的数,得到第一个余数,再用第一个余数除较小的数,得到第二个余数。
又用第二个余数除第一个余数,得到第三个余数。
……这样重复下去,直到余数为0,那么最后一个余数即为所求的最大公约数。
数的整除一、基本概念和符号:1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”;二、整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。