(完整word版)内蒙古包头昆区2018-2019初三第一学期数学期末试卷解析版
- 格式:doc
- 大小:243.18 KB
- 文档页数:17
2019-2019学年内蒙古XX中学九年级(上)期末数学试卷一、选择题1.2cos45°的值等于()A.B.C.D.2.已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2) B.y随x的增大而减少C.图象在第一、三象限D.若x>1,则y<23.如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为()A.B.C.D.4.书包里有数学书3本、英语书2本、语文书5本,从中任意抽取一本,则是数学书的概率是()A.B.C.D.5.把抛物线y=x2向右平移2个单位,向下平移5个单位得到的抛物线是()A.y=x2+3 B.y=x2+7 C.y=(x+2)2﹣5 D.y=(x﹣2)2﹣56.如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的C′处,并且C′D∥BC,则CD的长是()A.B.C.D.7.在直角坐标系xOy中,点P(4,y)在第一象限内,且OP与x轴正半轴的夹角为60°,则y的值是()A.B.C.8 D.28.如图所示是一天中不同时刻直立的灯杆在阳光下形成的影长,规定各图向右为正东方向,将各图按时间顺序排列正确的是()A.②④①③ B.③①④② C.②④③① D.①③②④9.已知在Rt△ABC中,∠C=90°,sinA=,AC=2,那么BC的值为()A.2 B.4 C.4 D.610.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0,常数项为0,则m值等于()A.1 B.2 C.1或2 D.0二、填空题11.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是.12.在半径为5cm的圆中,两条平行弦的长度分别为6cm和8cm,则这两条弦之间的距离为.13.正n边形的一个外角是30°,则n= .14.两个相似三角形的最短边分别是5cm和3cm,它们的周长之差是12cm,那么小三角形的周长为.15.在Rt△ABC中,∠C=90°,BC=3,AB=2,则∠B的度数为.16.如图是由几个相同的小立方块组成的几何体的三视图,小立方块的个数是.17.⊙A、⊙B、⊙C两两不相交,且半径都是0.5cm,则图中的三个扇形(即阴影部分)的面积之和为.18.在Rt 三角形ABC 中,∠ACB=90°,∠A=30° CD⊥AB 于点D ,那么△ACD 与△BCD 的面积之比为 .19.半径等于12的圆中,垂直平分半径的弦长为 .20.一元二次方程x 2=2x 的根是 .三、解答题21.计算:﹣2sin45°+(2﹣π)0﹣()﹣2.22.已知关于x 的方程k 2x 2﹣2(k+1)x+1=0有两个实数根.(1)求k 的取值范围;(2)当k=1时,设所给方程的两个根分别为x 1和x 2,求+的值.23.已知,在同一直角坐标系中,反比例函数y=与二次函数y=﹣x 2+2x+c 的图象交于点A (﹣1,m ).(1)求m 、c 的值;(2)求二次函数图象的对称轴和顶点坐标.24.已知:如图,△ABC 内接于⊙O ,点D 在OC 的延长线上,sinB=,∠CAD=30°.(1)求证:AD 是⊙O 的切线;(2)若OD ⊥AB ,BC=5,求AD 的长.25.甲、乙、丙三人相互传球,由乙开始发球,并作为第一次传球.用列表或画树状图的方法求经过3次传球后,球仍回到乙手中的概率.26.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是91,每个支干长出多少小分支?27.一艘海轮位于灯塔P的北偏东60°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的东南方向上的B处.这时,海轮所在的B处距离灯塔P有多远?(结果保留根号)2019-2019学年内蒙古XX中学九年级(上)期末数学试卷参考答案与试题解析一、选择题1.2cos45°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】将45°角的余弦值代入计算即可.【解答】解:∵cos45°=,∴2cos45°=.故选B.【点评】本题考查特殊角的三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.2.已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2) B.y随x的增大而减少C.图象在第一、三象限D.若x>1,则y<2【考点】反比例函数的性质.【分析】根据反比例函数的性质对四个选项进行逐一分析即可.【解答】解:A、∵1×2=2,∴图象必经过点(1,2),故本选项正确;B、∵反比例函数y=中,k=2>0,∴此函数的图象在每一象限内y随x的增大而减小,故本选项错误;C、∵反比例函数y=中,k=2>0,∴此函数的图象在一、三象限,故本选项正确;D、∵当x>1时,此函数图象在第一象限,∴0<y<2,故本选项正确.故选B.【点评】本题考查的是反比例函数的性质,即反比例函数y=(k≠0)的图象是双曲线:(1)当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(2)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.3.如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为()A.B.C.D.【考点】三角形的外接圆与外心;等边三角形的性质.【分析】连接OA,并作OD⊥AB于D;由于等边三角形五心合一,则OA平分∠BAC,由此可求出∠BAO 的度数;在Rt△OAD中,根据⊙O的半径和∠BAO的度数即可求出AD的长,进而可得出△ABC的边长.【解答】解:连接OA,并作OD⊥AB于D,则∠OAD=30°,OA=2,∴AD=OA•cos30°=,∴AB=2.故选C.【点评】此题主要考查等边三角形外接圆半径的求法.4.书包里有数学书3本、英语书2本、语文书5本,从中任意抽取一本,则是数学书的概率是()A.B.C.D.【考点】概率公式.【分析】让数学书的本数除以书的总本数即为从中任意抽取一本,是数学书的概率.【解答】解:所有机会均等的可能共有10种.而抽到数学书的机会有3种,因此抽到数学书的概率有.故选C.【点评】此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.5.把抛物线y=x2向右平移2个单位,向下平移5个单位得到的抛物线是()A.y=x2+3 B.y=x2+7 C.y=(x+2)2﹣5 D.y=(x﹣2)2﹣5【考点】二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【解答】解:抛物线y=x2向右平移2个单位,再向下平移5个单位,所得图象的解析式为y=(x﹣2)2﹣5,.故选D.【点评】本题主要考查的是二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.6.如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的C′处,并且C′D∥BC,则CD的长是()A.B.C.D.【考点】翻折变换(折叠问题).【分析】先判定四边形C′DCE是菱形,再根据菱形的性质计算.【解答】解:设CD=x,根据C′D∥BC,且有C′D=EC,可得四边形C′DCE是菱形;即Rt△ABC中,AC==10,,EB=x;故可得BC=x+x=8;解得x=.故选A.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.7.在直角坐标系xOy中,点P(4,y)在第一象限内,且OP与x轴正半轴的夹角为60°,则y的值是()A.B.C.8 D.2【考点】坐标与图形性质;解直角三角形.【分析】根据已知条件,画出草图,解直角三角形求解.【解答】解:作PA⊥x轴于A.根据题意,∠POA=60°,OA=4.∵∠PAO=90°,∠POA=60°,∴∠P=30°,∴OP=2OA=2×4=8.根据勾股定理,得OA2+PA2=OP2,即42+PA2=82.∴AP=.即y的值为.故选B.【点评】本题考查了平面直角坐标系内点的坐标求法及勾股定理的应用.8.如图所示是一天中不同时刻直立的灯杆在阳光下形成的影长,规定各图向右为正东方向,将各图按时间顺序排列正确的是()A.②④①③ B.③①④② C.②④③① D.①③②④【考点】平行投影.【分析】根据影子变化的方向正好太阳所处的方向是相反的来判断.太阳从东方升起最后从西面落下确定影子的起始方向.【解答】解:太阳从东方升起最后从西面落下,木杆的影子开始时应该在西面,随着时间的变化影子逐渐的向北偏西,南偏西,正东方向的顺序移动,故它们按时间先后顺序进行排列为:③①④②,故选:B.【点评】此题主要考查了在太阳光下的平行投影.要抓住太阳一天中运动的方位特点来确定物体影子所处的方位.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.9.已知在Rt△ABC中,∠C=90°,sinA=,AC=2,那么BC的值为()A.2 B.4 C.4 D.6【考点】解直角三角形.【分析】由sin A=求出∠A度数;根据三角函数的定义建立边角之间的关系求解.【解答】解:∵sinA=,∴∠A=30°.∴tan30°=,∴BC=2.故选A.【点评】此题考查运用三角函数定义解题.10.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0,常数项为0,则m值等于()A.1 B.2 C.1或2 D.0【考点】一元二次方程的解;一元二次方程的定义.【分析】根据一元二次方程成立的条件及常数项为0列出方程组,求出m的值即可.【解答】解:∵关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0,常数项为0,∴,解得:m=2.故选:B.【点评】本题考查了一元二次方程的定义.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.二、填空题11.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是20% .【考点】一元二次方程的应用.【专题】增长率问题.【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是25(1﹣x),第二次后的价格是25(1﹣x)2,据此即可列方程求解.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.【点评】本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a (1±x)2.增长用“+”,下降用“﹣”.12.在半径为5cm的圆中,两条平行弦的长度分别为6cm和8cm,则这两条弦之间的距离为1cm或7cm .【考点】垂径定理;勾股定理.【分析】两条平行的弦可能在圆心的同旁或两旁,应分两种情况进行讨论.【解答】解:圆心到两条弦的距离分别为d 1==4cm ,d 2==3cm . 故两条弦之间的距离d=d 1﹣d 2=1cm 或d=d 1+d 2=7cm【点评】本题综合考查了垂径定理和勾股定理的运用.13.正n 边形的一个外角是30°,则n= 12 .【考点】多边形内角与外角.【分析】利用多边形的外角和即可求出答案.【解答】解:n=360°÷30°=12.故答案为:12.【点评】主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数直接让360度除以外角即可.14.两个相似三角形的最短边分别是5cm 和3cm ,它们的周长之差是12cm ,那么小三角形的周长为 18cm .【考点】相似三角形的性质.【分析】根据题意求出两个三角形的相似比,再根据题意列出方程,解方程即可.【解答】解:∵两个相似三角形的最短边分别是5cm 和3cm ,∴两个三角形的相似比为5:3,设大三角形的周长为5x ,则小三角形的周长为3x ,由题意得,5x ﹣3x=12,解得,x=6,则3x=18,故答案为:18cm .【点评】本题考查的是相似三角形的性质,掌握相似三角形的相似比即对应边的比,相似三角形的周长比等于相似比是解题的关键.15.在Rt △ABC 中,∠C=90°,BC=3,AB=2,则∠B 的度数为 30° .【考点】解直角三角形.【分析】根据含30度角的直角三角形性质求出∠B的度数.【解答】解:∵Rt△ABC中,∠C=90°,BC=3,AB=2,∴,∴AB=2AC,∴∠B=30°,故答案为:30°【点评】本题考查了解直角三角形和含30度角的直角三角形的性质的应用,关键是求出∠B的度数,题目比较典型,难度不大.16.如图是由几个相同的小立方块组成的几何体的三视图,小立方块的个数是 4 .【考点】由三视图判断几何体.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数.【解答】解:从俯视图上看,此几何体的下面有3个小正方体,从左视图和主视图上看,最上面有1个小正方体,故组成这个几何体的小立方块的个数是:3+1=4.故答案为:4.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.17.⊙A、⊙B、⊙C两两不相交,且半径都是0.5cm,则图中的三个扇形(即阴影部分)的面积之和为cm2.【考点】扇形面积的计算.【分析】由于三角形的内角和为180度,所以三个阴影扇形的圆心角的和为180°,由于它们的半径都为0.5cm,因此可根据扇形的面积公式直接求出三个扇形的面积和.==cm2.【解答】解:S阴影故答案为cm2.【点评】本题利用了三角形内角和定理,扇形的面积公式求解.18.在Rt三角形ABC中,∠ACB=90°,∠A=30° CD⊥AB于点D,那么△ACD与△BCD的面积之比为3 .【考点】相似三角形的判定与性质.【分析】先根据题意判断出Rt△ABC∽Rt△CBD,再根据相似三角形的面积比等于相似比的平方进行解答即可.【解答】解:∵CD⊥AB,∴∠BCD+∠B=90°,∵∠A+∠B=90°,∴∠A=∠BCD,∵∠B=∠B,∴Rt△ABC∽Rt△CBD,∴=()2=(sin∠A)2=,∴=3.故答案为:3.【点评】本题考查的是相似三角形的判定与性质及直角三角形的性质,根据题意得出Rt△ABC∽Rt △CBD是解答此题的关键.19.半径等于12的圆中,垂直平分半径的弦长为12.【考点】垂径定理.【专题】计算题.【分析】先画图,根据题意得OD=CD=6,再由勾股定理得AD的长,最后由垂径定理得出弦AB的长即可.【解答】解:如图,∵OD=CD=6,∴由勾股定理得AD=6,∴由垂径定理得AB=12,故答案为:12.【点评】本题综合考查了垂径定理和勾股定理.解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.20.一元二次方程x2=2x的根是x1=0,x2=2 .【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先移项,再提公因式,使每一个因式为0,从而得出答案.【解答】解:移项,得x2﹣2x=0,提公因式得,x(x﹣2)=0,x=0或x﹣2=0,∴x1=0,x2=2.故答案为:x1=0,x2=2.【点评】本题考查了一元二次方程的解法:解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.三、解答题21.(2019秋•阿拉善左旗校级期末)计算:﹣2sin45°+(2﹣π)0﹣()﹣2.【考点】实数的运算.【专题】计算题;实数.【分析】原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=2﹣2×+1﹣9=﹣8. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(2012•庆阳)已知关于x 的方程k 2x 2﹣2(k+1)x+1=0有两个实数根.(1)求k 的取值范围;(2)当k=1时,设所给方程的两个根分别为x 1和x 2,求+的值.【考点】根的判别式;根与系数的关系.【专题】计算题.【分析】(1)根据一元二次方程的定义和根的判别式的意义得到k 2≠0且△=4(k+1)2﹣4k 2≥0,然后解两个不等式,求出它们的公共部分即可;(2)先把k=1代入方程,再根据根与系数的关系得到x 1+x 2=4,x 1•x 2=1,然后把所求的代数式变形得到+=,然后利用整体思想进行计算. 【解答】解:(1)根据题意得k 2≠0且△=4(k+1)2﹣4k 2≥0,解得k ≥﹣且k ≠0;(2)k=1时方程化为x 2﹣4x+1=0,则x 1+x 2=4,x 1•x 2=1,+===14.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的根与系数的关系.23.(2008•云南)已知,在同一直角坐标系中,反比例函数y=与二次函数y=﹣x2+2x+c的图象交于点A(﹣1,m).(1)求m、c的值;(2)求二次函数图象的对称轴和顶点坐标.【考点】二次函数的性质;反比例函数的性质.【专题】计算题.【分析】先通过反比例函数求出A值,再把A的值代入二次函数中求出二次函数的解析式.再化简二次函数的解析式,就可得到它的对称轴和顶点坐标.【解答】解:(1)∵点A在函数y=的图象上,∴m==﹣5,∴点A坐标为(﹣1,﹣5),∵点A在二次函数图象上,∴﹣1﹣2+c=﹣5,c=﹣2.(2)∵二次函数的解析式为y=﹣x2+2x﹣2,∴y=﹣x2+2x﹣2=﹣(x﹣1)2﹣1,∴对称轴为直线x=1,顶点坐标为(1,﹣1).【点评】此题运用了反比例函数和二次函数的有关知识.(2019•鄂托克旗模拟)已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠CAD=30°.24.(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长.【考点】切线的判定.【专题】计算题;证明题.【分析】(1)连接OA,由于sinB=,那么可求∠B=30°,利用圆周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等边三角形,从而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切线;(2)由于OC⊥AB,OC是半径,利用垂径定理可知OC是AB的垂直平分线,那么CA=CB,而∠B=30°,则∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函数值可求AE,在Rt△ADE 中利用30°的锐角所对的直角边等于斜边的一半,可求AD.【解答】证明:连接OA,(1)∵sinB=,∴∠B=30°,∠AOC=60°,又∵OA=OC,∴△AOC是等边三角形,∴∠OAC=60°,∴∠OAD=60°+30°=90°,∴AD是⊙O的切线;(2)∵OC⊥AB,OC是半径,∴BE=AE,∴OD是AB的垂直平分线,∴∠DAE=60°,∠D=30°,在Rt△ACE中,AE=cos30°×AC=,∴在Rt△ADE中,AD=2AE=5.【点评】本题利用了三角函数值、圆周角定理、等边对等角、等边三角形的判定和性质、切线的判定、垂直平分线的判定和性质、直角三角形中30°的角所对的直角边等于斜边的一半.25.甲、乙、丙三人相互传球,由乙开始发球,并作为第一次传球.用列表或画树状图的方法求经过3次传球后,球仍回到乙手中的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与经过3次传球后,球仍回到乙手中的情况,再利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:∵共有8种等可能的结果,经过3次传球后,球仍回到乙手中的有2种情况,∴经过3次传球后,球仍回到乙手中的概率是: =.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.26.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是91,每个支干长出多少小分支?【考点】一元二次方程的应用.【专题】应用题.【分析】由题意设每个支干长出的小分支的数目是x个,每个小分支又长出x个分支,则又长出x2个分支,则共有x2+x+1个分支,即可列方程求得x的值.【解答】解:设每个支干长出的小分支的数目是x个,根据题意列方程得:x2+x+1=91,解得:x=9或x=﹣10(不合题意,应舍去);∴x=9;答:每支支干长出9个小分支.【点评】此题要根据题意分别表示主干、支干、小分支的数目,列方程求解,注意能够熟练运用因式分解法解方程.27.一艘海轮位于灯塔P的北偏东60°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的东南方向上的B处.这时,海轮所在的B处距离灯塔P有多远?(结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】在Rt△APC中,求出PC的长,再在Rt△PBC中,求出CB的长,将AC和CB相加即可.【解答】解:∵∠APC=90°﹣60°=30°,AP=80海里,∴PC=AP•cos30°=80×=40海里,AC=AP•sin30°=80×=40(海里),又∵∠BPC=45°,∴CB=PC=40海里,∴BP=×40=40(海里).【点评】本题考查了解直角三角形的应用﹣﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.第21页(共21页)。
2018-2019学年九年级(上)期末数学试卷一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的)1.下列标志,是中心对称图形的是()A.B.C.D.2.四边形ABCD是圆的内接四边形,若∠ABC=70°,则∠ADC的度数是()A.70°B.90°C.110°D.120°3.已知关于x的方程x2+ax﹣6=0的一个根是2,则a的值是()A.﹣1B.0C.1D.24.把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是()A.y=﹣2x2+1B.y=﹣2x2﹣1C.y=﹣2(x+1)2D.y=﹣2(x﹣1)25.如图,把△ABC绕着点A逆时针旋转40°得到△ADE,∠1=30°,则∠BAE=()A.10°B.30°C.40°D.70°6.在元且庆祝活动中,参加活动的同学互赠贺卡,共送贺卡90张,则参加活动的有()人.A.9B.10C.12D.157.如图,PA,PB分别与⊙O相切于点A,B、过圆上点C作⊙O的切线EF分别交PA,PB于点E,F,若PA=4,则△PEF的周长是()A.4B.8C.10D.128.关于抛物线y=﹣(x+1)2+2,下列说法错误的是()A.图象的开口向下B.当x>﹣1时,y随x的增大而减少C.图象的顶点坐标是(﹣1,2)D.图象与y轴的交点坐标为(0,2)9.如图,在△ABC中,点D、E分别在边AB、AC上,且BD=2AD,CE=2AE,则下列结论中不成立的是()A.△ABC∽△ADE B.DE∥BCC.DE:BC=1:2D.S△ABC =9S△ADE10.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=4,那么b的值为()A.5B.﹣5C.4D.﹣4二、填空题(本题有6个小题,每小题3分,满分18分11.点A(﹣6,3)与A′关于原点对称,则点A′的坐标是.12.如果关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,那么m的取值范围是.13.已知圆锥的侧面积为16πcm2,圆锥的母线长8cm,则其底面半径为cm.14.如图已知二次函数y1=x2+c与一次函数y2=x+c的图象如图所示,则当y1<y2时x的取值范围.15.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣2上运动,当⊙P与x轴相切时,圆心P 的坐标为.16.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx﹣t =0(t为实数)在1≤x≤5的范围内有解,则t的取值范围是.三、解答题(本題有9个小題,共102分,解答要求写出文字说明,证明过程或计算步骤)17.(10分)解方程(1)x2+5x=0(2)x(x﹣2)=3x﹣618.(10分)已知:如图,D是AC上一点,DE∥AB,∠B=∠DAE.(1)求证:△ABC∽△DAE;(2)若AB=8,AD=,6,AE=3,求BC的长.19.(10分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3).(1)画出△ABC关于点O的中心对称图形△A1B1C1;(2)画出△ABC绕点A逆时针旋转90°的△AB2C2;直接写出点C2的坐标为;(3)求在△ABC旋转到△AB2C2的过程中,点C所经过的路径长.20.(11分)已知抛物线的对称轴是直线x=﹣1,与x轴一个交点是点A(﹣3,0),且经过点B (﹣2,6)(1)求该抛物线的解析式;(2)若点(﹣,y1)与点(2,y2)都在该抛物线上,直接写出y1与y2的大小关系.21.(11分)某农场准备围建一个矩形养鸡场,其中一边靠墙(墙的长度为15米),其余部分用篱笆围成,在墙所对的边留一道1米宽的门,已知篱笆的总长度为23米.(1)设图中AB(与墙垂直的边)长为x米,则AD的长为米(请用含x的代数式表示);(2)若整个鸡场的总面积为y米2,求y的最大值.22.(10分)如图,已知:AB为⊙O直径,PQ与⊙O交于点C,AD⊥PQ于点D,且AC为∠DAB 的平分线,BE⊥PQ于点E.(1)求证:PQ与⊙O相切;(2)求证:点C是DE的中点.23.(12分)已知:如图,BC为⊙O的弦,点A为⊙O上一个动点,△OBC的周长为16.过C作CD∥AB交⊙O于D,BD与AC相交于点P,过点P作PQ∥AB交于Q,设∠A的度数为α.(1)如图1,求∠COB的度数(用含α的式子表示);(2)如图2,若∠ABC=90°时,AB=8,求阴影部分面积(用含α的式子表示);(3)如图1,当PQ=2,求的值.24.(14分)如图,AB为⊙O的直径,且AB=m(m为常数),点C为的中点,点D为圆上一动点,过A点作⊙O的切线交BD的延长线于点P,弦CD交AB于点E.(1)当DC⊥AB时,则=;(2)①当点D在上移动时,试探究线段DA,DB,DC之间的数量关系;并说明理由;②设CD长为t,求△ADB的面积S与t的函数关系式;(3)当=时,求的值.25.(14分)如图,抛物线y=a(x﹣m﹣1)2+2m(其中m>0)与其对称轴l相交于点P.与y轴相交于点A(0,m)连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC将△PBC 绕点P逆时针旋转,使点C落在抛物线上,设点C、B的对应点分别是点B′和C′.(1)当m=1时,该抛物线的解析式为:.(2)求证:∠BCA=∠CAO;(3)试问:BB′+BC﹣BC′是否存在最小值?若存在,求此时实数m的值,若不存在,请说明理由.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的)1.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【分析】直接根据圆内接四边形的性质进行解答即可.【解答】解:∵四边ABCD是圆的内接四边形,∠ABC=70°,∴∠ADC=180°﹣70°=110°.故选:C.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.3.【分析】一元二次方程的根就是能够使方程左右两边相等的未知数的值.利用方程解的定义将x =2代入方程式即可求解.【解答】解:将x=2代入x2+ax﹣6=0,得22+2a﹣6=0.解得a=1.故选:C.【点评】本题考查的是一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题.4.【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是:y=﹣2x2+1.故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.5.【分析】先找到旋转角,根据∠BAE=∠1+∠CAE进行计算.【解答】解:根据题意可知旋转角∠CAE=40°,所以∠BAE=30°+40°=70°.故选:D.【点评】本题主要考查了旋转的性质,解题的关键是找准旋转角.6.【分析】每个人都要送给他自己以外的其余人,等量关系为:人数×(人数﹣1)=90,把相关数值代入计算即可.【解答】解:设参加此次活动的人数有x人,由题意得:x(x﹣1)=90,解得:x1=10,x2=﹣9(不合题意,舍去).即参加此次活动的人数是10人.故选:B.【点评】本题考查一元二次方程的应用,得到互送贺卡总张数的等量关系是解决本题的关键.7.【分析】由切线长定理知,AE=CE,FB=CF,PA=PB=12,然后根据△PEF的周长公式即可求出其结果.【解答】解:∵PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在弧AB上,∴AE=CE,FB=CF,PA=PB=4,∴△PEF的周长=PE+EF+PF=PA+PB=8.故选:B.【点评】本题主要考查了切线长定理的应用,解此题的关键是求出△PEF的周长=PA+PB.8.【分析】利用二次函数的性质逐一判断后即可得到答案.【解答】解:A.y=﹣(x+1)2+2,∵a=﹣1<0,∴图象的开口向下,故本选项正确,不符合题意;B.∵y=﹣(x+1)2+2,∴开口向下,对称轴为x=﹣1,∴当x>﹣1时,y随x的增大而减少,故本选项正确,不符合题意;C.顶点坐标为(﹣1,2),故本选项正确,不符合题意;D.∵当x=0时,y=1,∴图象与y轴的交点坐标为(0,1),故本选项错误,符合题意;故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.9.【分析】由已知条件易证DE∥BC,则△ABC∽△ADE,再由相似三角形的性质即可得到问题的选项.【解答】解:∵BD=2AD,CE=2AE,∴,∴DE∥BC,故B正确;∴△ABC∽△ADE,故A正确;∴,故C错误;∴S△ABC =9S△ADE,故D正确;故选:C.【点评】本题考查了相似三角形的判定和性质,证明DE∥BC是解题的关键.10.【分析】由韦达定理得出x1+x2=﹣b,x1x2=﹣3,将其代入x1+x2﹣3x1x2=4列出关于b的方程,解之可得答案.【解答】解:∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,∵x1+x2﹣3x1x2=4,∴﹣b+9=4,解得:b=5,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a、b、c均为常数且a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.二、填空题(本题有6个小题,每小题3分,满分18分11.【分析】根据关于原点的对称点,横坐标、纵坐标都互为相反数,可得答案.【解答】解:点A(﹣6,3)与A′关于原点对称,则点A′的坐标是(6,﹣3),故答案为:(6,﹣3).【点评】本题考查了关于原点对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.12.【分析】若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围.【解答】解:∵方程有两个不相等的实数根,a=1,b=﹣2,c=m∴△=b2﹣4ac=(﹣2)2﹣4×1×m>0,解得m<1.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.【分析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到×2π×r×8=16π,解得r=2,然后解关于r的方程即可.【解答】解:设圆锥的底面圆的半径为r,根据题意得×2π×r×8=16π,解得r=2,所以圆锥的底面圆的半径为2cm.故答案为2.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【分析】首先将两函数解析式联立得出其交点横坐标,进而得出当y1<y2时x的取值范围.【解答】解:由题意可得:x2+c=x+c,解得:x1=0,x2=1,则当y1<y2时x的取值范围:0<x<1.故答案为:0<x<1.【点评】此题主要考查了二次函数与不等式(组),正确得出两函数的交点横坐标是解题关键.15.【分析】根据⊙P的半径为2,以及⊙P与x轴相切,即可得出y=±2,求出x的值即可得出答案.【解答】解:∵⊙P的半径为2,圆心P在抛物线y=x2﹣2上运动,∴当⊙P与x轴相切时,假设切点为A,∴PA=2,∴|x2﹣2|=2即x2﹣2=2,或x2﹣2=﹣2,解得x=±2,或x=0,∴P点的坐标为:(2,2)或(﹣2,2)或(0,﹣2).故答案为:(2,2)或(﹣2,2)或(0,﹣2).【点评】此题主要考查了图象上点的性质以及切线的性质,根据题意得出y=2,求出x的值是解决问题的关键.16.【分析】先利用抛物线的对称轴求出m得到抛物线解析式为y=﹣x2+4x,再计算出自变量为1和5对应的函数值,然后利用函数图象写出直线y=t与抛物线y=﹣x2+4x在1≤x≤5时有公共点时t的范围即可.【解答】解:∵抛物线的对称轴为直线x=﹣=2,解得m=4,∴抛物线解析式为y=﹣x2+4x,抛物线的顶点坐标为(2,4),当x=1时,y=﹣x2+4x=﹣1+4=3;当x=5时,y=﹣x2+4x=﹣25+20=﹣5,当直线y=t与抛物线y=﹣x2+4x在1≤x≤5时有公共点时,﹣5≤t≤4,如图.所以关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1≤x≤5的范围内有解,t的取值范围为﹣5≤t≤4.故答案为﹣5≤t≤4.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了数形结合的思想.三、解答题(本題有9个小題,共102分,解答要求写出文字说明,证明过程或计算步骤)17.【分析】(1)利用因式分解法解方程;(2)先变形得到x(x﹣2)﹣3(x﹣2)=0,然后利用因式分解法解方程.【解答】解:(1)x(x+5)=0,x=0或x+5=0,所以x1=0,x2=﹣5;(2)x(x﹣2)﹣3(x﹣2)=0,(x﹣2)(x﹣3)=0,x﹣2=0或x﹣3=0,所以x1=2,x2=3.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.18.【分析】(1)利用两角对应相等的两个三角形相似即可判断.(2)利用相似三角形的性质即可解决问题.【解答】(1)证明:∵DE∥AB,∴∠EDA=∠CAB,∵∠B=∠EAD,∴△ABC∽△DAE,(2)解:∵△ABC∽△DAE,∴=,∴=,∴BC=4.【点评】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【分析】(1)由中心对称的定义和性质作图变换后的对应点,再顺次连接即可得;(2)由旋转变换的定义和性质作图变换后的对应点,再顺次连接即可得;(3)利用弧长公式计算可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△AB2C2即为所求,其中点C2的坐标为(﹣2,2),故答案为:(﹣2,2).(3)∵∠CAC2=90°,AC==,∴点C所经过的路径长为=π.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20.【分析】(1)先利用对称性确定抛物线与x轴另一个交点坐标为(1,0),则可设交点式为y =a(x+3)(x﹣1),然后把B点坐标代入求出a即可;(2)根据二次函数的性质,通过比较点(﹣,y1)和点(2,y2)到直线x=﹣1的距离大小确定y1与y2的大小关系.【解答】解:(1)∵抛物线的对称轴是直线x=﹣1,与x轴一个交点是点A(﹣3,0),∴抛物线与x轴另一个交点坐标为(1,0),设抛物线解析式为y=a(x+3)(x﹣1),把B(﹣2,6)代入得a×1×(﹣3)=6,解得a=﹣2,∴抛物线解析式为y=﹣2(x+3)(x﹣1),即y=﹣2x2﹣4x+6;(2)∵点(﹣,y1)到直线x=﹣1的距离比点(2,y2)到直线x=﹣1的距离要小,而抛物线的开口向下,∴y1>y2.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)根据题意列代数式即可得到结论;(2)根据题意列出函数关系式,然后,根据二次函数的性质即可得到结论.【解答】解:(1)由题意得,AD=23+1﹣2x=24﹣2x,故答案为:24﹣2x;(2)根据题意得,y=x(24﹣2x)=﹣2x2+24x=﹣2(x﹣6)2+72,∴y的最大值为72米2.【点评】本题考查了二次函数的应用,一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.【分析】(1)连接OC,由角平分线的性质和等腰三角形的性质可得∠DAC=∠ACO,可得AD ∥OC,由平行线的性质可得OC⊥PQ,可得结论;(2)由平行线分线段成比例可得DC=CE,即点C是DE的中点.【解答】证明:(1)连接OC,∵AC平分∠DAB∴∠DAC=∠CAO,∵OA=OC,∴∠OAC=∠OCA∴∠DAC=∠ACO∴AD∥OC,且AD⊥PQ∴OC⊥PQ,且OC为半径∴PQ与⊙O相切(2)∵OC⊥PQ,AD⊥PQ,BE⊥PQ∴OC∥AD∥BE∴∴DC=CE∴点C是DE的中点.【点评】本题考查了切线的判定和性质,等腰三角形的性质,平行线分线段成比例等知识,熟练运用切线的判定和性质是本题的关键.23.【分析】(1)根据圆周角定理可得∠COB=2∠A=2α;(2)当∠ABC=90°时,可得点P与圆心O重合,根据△OBC的周长为16以及AB=8,可求得⊙O的半径为5,可得出扇形COB的面积以及△OBC的面积,进而得出阴影部分面积;(3)由CD∥AB∥PQ,可得△BPQ∽△BDC,△CPQ∽△CAB,即,两式子相加可得,即可得出的值.【解答】解:(1)∵∠A的度数为α,∴∠COB=2∠A=2α,(2)当∠ABC=90°时,AC为⊙O的直径,∵CD∥AB,∴∠DCB=180°﹣90°=90,∴BD为⊙O的直径,∴P与圆心O重合,∵PQ∥AB交于Q,∴OQ⊥BC,∴CQ=BQ,∵AB=8,∴OQ=AB=4,设⊙O的半径为r,∵△OBC的周长为16,∴CQ=8﹣r,∴(8﹣r)2+42=r2,解得r=5,CB=6,∴阴影部分面积=;(3)∵CD∥AB∥PQ,∴△BPQ∽△BDC,△CPQ∽△CAB,∴,∴,∵PQ=2,∴,∴=2.【点评】本题考查圆的基本性质,相似三角形的判定和性质,弓形你的计算.构造相似三角形得出PQ,AB,CD之间的关系是解决(3)问的关键.24.【分析】(1)首先证明当DC⊥AB时,DC也为圆的直径,且△ADB为等腰直角三角形,即可求出结果;(2)①分别过点A,B作CD的垂线,连接AC,BC,分别构造△ADM和△BDN两个等腰直角三形及△NBC和△MCA两个全等的三角形,容易证出线段DA,DB,DC之间的数量关系;②通过完全平方公式(DA+DB)2=DA2+DB2+2DA•DB的变形及将已知条件AB=m代入即可求出结果;(3)通过设特殊值法,设出PD的长度,再通过相似及面积法求出相关线段的长度,即可求出结果.【解答】解:(1)如图1,∵AB为⊙O的直径,∴∠ADB=90°,∵C为的中点,∴,∴∠ADC=∠BDC=45°,∵DC⊥AB,∴∠DEA=∠DEB=90°,∴∠DAE=∠DBE=45°,∴AE=BE,∴点E与点O重合,∴DC为⊙O的直径,∴DC=AB,在等腰直角三角形DAB中,DA=DB=AB,∴DA+DB=AB=CD,∴=;(2)①如图2,过点A作AM⊥DC于M,过点B作BN⊥CD于N,连接AC,BC,由(1)知,∴AC=BC,∵AB为⊙O的直径,∴∠ACB=∠BNC=∠CMA=90°,∴∠NBC+∠BCN=90°,∠BCN+∠MCA=90°,∴∠NBC=∠MCA,在△NBC和△MCA中,,∴△NBC≌△MCA(AAS),∴CN=AM,由(1)知∠DAE=∠DBE=45°,AM=DA,DN=DB,∴DC=DN+NC=DB+DA=(DB+DA),即DA+DB=DC;②在Rt△DAB中,DA2+DB2=AB2=m2,∵(DA+DB)2=DA2+DB2+2DA•DB,且由①知DA+DB=DC=t,∴(t)2=m2+2DA•DB,∴DA•DB=t2﹣m2,∴S=DA•DB=t2﹣m2,△ADB∴△ADB的面积S与t的函数关系式S=t2﹣m2;(3)如图3,过点E作EH⊥AD于H,EG⊥DB于G,则NE=ME,四边形DHEG为正方形,由(1)知,∴AC=BC,∴△ACB为等腰直角三角形,∴AB=AC,∵,设PD=9,则AC=20,AB=20,∵∠DBA=∠DBA,∠PAB=∠ADB,∴△ABD∽△PBA,∴,∴,∴DB=16,∴AD==12,设NE=ME=x,=AD•BD=AD•NE+BD•ME,∵S△ABD∴×12×16=×12•x+×16•x,∴x=,∴DE=HE=x=,又∵AO=AB=10,∴=×=.【点评】本题考查了圆的相关性质,等腰直三角形的性质,相似的性质等,还考查了面积法及特殊值法的运用,解题的关键是认清图形,抽象出各几何图形的特殊位置关系.25.【分析】(1)把点A的坐标代入二次函数表达式得:m=a(﹣m﹣1)2+2m,解得:a=﹣,把m=1代入上式,即可求解;(2)求出点B、C的坐标,即可求解;(3)当点B′落在BC′所在的直线时,BB′+BC﹣BC′存在最小值,证△BAO∽△POD,即可求解.【解答】解:(1)把点A的坐标代入二次函数表达式得:m=a(﹣m﹣1)2+2m,解得:a=﹣,则二次函数的表达式为:y=﹣(x﹣m﹣1)2+2m…①,则点P的坐标为(m+1,2m),点A的坐标为(0,m),把m=1代入①式,整理得:y=﹣x2+x+1,故:答案为:y=﹣x2+x+1;(2)把点P、A的坐标代入一次函数表达式:y=kx+b得:,解得:,则直线PA的表达式为:y=x+m,令y=0,解得:x=﹣m﹣1,即点B坐标为(﹣m﹣1,0),同理直线OP的表达式为:y=x…②,将①②联立得:a(x﹣m﹣1)2+2m﹣x=0,其中a=﹣,该方程的常数项为:a(m+1)2+2m,由韦达定理得:x1x2=x C•x P===﹣(m+1)2,其中x P=m+1,则x C=﹣m﹣1=x B,∴BC∥y轴,∴∠BCA=∠CAO;(3)如图当点B′落在BC′所在的直线时,BB′+BC﹣BC′存在最小值,设:直线l与x轴的交点为D点,连接BB′、CC′,∵点C关于l的对称点为C′,∴CC′⊥l,而OD⊥l,∴CC′∥OD,∴∠POD=∠PCC′,∵∠PB′C′+∠PB′B=180°,△PB′C′由△PBC旋转而得,∴∠PBC=∠PB′C′,PB=PB′,∠BPB′=∠CPC′,∴∠PBC+∠PB′B=180°,∵BC∥AO,∴∠ABC+∠BAO=180°,∴∠PB ′B =∠BAO ,∵PB =PB ′,PC =PC ′,∴∠PB ′B =∠PBB ′=,∴∠PCC ′=∠PC ′C =,∴∠PB ′B =∠PCC ′,∴∠BAO =∠PCC ′,而∠POD =∠PCC ′,∴∠BAO =∠POD ,而∠POD =∠BAO =90°,∴△BAO ∽△POD ,∴=, 将BO =m +1,PD =2m ,AO =m ,OD =m +1代入上式并解得:m =1+(负值已舍去).【点评】本题考查的是二次函数知识的综合运用,涉及到三角形相似、韦达定理的运用,其中用韦达定理求解数据是本题的难点.。
1. 下列选项中,不是一元二次方程的是()A. x^2 + 2x + 1 = 0B. 2x - 3 = 0C. x^2 + 3x - 4 = 0D. x^2 - 5x + 6 = 02. 若一个等差数列的前三项分别为a,b,c,则a + b + c的值是()A. 0B. a + b + cC. 2a + 2b + 2cD. 3a + 3b + 3c3. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 平行四边形D. 梯形4. 若一个三角形的三边长分别为3,4,5,则该三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形5. 已知函数f(x) = 2x + 1,则f(-3)的值是()A. -5B. -1C. 1D. 56. 下列方程中,解为x = 2的是()A. 2x - 3 = 1B. 2x + 3 = 1C. 2x - 3 = 2D. 2x + 3 = 27. 若一个圆的半径为r,则其面积为()A. πr^2B. 2πr^2C. 4πr^2D. 8πr^28. 下列数中,不是有理数的是()A. 0.5B. -3C. √2D. 29. 若一个长方体的长、宽、高分别为a,b,c,则其体积为()A. abcB. a^2bC. a^2cD. ab^210. 下列函数中,不是奇函数的是()A. f(x) = x^3B. f(x) = -x^3C. f(x) = x^2D. f(x) = -x^2二、填空题(每题4分,共40分)11. 若一个等差数列的前三项分别为2,5,8,则该数列的公差为______。
12. 一个圆的半径为r,则其周长为______。
13. 若一个三角形的三边长分别为3,4,5,则该三角形的面积是______。
14. 已知函数f(x) = 2x + 1,则f(0)的值是______。
15. 下列方程中,解为x = 1的是______。
16. 若一个圆的半径为r,则其面积为______。
内蒙古初三初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、填空题1.如图,在☉O中,弦AB的长为8cm,圆心O到AB地距离为3cm,则圆O的半径为.2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正确的结论有.(填序号)3.如图,一个半径为2cm的圆盘被分割成十个区域. 其中,弦、关于圆心对称,、关于圆心对称,向盘中投掷一物体,则物体落在阴影部分的概率为_____________.4.某小区准备在每两幢楼房之间开辟绿地,其中有一块是面积为60m2的长方形绿地,并且长比宽多7m,求长方形的宽. 若设长方形绿地的宽为m,则可列方程为________________________.二、判断题某地区2014年投入教育经费2500万元,2016年投入教育经费3025万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.三、单选题1.下列奥运会徽中,中心对称图形是A.B.C.D.2.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中随机事件有A.0个B.1个C.2个D.3个3.如图,A、B、C为⊙O上的任意三点,若∠BOC=100°,则∠BAC的度数为A.50°B.80°C.100°D.130°4.抛物线y=2x2,y=-2x2,y=2x2+1共有的性质是A.开口向上B.对称轴都是y轴C.都有最高点D.顶点都是原点5.已知⊙O 的半径为13,弦AB //CD ,AB =24,CD =10,则AB 、CD 之间的距离为 A .17 B .7 C .12D .7或176.要得到y =(x -3)2-2的图象,只要将y =x 2的图象 A .由向左平移3个单位,再向上平移2个单位; B .由向右平移3个单位,再向下平移2个单位; C .由向右平移3个单位,再向上平移2个单位; D .由向左平移3个单位,再向下平移2个单位.7.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S 1,正八边形外侧八个扇形(有阴影部分)面积之和为S 2,则=A .B .C .D .18.若a <-1,则方程x 2+(1-2a )x +a 2=0根的情况是 A .有两个不相等的实数根 B .有两个相等的实根 C .没有实数根D .不能确定9.在同一平面直角坐标系中,函数y =ax 2+bx 与y =ax +b 的图象可能是 A .B .C .D .10.已知A (-1,y 1)、B (2,y 2)、C (-3,y 3)在函数y =-2(x +1)2+3的图像上,则y 1、y 2、y 3的大小关系是 A .y 1< y 2< y 3 B .y 1< y 3 < y 2 C .y 2 < y 3 < y 1 D .y 3< y 2 < y 111.如图,将线段AB 绕点O 顺时针旋转90°得到线段A ′B ′,那么A (﹣2,5)的对应点A ′的坐标是A .(2,5)B .(5,2)C .(4,)D .(,4)12.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为A .2-2B .2-C .—1D .四、解答题1.因式分解:(1)3x (x -1)-2(x -1) (2)3x 2-12x +122.解方程:(1)4x 2-1=0 (2)x 2+x -6=03.如图,在直角坐标系xOy 中,△ABC 的三个顶点坐标分别为A (-4,1)、B (-1,1)、C (-4,3). (1)画出Rt △ABC 关于原点O 成中心对称的图形Rt △A 1B 1C 1;(2)若Rt △ABC 与Rt △A 2BC 2关于点B 中心对称,则点A 2的坐标为 、C 2的坐标为 .(3)求点A 绕点B 旋转180°到点A 2时,点A 在运动过程中经过的路程.4.一个质地均匀的小正方体,六个面分别标有数字“1”“2”“3”“4”“5”“6”. 连续两次抛掷小正方体,观察每次朝上一面的数字.(1)请用列表格或画树状图的方法列举出两次抛掷的所有可能结果; (2)求出第二次抛掷的数字大于第一次抛掷的数字的概率; (3)求两次抛掷的数字之和为5的概率.5.如图,四边形ABCD 内接于⊙O ,C 为的中点,若∠CBD =30°,⊙O 的半径为12. (1)求∠BAD 的度数;(2)求扇形OCD 的面积.6.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 与过点C 的切线垂直,垂足为点D ,直线DC 与AB 的延长线相交于点P ,CE 平分∠ACB ,交AB 于点E . (1)求证:AC 平分∠DAB ;(2)求证:△PCE 是等腰三角形.7.商场购进一种单价为40元的书包,如果以单价50元出售,那么每月可售出30个,根据销售经验,售价每提高5元,销售量相应减少1个.(1)请写出销售单价提高元与总的销售利润y 元之间的函数关系式;(2)如果你是经理,为使每月的销售利润最大,那么你确定这种书包的单价为多少元?此时,最大利润是多少元?8.如图,AB 是⊙O 的直径,AM 、BN 分别与⊙O 相切于点A 、B ,CD 交AM 、BN 于点D 、C ,DO 平分∠ADC . (1)求证:CD 是⊙O 的切线;(2)设AD =4,AB =x (x > 0),BC =y (y > 0). 求y 关于x 的函数解析式.9.如图,已知抛物线与x 轴只有一个交点A (-2,0),与y 轴交于点B (0,4). (1)求抛物线对应的函数解析式;(2)过点B做平行于x轴的直线交抛物线与点C.①若点M在抛物线的AB段(不含A、B两点)上,求四边形BMAC面积最大时,点M的坐标;②在平面直角坐标系内是否存在点P,使以P、A、B、C为顶点的四边形是平行四边形,若存在直接写出所有满足条件的点P的坐标;若不存在,请说明理由.内蒙古初三初中数学期末考试答案及解析一、填空题1.如图,在☉O中,弦AB的长为8cm,圆心O到AB地距离为3cm,则圆O的半径为.【答案】5cm.【解析】如图,连接AO,已知弦AB的长为8cm,圆心O到AB的距离OC为3cm,根据垂径定理可得AC=BC=4cm,∠ACO=90°,再由由勾股定理可得OA=.【考点】1.垂径定理;2.勾股定理.2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正确的结论有.(填序号)【答案】③④.【解析】试题解析:∵抛物线开口朝下,∴a<0,∵对称轴x=1=-,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故①错误;根据图象知道当x=-1时,y=a-b+c<0,∴a+c<b,故②错误;根据图象知道当x=2时,y=4a+2b+c>0,故③正确;根据图象知道抛物线与x轴有两个交点,∴b 2-4ac>0,故④正确.【考点】二次函数图象与系数的关系.3.如图,一个半径为2cm的圆盘被分割成十个区域. 其中,弦、关于圆心对称,、关于圆心对称,向盘中投掷一物体,则物体落在阴影部分的概率为_____________.【答案】【解析】根据给出的图形可得:阴影部分的面积占整个圆面积的一半,则物体落在阴影部分的概率为.故答案为:.点睛:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.4.某小区准备在每两幢楼房之间开辟绿地,其中有一块是面积为60m2的长方形绿地,并且长比宽多7m,求长方形的宽. 若设长方形绿地的宽为m,则可列方程为________________________.【答案】x(x+7)=60(或x2+7x-60=0)【解析】设绿地的宽为x,则长为7+x;根据长方形的面积公式可得:x(x+7)=60.故答案为:x(x+7)=60.点睛:本题考查了由实际问题抽象出一元二次方程的知识,找到关键描述语,进而找到等量关系是解决问题的关键;记住长方形面积=长×宽是解决本题的关键.二、判断题某地区2014年投入教育经费2500万元,2016年投入教育经费3025万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.【答案】(1)平均增长率为10%.(2)预计2017年该地区将投入教育经费3327.5万元.【解析】(1)一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2500(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解.(2)利用2016年的经费×(1+增长率)即可.试题解析:(1)设增长率为x,根据题意2015年为2500(1+x)万元,2016年为2500(1+x)(1+x)万元.则2500(1+x)(1+x)="3025,"解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).故根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费3327.5万元.三、单选题1.下列奥运会徽中,中心对称图形是A.B.C.D.【答案】D【解析】A.不是中心对称图形,故本选项不符合题意;B.不是中心对称图形,故本选项不符合题意;C.不是中心对称图形,故本选项不符合题意;D.是中心对称图形,故本选项符合题意.故选D.2.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中随机事件有A.0个B.1个C.2个D.3个【答案】C【解析】①随意翻到一本书的某页,这页的页码是奇数是随机事件;②测得某天的最高气温是100℃不可能事件;③掷一次骰子,向上一面的数字是2是随机事件;④度量四边形的内角和,结果是360°是必然事件.故选C.3.如图,A、B、C为⊙O上的任意三点,若∠BOC=100°,则∠BAC的度数为A.50°B.80°C.100°D.130°【答案】D【解析】取⊙O上的一点D,连接BD,CD,∵∠BOC=100°,∴∠D=50°,∴∠BAC=180°﹣50°=130°,故选D.4.抛物线y=2x2,y=-2x2,y=2x2+1共有的性质是A.开口向上B.对称轴都是y轴C.都有最高点D.顶点都是原点【答案】B【解析】(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=2x2+1开口向上,对称轴为y轴,有最低点,顶点为(0,1).故选B.5.已知⊙O的半径为13,弦AB//CD,AB=24,CD=10,则AB、CD之间的距离为A.17B.7C.12D.7或17【答案】D【解析】①当弦AB和CD在圆心同侧时,如图1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12﹣5=7cm;②当弦AB和CD在圆心异侧时,如图2,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm,∴AB与CD之间的距离为7cm或17cm.故选D.点睛:本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.6.要得到y=(x-3)2-2的图象,只要将y=x2的图象A.由向左平移3个单位,再向上平移2个单位;B.由向右平移3个单位,再向下平移2个单位;C.由向右平移3个单位,再向上平移2个单位;D.由向左平移3个单位,再向下平移2个单位.【答案】B【解析】∵原抛物线y =x 2的顶点坐标为(0,0),新抛物线y =(x ﹣3)2﹣2的顶点坐标为(3,﹣2),∴将原抛物线向右平移3个单位,再向下平移2个单位可得到新抛物线.故选B .7.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S 1,正八边形外侧八个扇形(有阴影部分)面积之和为S 2,则=A .B .C .D .1【答案】A【解析】∵正八边形的内角和为(8﹣2)×180°=6×180°=1080°,正八边形外侧八个扇形(阴影部分)的内角和为360°×8﹣1080°=2880°﹣1080°=1800°,∴==.故选A .8.若a <-1,则方程x 2+(1-2a )x +a 2=0根的情况是 A .有两个不相等的实数根 B .有两个相等的实根 C .没有实数根D .不能确定【答案】A【解析】△=b 2﹣4ac =(1﹣2a )2﹣4a 2=1﹣4a +4a 2﹣4a 2=1﹣4a ,∵a <﹣1,∴1﹣4a >0,∴△>0,∴方程x 2+(1﹣2a )x +a 2=0有两个不相等的实数根,故选A .9.在同一平面直角坐标系中,函数y =ax 2+bx 与y =ax +b 的图象可能是 A .B .C .D .【答案】C【解析】二次函数的对称轴为:x =﹣当a >0,b >0时,一次函数的图象经过一、二、三象限,二次函数的图象开口向上,对称轴x <0,当a >0,b <0时,一次函数的图象经过一、三、四象限,二次函数的图象开口向上,对称轴x >0,当a <0,b >0时,一次函数的图象经过一、二、四象限,二次函数的图象开口向下,对称轴x >0,当a <0,b <0时,一次函数的图象经过二、三、四象限,二次函数的图象开口向下,对称轴x <0,故选C .10.已知A (-1,y 1)、B (2,y 2)、C (-3,y 3)在函数y =-2(x +1)2+3的图像上,则y 1、y 2、y 3的大小关系是 A .y 1< y 2< y 3 B .y 1< y 3 < y 2 C .y 2 < y 3 < y 1 D .y 3< y 2 < y 1【答案】C【解析】二次函数y =﹣2(x +1)2+3可知:抛物线的开口向下,图象的对称轴为直线x =﹣1,因为点A (﹣1,y 1)在直线x =﹣1上,点B (2,y 2)到直线x =﹣1的距离最大,所以y 2<y 3<y 1,故选C .11.如图,将线段AB 绕点O 顺时针旋转90°得到线段A ′B ′,那么A (﹣2,5)的对应点A ′的坐标是A .(2,5)B .(5,2)C .(4,)D .(,4)【答案】B【解析】∵线段AB 绕点O 顺时针旋转90°得到线段A ′B ′,∴△ABO ≌△A ′B ′O ′,∠AOA ′=90°,∴AO =A ′O . 作AC ⊥y 轴于C ,A ′C ′⊥x 轴于C ′,∴∠ACO =∠A ′C ′O =90°.∵∠COC ′=90°,∴∠AOA ′﹣∠COA ′=∠COC ′﹣∠COA ′,∴∠AOC =∠A ′OC ′. 在△ACO 和△A ′C ′O 中,,∴△ACO ≌△A ′C ′O (AAS ),∴AC =A ′C ′,CO =C ′O .∵A (﹣2,5),∴AC =2,CO =5,∴A ′C ′=2,OC ′=5,∴A ′(5,2).故选B .12.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为A .2-2B .2-C .—1D .【答案】A【解析】∵等腰直角三角形外接圆半径为2,∴此直角三角形的斜边长为4,两条直角边分别为2,∴它的内切圆半径为:R =(2+2﹣4)=2﹣2.故选A .点睛:本题考查了三角形的外接圆和三角形的内切圆,等腰直角三角形的性质,要注意直角三角形内切圆半径与外接圆半径的区别:直角三角形的内切圆半径:r =(a +b ﹣c );(a 、b 为直角边,c 为斜边)直角三角形的外接圆半径:R =c .四、解答题1.因式分解:(1)3x (x -1)-2(x -1) (2)3x 2-12x +12 【答案】(1)(3x -2)(x -1);(2)3(x -2) 2 【解析】(1)3x (x -1)-2(x -1) =(3x -2)(x -1) (2)3x 2-12x +12 =3(x 2-4x +4) =3(x -2) 22.解方程:(1)4x 2-1=0 (2)x 2+x -6=0 【答案】(1)x 1=,x 2=-(2)x 1=-3,x 2=2【解析】(1)4x 2-1=0 解:整理得:x 2-=0于是得:x 2=由平方根的意义得: 或:因式分解,得: (2x +1)(2x -1)=02x +1=0,或2x -1=0 解得:x 1=-,x 2=(2)解: x 2+x -6=0因式分解,得: (x +3)(x -2)=0x +3=0,或x -2=0 解得:x 1=-3,x 2=23.如图,在直角坐标系xOy 中,△ABC 的三个顶点坐标分别为A (-4,1)、B (-1,1)、C (-4,3). (1)画出Rt △ABC 关于原点O 成中心对称的图形Rt △A 1B 1C 1;(2)若Rt △ABC 与Rt △A 2BC 2关于点B 中心对称,则点A 2的坐标为 、C 2的坐标为 .(3)求点A 绕点B 旋转180°到点A 2时,点A 在运动过程中经过的路程.【答案】(1)作图见解析;(2)A 2(2,1),C 2 (2,-1);(3)3π【解析】(1)如图:(2)A 2(2,1),C 2 (2,-1) (3)当点A 旋转180°到点A 2时,点A 经过的路线是以B 为圆心,AB =3为半径,圆心角为180°的弧AA 2,则点A 在运动过程中经过的路程为:==3π4.一个质地均匀的小正方体,六个面分别标有数字“1”“2”“3”“4”“5”“6”. 连续两次抛掷小正方体,观察每次朝上一面的数字.(1)请用列表格或画树状图的方法列举出两次抛掷的所有可能结果; (2)求出第二次抛掷的数字大于第一次抛掷的数字的概率; (3)求两次抛掷的数字之和为5的概率. 【答案】(1)见解析;(2)(3)【解析】(1)两次抛掷的所有可能结果如下表:第一次抛掷两次小正方体的所有可能结果共有36种,并且它们出现的可能性相等.(2)第二次抛掷的数字大于第一次抛掷的数字(记为事件A)的结果共有15种,即(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),所以P(A)=(3)两次抛掷的数字之和为5(记为事件B)的结果共有4种,即(1,4),(2,3),(3,2),(4,1),所以P(B)==(3)5.如图,四边形ABCD内接于⊙O,C为的中点,若∠CBD=30°,⊙O的半径为12.(1)求∠BAD的度数;(2)求扇形OCD的面积.【答案】(1)60°(2)24π【解析】(1)∵C是为的中点,∴ =2,∴∠BAD=∠COD,∵ =,∴∠COD=2∠CBD,∴∠BAD=2∠CBD,∵∠CBD=30°,∴∠BAD=60°;=(2)∵=,∴∠COD=2∠CBD,∵∠CBD=30°,∴∠COD=60°,则S扇形OCD=24π.点睛:此题主要考查了圆周角定理,以及扇形的面积计算,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,CE平分∠ACB,交AB于点E.(1)求证:AC平分∠DAB;(2)求证:△PCE是等腰三角形.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)连接OC∵PD切⊙O于点C,∴OC⊥PD.又∵AD⊥PD,∴OC∥AD.∴∠ACO=∠DAC.又∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACE=∠BCE,∴∠CAO+∠ACE=∠PCB+∠BCE,∴∠PEC=∠PCE,∴PC=PE,即△PCE是等腰三角形.7.商场购进一种单价为40元的书包,如果以单价50元出售,那么每月可售出30个,根据销售经验,售价每提高5元,销售量相应减少1个.(1)请写出销售单价提高元与总的销售利润y元之间的函数关系式;(2)如果你是经理,为使每月的销售利润最大,那么你确定这种书包的单价为多少元?此时,最大利润是多少元?【答案】(1)x与y的函数关系式为:y=(50+x-40)(30-)(0≤ x≤150);(2)当这种书包的单价为120元时,每月的销售利润最大为1280元;【解析】(1)当销售单价提高x元时,销售量减少了个,此时单价为(50+x)元,销售量为(30-)个则x与y的函数关系式为:y=(50+x-40)(30-)(0≤ x≤150)(2)将(1)中函数整理后,得:y=-+28 x+300∵-<0∴二次函数y=-+28 x+300有最大值当x=70时,y有最大值,此时y=1280,这种书包的单价为:50+70=120答:(1)x与y的函数关系式为:y=(50+x-40)(30-)(0≤ x≤150);(2)当这种书包的单价为120元时,每月的销售利润最大为1280元;点睛:本题考查二次函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用二次函数的顶点式求函数的最值,注意自变量的取值范围.8.如图,AB是⊙O的直径,AM、BN分别与⊙O相切于点A、B,CD交AM、BN于点D、C,DO平分∠ADC. (1)求证:CD是⊙O的切线;(2)设AD=4,AB=x (x > 0),BC=y (y > 0). 求y关于x的函数解析式.【答案】(1)证明见解析;(2)y=x2【解析】(1)证明:过O做OE⊥CD于点E,则∠OED=90°∵⊙O与AM相切于点A∴∠OAD=90°∵OD平分∠ADE∴∠ADO=∠EDO∵OD=OD∴△OAD≌△OED∴OE=OA∵OA是⊙O的半径∴OE是⊙O的半径∴CD是⊙O的切线(2)过点D做DF⊥BC于点F,则DF=AB=x∵AD=4,BC=y∴CF=BC-AD=y-4由切线长定理可得:∴DE=DA,CE=CB∴CD=CE+ED=BC+AD=4+y在Rt△DFC中,∵CD2=DF2+FC2∴(y+4)=x2+(y-4)2整理得:y=x2则y关于x的函数关系式为:y=x2解法二:连接OC,∵CD、CB都是⊙O的切线∴CE=CB=yOC平分∠BCD即:∠OCD=∠BCD同理:DE=AD=4∠CDO=∠CDA∵AM、BN分别与⊙O相切且AB为⊙O的直径∴AM//BN∴∠BCD+∠CDA=180°∴∠OCD+∠CDO=90°∵∠CDO+∠OCD+∠COD=180°∴∠COD=90°∵在Rt△OAD中OD2=OA2+AD2即OD2=()2+42同理可得:OC2=()2+y2∵CD=CE+ED=y+4∴在Rt△OCD中CD2=OC2+OD2即(y+4)2=()2+42+()2+y2整理得:y=x2则y 关于x 的函数关系式为:y =x 2点睛:本题主要考查的是切线的性质和判定,解答本题主要应用了切线的性质和判定定理、全等三角形的性质和判定,掌握本题的辅助线的作法是解题的关键.9.如图,已知抛物线与x 轴只有一个交点A (-2,0),与y 轴交于点B (0,4).(1)求抛物线对应的函数解析式;(2)过点B 做平行于x 轴的直线交抛物线与点C .①若点M 在抛物线的AB 段(不含A 、B 两点)上,求四边形BMAC 面积最大时,点M 的坐标; ②在平面直角坐标系内是否存在点P ,使以P 、A 、B 、C 为顶点的四边形是平行四边形,若存在直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.【答案】(1)y =(x +2)2 (2)①点M 的坐标为(-1,1) ②存在 所有满足条件的点P 的坐标是(2,0)、(-6,0)、(-2,8)【解析】(1)由已知可设抛物线对应函数的解析式为:y =a (x +2)2(a ≠0),∵抛物线与y 轴交于点B (0,4) ∴4=a (0+2)2解得:a =1∴抛物线对应的解析式为:y =(x +2)2.(2)①如图1中,设点M 的坐标为(m ,(m +2)2),其中﹣2<m <0,则N 点坐标(m ,0).∵A 、B 、C 是定点,∴若要四边形B MA C 的面积最大,只要B MA 的面积最大即可.过M 做MN ⊥x 轴于点N ,则S △AOB =OA •OB =×2×4=4S △AMN =AN •MN =×[m ﹣(﹣2)]×(m +2)2=(m +2)3S 梯形ONMB =ON (MN +OB )=×(﹣m )×[(m +2)2+4]=﹣(m 3+4m 2+8m )∴S △AMB =S △AOB ﹣S △AMN ﹣S 梯形ONMB=4﹣(m +2)3﹣[﹣(m 3+4m 2+8m )]=﹣m 2﹣2m ,当m =﹣1时,S △AMB 最大,∵(﹣1+2)2=1∴此时点M 的坐标为(﹣1,1). ②存在.如图2中,∵四边形ABP 1C 是平行四边形,∴FC =FB ,AF =FP 1,∵B (0,4),C (﹣4,4),∴F (﹣2,4),设P 1(x ,y ),则有=﹣2, =4,∴x =﹣2,y =8,∴P 1(﹣2,8),同法可得P 2(﹣6,0),P 3(2,0).所有满足条件的点P的坐标是(2,0)、(﹣6,0)、(﹣2,8).点睛:本题考查二次函数综合题、平行四边形的判定和性质、中点坐标公式、待定系数法等知识,解题的关键是灵活应用顶点式确定函数解析式,学会根据二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考常考题型.。
内蒙古初三初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.一个正多边形的每个外角都等于30°,那么这个正多边形的中心角为( )A.15°B.30°C.45°D.60°2.要得到y=-2(x+2)2-3的图象,需将抛物线y=-2x2作如下平移( )A.向右平移2个单位,再向上平移3个单位B.向右平移2个单位,再向下平移3个单位C.向左平移2个单位,再向上平移3个单位D.向左平移2个单位,再向下平移3个单位3.如图所示,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接正方形的面积为()A.2B.4C.8D.164.某种衬衣原价168元,连续两次降价a%后售价为128元.下面所列方程中正确的是()A.168(1+a%) 2=128B.168(1-a%)2=128C.168(1-2a%)=128D.168(1-a2%)=1285.在同一平面直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且m≠0)的图象可能是( )6.已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=-1,则m的值是( ) A.3B.1C.3或-1D.-3或17.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是( )A.4πB.3πC.2πD.2π8.如图,中,半径OD ⊥弦AB 于点C,连接AO 并延长交于点E,连接EC,若AB=8,CD=2,则EC 的长度为( )A .2B .8C .2D .29.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②b 2-4ac >0;③b >0;④4a-2b+c <0;⑤c-a >1,其中正确结论的是( )A .①②B .①③⑤C .②③⑤D .①②⑤二、填空题1.弦AB 把圆周分成1:3的两部分,点C 是圆上不同于A 、B 的一点,那么∠ACB 的度数为 .2.⊙O 的半径为13cm ,AB 和CD 是⊙O 的两条弦,AB ∥CD ,AB=24cm ,CD=10cm ,则AB 和CD 之间的距离为 cm.3.如图,P 为⊙O 外一点,PA ,PB 分别切⊙O 于点A ,B ,CD 切⊙O 于E ,分别交PA ,PB 于C ,D ,若PA =5,则△PCD 的周长为 .4.如图,在△ABC 中,∠BAC=90°,AB=5cm,AC=2cm,将△ABC 绕顶点C 按顺时针方向旋转45°至△A 1B 1C 的位置,则线段AB 扫过区域(图中阴影部分)的面积为 cm 2.5.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出1个球,这个球是黄球的概率为 .6.已知扇形的半径为,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为 .7.已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x-1)2+1的图象上,若x 1>x 2>1,则y 1 y 2 .(填“>”“=”或“<”). 8.要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场)计划安排15场比赛,应邀请 个球队参加比赛.9.如图,AB 是的弦,AB 长为8,P 是上一个动点(不与A 、B 重合),过点O 分别作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为 .10.如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,☉P 与x 轴交于O,A 两点,点A 的坐标为(6,0),☉P的半径为,则点P 的坐标为 .三、解答题1.如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C;(2)平移△ABC,若点A 的对应点A 2的坐标为(0,-4),画出平移后对应的△A 2B 2C 2. (3)在x 轴上有一点P,使得PA+PB 的值最小,请直接写出点P 的坐标.2.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.3.如图,已知△OAB 的顶点A (﹣6,0),B (0,2),O 是坐标原点,将△OAB 绕点O 按顺时针旋转90°,得到△ODC .(1)写出C ,D 两点的坐标;(2)求过A ,D ,C 三点的抛物线的解析式,并求此抛物线顶点E 的坐标; (3)证明AB ⊥BE4.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.5.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价25元/件时,每天的销售量是250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式.(2)求销售单价为多少元时,该文具每天的销售利润最大?(3)商场的营销部结合上述情况,提出了A,B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.内蒙古初三初中数学期末考试答案及解析一、选择题1.一个正多边形的每个外角都等于30°,那么这个正多边形的中心角为( )A.15°B.30°C.45°D.60°【答案】B【解析】正多边形的中心角与每个外角是相等的,外角为30°,所以中心角也是30°;故选B.【考点】多边形的内角与外角.2.要得到y=-2(x+2)2-3的图象,需将抛物线y=-2x2作如下平移( )A.向右平移2个单位,再向上平移3个单位B.向右平移2个单位,再向下平移3个单位C.向左平移2个单位,再向上平移3个单位D.向左平移2个单位,再向下平移3个单位【答案】D【解析】根据函数图象平移的规律:左加右减,上加下减,可知,需将抛物线y=-2x2向左平移2个单位,再向下平移3个单位得到y=-2(x+2)2-3的图象;故选D.【考点】二次函数图象的平移.3.如图所示,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接正方形的面积为()A.2B.4C.8D.16【解析】如图1,作直径AD,连接BD,则有∠D=∠C=30°,∠ABD=90°,∴AD=2AB=2,如图2,正方形EFGH为⊙O的内接正方形,∴S正方形EFGH=EG·FH=×2×2=2;故选A.【考点】1、圆周角定理;2、直径所对的圆周角是直角;3、正方形面积.4.某种衬衣原价168元,连续两次降价a%后售价为128元.下面所列方程中正确的是()A.168(1+a%) 2=128B.168(1-a%)2=128C.168(1-2a%)=128D.168(1-a2%)=128【答案】B【解析】第一次降价a%后的售价是168(1-a%)元,第二次降价a%后的售价是168(1-a%)(1-a%)=168(1-a%)2, 故选B.【考点】一元二次方程的应用.5.在同一平面直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且m≠0)的图象可能是( )【答案】D【解析】A、由抛物线的开口向下,可知m>0,由抛物线的对称轴知m<0,由直线经过二、三、四象限,可知m<0,故错误;B、由抛物线的开口向上,可知m<0,由抛物线的对称轴知m>0,由直线经过二、三、四象限,可知m<0,故错误;C、由抛物线的开口向上,可知m<0,由抛物线的对称轴知m>0,由直线经过一、二、三象限,可知m>0,故错误;D、由抛物线的开口向上,可知m<0,由抛物线的对称轴知m<0,由直线经过二、三、四象限,可知m<0,故错误;故选D.【考点】1、二次函数的图象;2、一次函数的图象.6.已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=-1,则m的值是( ) A.3B.1C.3或-1D.-3或1【答案】A【解析】由题意得α+β=-(2m+3),αβ=m2,∵+=-1,∴=-1,即=-1,解得m=3或m=-1,当m=-1时,△=1-4=-3<0,故舍去,所以m=3;故选A.【考点】1、根与系数的关系;2、根的判别式.7.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是( )A.4πB.3πC.2πD.2π【答案】B=πrl=3π;【解析】圆锥的底面半径为1,高为2,由勾股定理可知母线长l为3,∴S侧【考点】圆锥的侧面积.8.如图,中,半径OD⊥弦AB于点C,连接AO并延长交于点E,连接EC,若AB=8,CD=2,则EC的长度为( )A.2B.8C.2D.2【答案】D【解析】连接EB,∵AE是直径,∴∠B=90°,∵OD⊥AB,∴AC=BC=AB=×8=4,∠OCD=90°,∴AO2=OC2+AC2,∵OA=OD,OC=OD-CD=OD-2,∴AO2=(AO-2)2+42,∴AO=5,∴OC=3,又∵OA=OE,∴BE=2OC=6,∴CE===2;故选D.【考点】1、垂径定理;2、直径所对的圆周角是直角;3、勾股定理.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②b2-4ac>0;③b>0;④4a-2b+c<0;⑤c-a>1,其中正确结论的是()A.①②B.①③⑤C.②③⑤D.①②⑤【答案】D【解析】由图象可知当x=1时,所对应的抛物线上点在x轴下方,故①a+b+c<0正确;由抛物线与x轴有两个交点,故②b2-4ac>0正确;由抛物线的对称轴在y轴左侧,故a、b同号,由抛物线开口向下,知a<0,故③b>0错误;由抛物线的对称性可知抛物线与x轴另一个交点的横坐标在-3与-2之间,故④4a-2b+c<0错误;由图象知c=1,a<0,故⑤c-a>1正确;故选D.【考点】抛物线的图象与系数之间的关系.二、填空题1.弦AB把圆周分成1:3的两部分,点C是圆上不同于A 、B的一点,那么∠ACB的度数为 .【答案】45°或135°【解析】∵弦AB把圆周分成1:3的两部分,∴∠AOB=×360°=90°,∴∠C=∠AOB=45°,∴∠C’=180°-∠C=135°;故答案为45°或135°.【考点】圆周角定理.2.⊙O 的半径为13cm ,AB 和CD 是⊙O 的两条弦,AB ∥CD ,AB=24cm ,CD=10cm ,则AB 和CD 之间的距离为 cm.【答案】7cm 或17cm【解析】如图,过点O 作OE ⊥CD ,OF ⊥AB ,垂足分别为点E 、F ,∴DE=CD=5,BF=AB=12,∠OED=∠OFB=90°,由∵OD=OB=13,∴OE==12,OF==5,∴EF=OE-OF=5或EF=OE+OF=17;【考点】1、垂径定理;2、勾股定理.3.如图,P 为⊙O 外一点,PA ,PB 分别切⊙O 于点A ,B ,CD 切⊙O 于E ,分别交PA ,PB 于C ,D ,若PA =5,则△PCD 的周长为 .【答案】10【解析】∵PA ,PB 分别切⊙O 于点A ,B ,∴PB=PA=5,又∵CD 切⊙O 于E ,分别交PA ,PB 于C ,D ,∴CE=CA ,DE=DB ,∴PC+PD+CD=PC+PD+CE+DE=PC+CA+PD+DB=PA+PB=10. 【考点】切线长定理.4.如图,在△ABC 中,∠BAC=90°,AB=5cm,AC=2cm,将△ABC 绕顶点C 按顺时针方向旋转45°至△A 1B 1C 的位置,则线段AB 扫过区域(图中阴影部分)的面积为 cm 2.【答案】π【解析】∵∠BAC=90°,AB=5,AC=2,∴BC===,∴S 扇形CBB1==,∵S △A1B1C =S △ABC =×2×5=5,S 扇形CA1A ==, ∴S 阴影=S 扇形CBB1+S △A1B1C -S △ABC -S 扇形CA1A =-=π.【考点】1、旋转的性质;2、扇形的面积.5.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出1个球,这个球是黄球的概率为 .【答案】【解析】袋子中共有5个球,而其中有2个黄球,故随机摸出一个球是黄球的概率为.【考点】概率.6.已知扇形的半径为,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为 .【答案】12π【解析】圆锥的侧面积即为扇形的面积为:=12π.【考点】1、圆锥的侧面积;2、扇形的面积.7.已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x-1)2+1的图象上,若x 1>x 2>1,则y 1 y 2 .(填“>”“=”或“<”). 【答案】>【解析】∵a=1>0,∴抛物线的开口向上,∵对称轴为直线x=1,∴在对称轴右侧,y 随x 的增大而增大,∵x 1>x 2>1,∴y 1>y 2.考点:二次函数的性质.8.要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场)计划安排15场比赛,应邀请 个球队参加比赛.【答案】6【解析】设应邀请x 个队参加比赛,由题意则有:x(x-1)=15,解得x=6或x=-5(不合题意,舍去),故应邀请6个队参加比赛.【考点】一元二次方程的应用.9.如图,AB 是的弦,AB 长为8,P 是上一个动点(不与A 、B 重合),过点O 分别作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为 .【答案】4【解析】∵OC ⊥PA ,OD ⊥PB ,∴AC=PC ,BD=PD ,∴CD=AB=×8=4.【考点】1、垂径定理;2、三角形中位线.10.如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,☉P 与x 轴交于O,A 两点,点A 的坐标为(6,0),☉P的半径为,则点P 的坐标为 .【答案】(3,2)【解析】过点P 作PD ⊥x 轴于点D ,连接OP , ∵A (6,0),PD ⊥OA ,∴OD=OA=3,在Rt △OPD 中 ∵OP= OD=3,∴PD=2∴P(3,2) . 故P (3,2).【考点】1、垂径定理;2、坐标与图形性质;3、勾股定理.三、解答题1.如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C;(2)平移△ABC,若点A 的对应点A 2的坐标为(0,-4),画出平移后对应的△A 2B 2C 2. (3)在x 轴上有一点P,使得PA+PB 的值最小,请直接写出点P 的坐标. 【答案】(1)图形见解析; (2)图形见解析; (3)P (-2,0)【解析】(1)按要求画出旋转后的图形即可; 按要求进行平移即可;作点A 关于x 轴的对称点A’,连接BA’,交x 轴于点P ,则点P 即为所求. 试题解析:(1)如图所示; (2)如图所示;(3)(-2,0).【考点】1、图形的旋转;2、图形的平移;3、轴对称的应用.2.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.【答案】(1)画树状图见解析,小颖参加比赛的概率是;(2)不公平,理由见解析,修改游戏规则见解析.【解析】(1)首先画了树状图,得到所有可能的情况,然后找到数字之和小于4有几种情况,利用概率公式即可求得小颖参加革命比赛的概率;(2)通过计算得出和小于4的概率、和不小于4的概率,从而得知是否公平,然后通过改变条件让两种概率相等即可.试题解析:(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为:;(2)不公平,∵P(和小于4)=,P(和大于等于4)=.∴P(和小于4)≠P(和大于等于4),∴游戏不公平;可改为:若两指针所指数字之和为偶数,则小颖获胜;若两指针所指数字之和为奇数,则小亮获胜;P(和为偶数)=P(和为奇数)=.【考点】用列表法或树状图法求概率.3.如图,已知△OAB的顶点A(﹣6,0),B(0,2),O是坐标原点,将△OAB绕点O按顺时针旋转90°,得到△ODC.(1)写出C,D两点的坐标;(2)求过A,D,C三点的抛物线的解析式,并求此抛物线顶点E的坐标;(3)证明AB⊥BE【答案】(1)C(2,0),D(0,6);(2)y=-x2﹣2x+6;顶点E的坐标为(﹣2,8).(3)证明见解析.【解析】(1)由旋转的性质可得OC=OB,OD=OA,由已知条件即可得点C、D的坐标;(2)由于抛物线过点A(﹣6,0),C(2,0),所以设抛物线的解析式为y=a(x+6)(x﹣2)(a≠0),再将D(0,6)代入,求出a的值,得出抛物线的解析式,然后利用配方法求出顶点E的坐标;(3)已知A、B、E三点的坐标,运用勾股定理计算得出AB2=40,BE2=40,AE2=80,则AB2+BE2=AE2,根据勾股定理的逆定理即可证明AB⊥BE.试题解析:(1)∵将△OAB绕点O按顺时针旋转90°,得到△ODC,∴△ODC≌△OAB.∴OC=OB=2,OD=OA=6.∴C(2,0),D(0,6).(2)∵抛物线过点A(﹣6,0),C(2,0),∴可设抛物线的解析式为y=a(x+6)(x﹣2)(a≠0),∵D(0,6)在抛物线上,∴6=﹣12a,解得a=-.∴抛物线的解析式为y=-(x+6)(x﹣2),即y=-x2﹣2x+6.∵y=-x2﹣2x+6=-(x+2)2+8,∴顶点E的坐标为(﹣2,8).(3)连接AE,∵A(﹣6,0),B(0,2),E(﹣2,8),∴AB2=62+22=40,BE2=(﹣2﹣0)2+(8﹣2)2=40,AE2=(﹣2+6)2+(8﹣0)2=80.∴AB2+BE2=AE2.∴△ABE是直角三角形.∴AB⊥BE.【考点】1、旋转的性质;2、待定系数法求函数解析式;3、勾股定理的逆定理.4.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.【答案】(1)∠ABC=60°;(2)证明见解析;(3)π.【解析】(1)∠ABC与∠D都是弧AC所对的圆周角,可得∠ABC=∠D=60°;由AB是直径,可得∠ACB=90°,从而可得∠BAC=30°,由∠EAC=60°,可得∠EABC=90°,即AE是切线;连接BC,由已知条件可知△BOC是等边三角形,从而可得弧AC所对圆心角的度数,利用弧长公式即可得劣弧AC的长.试题解析:(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∴OB=OC,∠ABC=60°,∴△OBC是等边三角形,∵OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为=π.【考点】1、圆周角定理;2、切线的判定;3、弧长公式.5.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价25元/件时,每天的销售量是250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式.(2)求销售单价为多少元时,该文具每天的销售利润最大?(3)商场的营销部结合上述情况,提出了A,B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.【答案】(1)w=-10x2+700x-10000;当单价为35元时,该文具每天的利润最大;(3)A方案利润更高.【解析】(1)根据利润=(单价-进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.试题解析:(1)w=(x-20)[250-10(x-25)]=-10(x-20)(x-50)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250,∴当x=35时,w取到最大值2250,即销售单价为35元时,每天销售利润最大,最大利润为2250元.(3)∵w=-10(x-35)2+2250,∴函数图象是以x=35为对称轴且开口向下的抛物线.∴对于方案A,需20<x≤30,此时图象在对称轴左侧(如图),w随x的增大而增大,∴x=30时,w取到最大值2000.∴当采用方案A时,销售单价为30元可获得最大利润为2000元;对于方案B,则有解得45≤x<49,此时图象位于对称轴右侧(如图),∴w随x的增大而减小,故当x=45时,w取到最大值1250,∴当采用方案B时,销售单价为45元可获得最大利润为1250元.两者比较,还是方案A的最大利润更高.【考点】二次函数的应用.。
内蒙古包头市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分) (2019九上·靖远期末) 在反比例函数y=的图象的每一支位上,y随x的增大而减小,则m的取值范围是()A . m>7B . m<7C . m=7D . m≠72. (2分)在Rt△ABC中,∠C=90°,AB=5,AC=3,则cosB的值为()A .B .C .D .3. (2分)两个反比例函数y=和y=在第一象限内的图象如图所示,点P在y=的图象上,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B,当点P在y=的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是()A . 1个B . 2个C . 3个D . 4个4. (2分)(2020·芜湖模拟) 如图,在平行四边形ABCD中,AD=BD=5,AB=6,E为AB的中点,F为CD上一点,连接EF交BD于点G ,若S△FDG:S△EDG=2:3,则EF的长是()A .B . 2C . 2D . 55. (2分)如图是小明设计用手电来测量某古城墙高度的示意图。
点P处放一水平的平面镜,,光线从点A 出发经平面镜反射后刚好射到古城墙CD的顶端C处。
已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A . 6米B . 8米C . 18米D . 24米6. (2分) (2017九上·河口期末) 如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB是()A . 250米B . 250 米C . 米D . 500 米7. (2分) (2019八下·醴陵期末) 点A(x1 , y1),B(x2 , y2),C(x3 , y3)在反比例函数y= 的图象上,若x1<x2<0<x3 ,则y1 , y2 , y3的大小关系是()A . y1<y2<y3B . y2<y3<y1C . y3<y2<y1D . y2<y1<y38. (2分)对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1 , y2=﹣x22+2x2 ,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A . 1B . 2C . 3D . 49. (2分)(2017·路北模拟) 已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为()A . 3B . 4C . 5D . 710. (2分) (2019八上·吴江期末) 如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于的长为半径画弧,两弧在第二象限交于点P,若点P 的坐标为,则a与b的数量关系为A .B .C .D .11. (2分)正比例函数y=mn与反比例函数(m,n是非零常数)的图象交于A,B两点.若点A的坐标为(1,2),则点B的坐标是().A . (-2,-4)B . (-2,-1)C . (-1,-2)D . (-4,-2)12. (2分) (2017九上·凉山期末) 已知二次函数的图象如图所示,有以下结论:①;② ;③ ;④ ;⑤ 其中所有正确结论的序号是()A . ①②B . ①③④C . ①②③⑤D . ①②③④⑤13. (2分)如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①图中有4对全等三角形;②若将△DEF沿EF折叠,则点D不一定落在AC上;③BD=BF;④S四边形DFOE=S△AOF,上述结论中正确的个数是()A . 1个B . 2个C . 3个D . 4个14. (2分) (2017八下·平顶山期末) 如图,平行四边形ABCD的面积为acm2 ,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,连接AC1交BD于O1 ,以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AOn﹣1CnB的面积为()cm2 .A . aB . aC . aD . a二、填空题 (共4题;共4分)15. (1分)若=,则=________.16. (1分) (2017九上·建湖期末) 抛物线y=2x2﹣bx+3的对称轴是直线x=﹣2,则b的值为________.17. (1分)(2020·广州) 如图,正方形中,绕点逆时针旋转到,,分别交对角线于点,若,则的值为________.18. (1分)(2019·乐山) 如图,点是双曲线:()上的一点,过点作轴的垂线交直线:于点,连结, .当点在曲线上运动,且点在的上方时,△ 面积的最大值是________.三、解答题 (共8题;共80分)19. (10分)综合题。
2018-2019学年九年级上期末数学试卷(含答案解析)一、选择题(共16小题,每小题3分,满分48分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.=2C.x2+2x=x2﹣1D.3(x+1)2=2(x+1)2.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)3.下列图形是中心对称图形的是()A.B.C.D.4.下列说法中,正确的是()A.不可能事件发生的概率是0B.打开电视机正在播放动画片,是必然事件C.随机事件发生的概率是D.对“梦想的声音”节目收视率的调查,宜采用普查5.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()A.40°B.50°C.80°D.100°6.下列图象中是反比例函数y=﹣图象的是()A.B.C.D.7.如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2B.x>4C.﹣2<x<4D.x>08.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为()A.B.C.D.9.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.10.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50°B.60°C.70°D.80°11.边长为a的正三角形的内切圆的半径为()A.a B.a C.a D.a12.反比例函数y1=(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2),当y2>y1时,x的取值范围是()A.x<1B.1<x<2C.x>2D.x<1或x>213.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S =4:25,则DE:EC=()△ABFA.2:5B.2:3C.3:5D.3:214.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=182B.x(x+1)=182×C.x(x﹣1)=182D.x(x﹣1)=182×215.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)16.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.当﹣1<x<2时,y>0C.a+b+c<0D.当x<,y随x的增大而减小二、填空题(共4小题,每小题3分,满分12分)17.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是.18.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是.19.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.20.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2016的坐标为.三、解答题(共6小题,满分60分)21.(8分)已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.22.(10分)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果,节目组规定:每位选手至少获得两位评委的“通过”才能晋级(1)请用树形图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.23.(10分)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E 作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP.24.(10分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?25.(10分)如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y轴的平行线,与反比例函数y=(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(﹣2,0).(1)求k的值;(2)直接写出阴影部分面积之和.26.(12分)如图,已知抛物线y=ax2+bx﹣3与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C,其顶点为D,对称轴为直线x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ACM是以AC为一腰的等腰三角形时,求点M的坐标.2018-2019学年九年级上期末数学试卷(含答案解析)一、选择题(共16小题,每小题3分,满分48分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.=2C.x2+2x=x2﹣1D.3(x+1)2=2(x+1)【分析】根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、ax2+bx+c=0当a=0时,不是一元二次方程,故A错误;B、+=2不是整式方程,故B错误;C、x2+2x=x2﹣1是一元一次方程,故C错误;D、3(x+1)2=2(x+1)是一元二次方程,故D正确;故选:D.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据抛物线的顶点式解析式写出顶点坐标即可.【解答】解:y=(x﹣1)2+2的顶点坐标为(1,2).故选:A.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.3.下列图形是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、该图形是中心对称图形,正确,B、该图形不是中心对称图形,错误;C、该图形不是中心对称图形,错误;D、该图形是轴对称图形,错误;故选:A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.4.下列说法中,正确的是()A.不可能事件发生的概率是0B.打开电视机正在播放动画片,是必然事件C.随机事件发生的概率是D.对“梦想的声音”节目收视率的调查,宜采用普查【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、不可能事件发生的概率是0,故A符合题意;B、打开电视机正在播放动画片,是随机事件,故B不符合题意;C、随机事件发生的概率是0<P<1,故C不符合题意;D、对“梦想的声音”节目收视率的调查,宜采用抽样调查,故D不符合题意;故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()A.40°B.50°C.80°D.100°【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案.【解答】解:由题意得∠A=∠BOC=×100°=50°.故选:B.【点评】本题考查了圆周角定理,属于基础题,掌握圆周角定理的内容是解答本题的关键.6.下列图象中是反比例函数y=﹣图象的是()A.B.C.D.【分析】利用反比例函数图象是双曲线进而判断得出即可.【解答】解:反比例函数y=﹣图象的是C.故选:C.【点评】此题主要考查了反比例函数的图象,正确掌握反比例函数图象的形状是解题关键.7.如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2B.x>4C.﹣2<x<4D.x>0【分析】由抛物线与x轴的交点坐标,结合图象即可解决问题.【解答】解:∵二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,函数开口向下,∴函数值y>0时,自变量x的取值范围是﹣2<x<4,故选:C.【点评】本题考查抛物线与x轴的交点,解题的关键是学会根据图象确定自变量的取值范围,属于中考常考题型.8.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为()A.B.C.D.【分析】由在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,直接利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,∴从中随机摸出一个小球,其标号小于4的概率为:.故选:C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选:C.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.10.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50°B.60°C.70°D.80°【分析】根据旋转的性质可知,∠BCB′=∠ACA′=20°,又因为AC⊥A′B′,则∠BAC的度数可求.【解答】解:∵△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置∴∠BCB′=∠ACA′=20°∵AC⊥A′B′,∴∠BAC=∠A′=90°﹣20°=70°.故选:C.【点评】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.边长为a的正三角形的内切圆的半径为()A.a B.a C.a D.a【分析】根据等边三角形的三线合一,可以构造一个由其内切圆的半径、外接圆的半径和半边组成的30°的直角三角形,利用锐角三角函数关系求出内切圆半径即可.【解答】解:∵内切圆的半径、外接圆的半径和半边组成一个30°的直角三角形,则∠OBD=30°,BD=,∴tan∠BOD==,∴内切圆半径OD=×=a.故选:D.【点评】此题主要考查了三角形的内切圆,注意:根据等边三角形的三线合一,可以发现其内切圆的半径、外接圆的半径和半边正好组成了一个30°的直角三角形.12.反比例函数y1=(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2),当y2>y1时,x的取值范围是()A.x<1B.1<x<2C.x>2D.x<1或x>2【分析】根据函数解析式画出函数的大致图象,根据图象作出选择.【解答】解:根据双曲线关于直线y=x对称易求B(2,1).依题意得:如图所示,当1<x<2时,y2>y1.故选:B.【点评】本题考查了反比例函数与一次函数的交点问题.此题利用了双曲线的对称性求得点B的坐标是解题的关键.13.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S △ABF=4:25,则DE:EC=()A.2:5B.2:3C.3:5D.3:2【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB的值,由AB=CD即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF :S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选:B.【点评】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.14.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=182B.x(x+1)=182×C.x(x﹣1)=182D.x(x﹣1)=182×2【分析】先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.【解答】解:设全组有x名同学,则每名同学所赠的标本为:(x﹣1)件,那么x名同学共赠:x(x﹣1)件,所以,x(x﹣1)=182.故选:C.【点评】本题考查一元二次方程的实际运用:要全面、系统地弄清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.15.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.【解答】解:∵点A(﹣3,6),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是(﹣1,2)或(1,﹣2),故选:D.【点评】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.16.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.当﹣1<x<2时,y>0C.a+b+c<0D.当x<,y随x的增大而减小【分析】A、观察可判断函数有最小值;B、由抛物线可知当﹣1<x<2时,可判断函数值的符号;C、观察当x=1时,函数值的符号,可判断a+b+c的符号;D、由抛物线对称轴和开口方向可知y随x的增大而减小,可判断结论.【解答】解:A、由图象可知函数有最小值,故正确;B、由抛物线可知当﹣1<x<2时,y<0,故错误;C、当x=1时,y<0,即a+b+c<0,故正确;D、由图象可知在对称轴的左侧y随x的增大而减小,故正确.故选:B.【点评】本题考查了二次函数图象的性质与解析式的系数的关系.关键是熟悉各项系数与抛物线的各性质的联系.二、填空题(共4小题,每小题3分,满分12分)17.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是k≥﹣6.【分析】由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【解答】解:当k=0时,﹣4x﹣=0,解得x=﹣,当k≠0时,方程kx2﹣4x﹣=0是一元二次方程,根据题意可得:△=16﹣4k×(﹣)≥0,解得k≥﹣6,k≠0,综上k≥﹣6,故答案为k≥﹣6.【点评】本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.18.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是6.【分析】连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解.【解答】解:连接AO,∵半径是5,CD=1,∴OD=5﹣1=4,根据勾股定理,AD===3,∴AB=3×2=6,因此弦AB的长是6.【点评】解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键.19.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴矩形ABCD的面积为3﹣1=2.故答案为:2.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x 轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.20.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2016的坐标为(10080,4).【分析】根据图形和旋转规律可得出B n点坐标的变换规律,结合三角形的周长,即可得出结论.【解答】解:在直角三角形OAB中,OA=,OB=4,由勾股定理可得:AB=,△OAB的周长为:OA+OB+AB=+4+=10,研究三角形旋转可知,当n为偶数时B n在最高点,当n为奇数时B n在x轴上,横坐标规律为:,∵2016为偶数,∴B2016(×10,4).故答案为:(10080,4).【点评】本题考查的坐标与图形的变换,解题的关键是在变换中找到规律,结合图形得出结论.三、解答题(共6小题,满分60分)21.(8分)已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.【分析】由于一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,那么把x=0代入方程即可得到关于m的方程,解这个方程即可求出m的值.【解答】解:∵一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,∴把x=0代入方程中得m2+3m﹣4=0,∴m1=﹣4,m2=1.由于在一元二次方程中m﹣1≠0,故m≠1,∴m=﹣4【点评】此题主要考查了方程解的定义和解一元二次方程,此类题型的特点是,利用方程解的定义找到所求字母的方程,再解此方程即可解决问题.22.(10分)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果,节目组规定:每位选手至少获得两位评委的“通过”才能晋级(1)请用树形图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.【分析】(1)利用树状图列举出所有可能即可,注意不重不漏的表示出所有结果;(2)列举出所有情况,让至少有两位评委给出“通过”的结论的情况数除以总情况数即为所求的概率.【解答】解:(1)画出树状图来说明评委给出A选手的所有可能结果:;(2)∵由上可知评委给出A选手所有可能的结果有8种.并且它们是等可能的,对于A选手,晋级的可能有4种情况,∴对于A选手,晋级的概率是:.【点评】本题主要考查了树状图法求概率.树状图法可以不重不漏地列举出所有可能发生的情况,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.(10分)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E 作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP.【分析】(1)连接OE,如图,利用圆周角定理得到∠CED=90°,即∠CEO+∠OED=90°,加上∠C=∠CEO,∠PED=∠C.则∠PED+∠OED=90°,即∠OEP=90°,然后根据切线的性质定理可判定PE是⊙O的切线;(2)利用圆周角定理得到∠AEB=90°,再利用AE∥CD得到∠EFD=90°,接着利用等角的余角相等可判断∠FED=∠C,所以∠PED=∠FED.【解答】证明:(1)连接OE,如图,∵CD为直径,∴∠CED=90°,即∠CEO+∠OED=90°,∵OC=OE,∴∠C=∠CEO,∴∠C+∠OED=90°,∵∠PED=∠C.∴∠PED+∠OED=90°,即∠OEP=90°,∴OE⊥PE,∴PE是⊙O的切线;(2)∵AB为直径,∴∠AEB=90°,而AE∥CD,∴∠EFD=90°,∴∠FED+∠EDF=90°,而∠C+∠EDC=90°,∴∠FED=∠C,∴∠PED=∠FED,∴ED平分∠BEP.【点评】本题考查了切线的性质:经过半径的外端且垂直于这条半径的直线是圆的切线.当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了圆周角定理.24.(10分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?【分析】(1)设每绿地面积的年平均增长率为x,就可以表示出2014年的绿地面积,根据2014年的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.【解答】解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.【点评】本题考查了增长率问题的数量关系的运用,运用增长率的数量关系建立一元二次方程的运用,一元二次方程的解法的运用,解答时求出平均增长率是关键.25.(10分)如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y轴的平行线,与反比例函数y=(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(﹣2,0).(1)求k的值;(2)直接写出阴影部分面积之和.【分析】(1)根据点A和点E的坐标求得直线AE的解析式,然后设出点D的纵坐标,代入直线AE的解析式即可求得点D的坐标,从而求得k值;(2)根据中心对称的性质得到阴影部分的面积等于平行四边形CDGF的面积即可.【解答】解:(1)∵A(3,5)、E(﹣2,0),∴设直线AE的解析式为y=kx+b,则,解得:,∴直线AE的解析式为y=x+2,∵点A(3,5)关于原点O的对称点为点C,∴点C的坐标为(﹣3,﹣5),∵CD∥y轴,∴设点D的坐标为(﹣3,a),∴a=﹣3+2=﹣1,∴点D的坐标为(﹣3,﹣1),∵反比例函数y=(0<k<15)的图象经过点D,∴k=﹣3×(﹣1)=3;(2)如图:∵点A和点C关于原点对称,∴阴影部分的面积等于平行四边形CDGF的面积,3=12.∴S阴影=4×【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是能够确定点D的坐标,难度不大.26.(12分)如图,已知抛物线y=ax2+bx﹣3与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C,其顶点为D,对称轴为直线x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ACM是以AC为一腰的等腰三角形时,求点M的坐标.【分析】(1)利用对称性可得B(3,0),则利用交点式得抛物线解析式为y=a(x+1)(x ﹣3)=ax2﹣2ax﹣3a,所以﹣3a=3,解得a=1,于是得到抛物线解析式为y=x2﹣2x﹣3;(2)分类讨论:当AC=AM时,易得点M1(0,3),如图;②当CM=CA时,先计算出AC=,再以C点为圆心,CA为半径画弧交y轴于M2,M3,如图,易得M2(0,﹣3),M3(0,﹣﹣3).【解答】解:(1)∵点A(﹣1,0)和点B关于直线x=1对称,∴B(3,0),∴抛物线解析式为y=a(x+1)(x﹣3)=ax2﹣2ax﹣3a,∴﹣3a=3,解得a=1,∴抛物线解析式为y=x2﹣2x﹣3;(2)当AC=AM时,点M1与点C关于x轴对称,则M1(0,3),如图;②当CM=CA时,AC==,以C点为圆心,CA为半径画弧交y轴于M2,M3,如图,则OM2=﹣1,OM3=OC+CM3=3+,则M2(0,﹣3),M3(0,﹣﹣3).综上所述,满足条件的点M的坐标为(0,3),(0,﹣3),(0,﹣﹣3).【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.解决(2)小题的关键是利用等腰三角形的性质画出点M的坐标.。
九年级上册包头数学期末试卷(提升篇)(Word 版 含解析)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( )A .平均数B .方差C .中位数D .极差2.抛物线223y x x =++与y 轴的交点为( ) A .(0,2) B .(2,0) C .(0,3)D .(3,0) 3.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( )A .8,10B .10,9C .8,9D .9,104.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .5.如果两个相似三角形的周长比是1:2,那么它们的面积比是( )A .1:2B .1:4C .1:2D .2:16.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( ) A .19 B .13 C .12 D .237.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是 A .相交 B .相切 C .相离 D .无法判断8.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )A .1B .1.5C .2D .2.5 9.若两个相似三角形的相似比是1:2,则它们的面积比等于( ) A .12B .1:2 C .1:3 D .1:4 10.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( ) A .相交 B .相切 C .相离D .无法确定11.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6 B.8 C.10 D.1212.若二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,则c应满足的条件是()A.c=0 B.c=1 C.c=0或c=1 D.c=0或c=﹣1二、填空题13.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.14.设x1、x2是关于x的方程x2+3x-5=0的两个根,则x1+x2-x1•x2=________.15.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.16.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径=,扇形的圆心角1202r cmθ=,则该圆锥的母线长l为___cm.17.在Rt△ABC中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____.18.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,设增长率为x,则可列方程为______.19.如图,在由边长为1的小正方形组成的网格中.点 A,B,C,D 都在这些小正方形的格点上,AB、CD 相交于点E,则sin∠AEC的值为_____.20.已知点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,其中k≠0,若y1>y2,则x1的取值范围为_____.21.如图,在⊙O中,分别将弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是__________________.22.某公园平面图上有一条长12cm的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.23.若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.24.如图,一次函数y=x与反比例函数y=kx(k>0)的图像在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题25.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).26.5G网络比4G网络的传输速度快10倍以上,因此人们对5G产品充满期待.华为集团计划2020年元月开始销售一款5G产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第x个月(x为正整数)销售价格为y元/台,y与x满足如图所示的一次函数关系:且第x 个月的销售数量p (万台)与x 的关系为1p x =+.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除m 元推广费用,当68x ≤≤时销售利润最大值为22500万元时,求m 的值.27.已知关于x 的方程x 2+ax +a ﹣2=0.(1)求证:不论a 取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a 的值及该方程的另一根.28.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?29.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小华在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己的影长FG =4m .如果小华的身高为1.5m ,求路灯杆AB 的高度.30.计算(102020318(1)2⎛⎫+- ⎪⎝⎭ (2)2430x x -+=31.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.32.如图,在平面直角坐标系中,⊙O 的半径为1,点A 在x 轴的正半轴上,B 为⊙O 上一点,过点A 、B 的直线与y 轴交于点C ,且OA 2=AB •AC .(1)求证:直线AB是⊙O的切线;(2)若AB3AB对应的函数表达式.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.C解析:C【解析】【分析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,∴抛物线与y轴的交点为(0,3),故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.3.D解析:D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.考点:众数;中位数.4.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.5.B解析:B【解析】【分析】直接根据相似三角形的性质即可得出结论.【详解】解:∵两个相似三角形的周长比是1:2,∴它们的面积比是:1:4.故选:B.【点睛】本题考查相似三角形的性质,掌握相似三角形的周长比等于相似比,面积比等于相似比的平方是解题的关键.6.B解析:B【解析】【分析】让白球的个数除以球的总数即为摸到白球的概率.【详解】解:6个黑球3个白球一共有9个球,所以摸到白球的概率是31 93 =.故选:B.【点睛】本题考查了概率,熟练掌握概率公式是解题的关键.7.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O的直径为4,∴⊙O的半径为2,∵圆心O到直线l的距离是2,∴根据圆心距与半径之间的数量关系可知直线l与⊙O的位置关系是相切.故选:B.【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r,圆心到直线的距离是d,当d=r时,直线和圆相切,当d>r时,直线和圆相离,当d<r时,直线和圆相交.8.C解析:C【解析】【分析】因为OCP和ODQ为直角三角形,根据勾股定理可得OP、DQ、PQ的长度,又因为CP//DQ,两直线平行内错角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可证CPE∽DQE,可得CP DQ=PE EQ,设PE=x,则EQ=14-x,解得x的取值,OE= OP-PE,则OE的长度可得.【详解】解:∵在⊙O中,直径AB=20,即半径OC=OD=10,其中CP⊥AB,QD⊥AB,∴OCP和ODQ为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CP⊥AB,QD⊥AB,垂直于用一直线的两直线相互平行,∴CP//DQ,且C、D连线交AB于点E,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故CP DQ=PE EQ,设PE=x,则EQ=14-x,∴68=x14-x,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.9.D解析:D【解析】【分析】根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵两个相似三角形的相似比是1:2,∴这两个三角形们的面积比为1:4,故选:D.【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解决此题的关键.10.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.11.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.12.C解析:C【解析】【分析】根据二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,可知二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点两种情况,然后分别计算出c的值即可解答本题.【详解】解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c的值是1或0,故选:C.【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.二、填空题13.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.14.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=-3,x1x2=-5,则 x1+x2-x1x2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x2=-3,x1x2=-5是解题的关键.15.【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【解析:2 3【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是360120360=23,故答案为2 3 .【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.16.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm,设圆锥的母线长为,则:,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 17.5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB ==10,∵∠ACB=90°,∴AB 是⊙O 的直径,∴这个三角形的外接圆直径是10;∴这解析:5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB =10,∵∠ACB =90°,∴AB 是⊙O 的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为5,故答案为5.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.18.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为30 00(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.19.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求25【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=221310+=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=2,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=104,在Rt△ECF中,sin∠AEC=2252510CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.20.x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2解析:x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2)=(x﹣1)2﹣1﹣2k﹣k2,∵点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,∴y1=(x1﹣1)2﹣1﹣2k﹣k2,y2=﹣2k﹣k2,∵y1>y2,∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,∴(x1﹣1)2>1,∴x1>2或x1<0.故答案为:x1>2或x1<0.【点睛】此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据函数值的取值范围求自变量的取值范围是解决此题的关键.21.【解析】【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行解析:163【解析】【分析】作OH⊥AB,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:==∴AB=∴四边形ABCD的面积=AB×GH=故答案为:.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD是矩形.22.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c解析:240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000cm=240m.故答案为240m.【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.23.1250cm2【解析】 【分析】 设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是cm ,cm ,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm 和(200﹣解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.24.或【解析】【分析】过A 作AD 垂直于x 轴,设A 点坐标为(m ,n ),则根据A 在y=x 上得m=n ,由AC 长的最大值为,可知AC 过圆心B 交⊙B 于C ,进而可知AB=5,在Rt△ADB 中,AD=m ,BD=解析:9y x =或16y x = 【解析】【分析】过A 作AD 垂直于x 轴,设A 点坐标为(m ,n ),则根据A 在y=x 上得m=n ,由AC 长的最大值为7,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.【详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为7,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数y=kx(k>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:9yx=或16yx=,故答案为9yx=或16yx=【点睛】本题考查一次函数与反比例函数的性质,理解题意找出AC的最长值是通过圆心的直线是解题关键.三、解答题25.该段运河的河宽为303m.【解析】【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH 与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【详解】解:过D作DE AB⊥,可得四边形CHED为矩形,40HE CD m ∴==,设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,33BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,3AH xm ∴=,由160AH HE EB AB m ++==,得到3340160x x ++=, 解得:303x =,即303CH m =, 则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.26.(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4)90007. 【解析】【分析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b 求k,b 确定表达式,求当x=6时的y 值即可;(2)求销售额w 与x 之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m 值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得, 2650045500k b k b , 解得,5007500k b ,∴y= -500x+7500,当x=6时,y= -500×6+7500=4500元;(2)设销售额为z 元,z=yp=( -500x+7500 )(x+1)= -500x 2+7000x+7500= -500(x-7)2+32000,∵z 与x 成二次函数,a= -500<0,开口向下,∴当x=7时,z 有最大值,当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台. (3)z 与x 的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x 1=10,x 2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W= -500x 2+7000x+7500-m(x+1)= -500x 2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m) ×6+7500-m=22500,解得,m=90007, 此时7月份的总利润为-500×72+(7000-90007) ×7+7500-90007≈17714<22500, 此时8月份的总利润为-500×82+(7000-90007) ×8+7500-90007≈19929<22500, ∴当m=90007时,6月份利润最大,且最大值为22500万元. 第二种情况:当x=7时,-500×72+(7000-m) ×7+7500-m=22500,解得,m=1187.5 ,此时6月份的总利润为-500×62+(7000-1187.5) ×6+7500-1187.5=23187.5>22500,∴当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-500×82+(7000-m) ×8+7500-m=22500,解得,m=1000 ,此时7月份的总利润为-500×72+(7000-1000) ×7+7500-1000=24000>22500,∴当m=1000不符合题意,此种情况不存在.∴当68x ≤≤时销售利润最大值为22500万元时,此时m=90007. 【点睛】本题考查二次函数的实际应用,最大利润问题,利用二次函数的最值性质是解决实际问题的重要途径.27.(1)见解析;(2)a =12,x 1=﹣32【解析】【分析】(1)根据根的判别式即可求解;(2)将x=1代入方程x 2+ax+a ﹣2=0,求出a ,再利用根与系数的关系求出方程的另一根.【详解】解:(1)∵△=a 2﹣4(a ﹣2)=a 2﹣4a+8=a 2﹣4a+4+4=(a ﹣2)2+4≥0,∴不论a 取何实数,该方程都有两个不相等的实数根.(2)将x=1代入方程x 2+ax+a ﹣2=0得1+a+a ﹣2=0,解得a=12; ∴方程为x 2+12x ﹣32=0, 即2x 2+x ﹣3=0, 设另一根为x 1,则1×x 1=c a =﹣32, ∴另一根x 1=﹣32. 【点睛】此题主要考查一元二次方程根的求解,解题的关键是熟知根的判别式与根与系数的关系.28.每件商品售价60元或50元时,该商店销售利润达到1200元.【解析】【分析】根据题意得出,(售价-成本)⨯(原来的销量+2⨯降低的价格)=1200,据此列方程求解即可.【详解】解:设每件商品应降价x 元时,该商店销售利润为1200元.根据题意,得()()70302021200x x --+=整理得:2302000x x -+=,解这个方程得:110x =,220x =.所以,7060x -=或50答:每件商品售价60元或50元时,该商店销售利润达到1200元.【点睛】本题考查的知识点是生活中常见的商品打折销售问题,弄清题目中的关键概念,找出题目中隐含的等量关系式是解决问题的关键.29.路灯杆AB 的高度是6m .【解析】【分析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD ∥EF ∥AB , ∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,∴,CD DF FE FG AB BF AB BG==, 又∵CD =EF , ∴DF FG BF BG=, ∵DF =3m ,FG =4m ,BF =BD +DF =BD +3,BG =BD +DF +FG =BD +7,∴3437DB BD =++, ∴BD =9,BF =9+3=12,∴1.5312AB =, 解得AB =6. 答:路灯杆AB 的高度是6m .【点睛】考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.30.(1)2;(2)13x =,21x =【解析】【分析】(1)按照开立方,零指数幂,正整数指数幂的法则计算即可;(2)用因式分解法解一元二次方程即可.【详解】(1)解:原式=2112-+=(2)解:(3)(1)0x x --=30x -=或10x -=123,1x x ∴==【点睛】本题主要考查实数的混合运算和解一元二次方程,掌握实数混合运算的法则和因式分解法是解题的关键.31.1m =,此时方程的根为121x x ==【解析】【分析】直接利用根的判别式≥0得出m的取值范围进而解方程得出答案.【详解】解:∵关于x的方程x2-2x+2m-1=0有实数根,∴b2-4ac=4-4(2m-1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴此时二次方程为:x2-2x+1=0,则(x-1)2=0,解得:x1=x2=1.【点睛】此题主要考查了根的判别式,正确得出m的值是解题关键.32.(1)见解析;(2)323 y x=-+【解析】【分析】,(1)连接OB,根据题意可证明△OAB∽△CAO,继而可推出OB⊥AB,根据切线定理即可求证结论;(2)根据勾股定理可求得OA=2及A点坐标,根据相似三角形的性质可得OB AB CO AO=,进而可求CO的长及C点坐标,利用待定系数法,设直线AB对应的函数表达式为y=kx+b,再把点A、C的坐标代入求得k、b的值即可.【详解】(1)证明:连接OB.∵OA2=AB•AC∴OA AB AC OA=,又∵∠OAB=∠CAO,∴△OAB∽△CAO,∴∠ABO=∠AOC,又∵∠AOC=90°,∴∠ABO =90°,∴AB ⊥OB ;∴直线AB 是⊙O 的切线;(2)解:∵∠ABO =90°,AB =OB =1,∴2OA ===, ∴点A 坐标为(2,0),∵△OAB ∽△CAO ,∴OB AB CO AO =,即1CO =,∴3CO =,∴点C 坐标为0,3⎛⎝⎭; 设直线AB 对应的函数表达式为y =kx +b ,则02k b b =+⎧=,∴k b ⎧=⎪⎪⎨⎪=⎪⎩∴33y x =-+.即直线AB对应的函数表达式为33y x =-+. 【点睛】本题考查相似三角形的判定及性质、圆的切线定理、勾股定理、一次函数解析式等知识,解题的关键是正确理解题意,求出线段的长及各点的坐标.。
内蒙古初三初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.若, 则的值为()A.B.8C.9D.2.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A.B.C.D.3.如果关于的一元二次方程有两个不相等的实数根,那么的取值范围是()A.B.且C.D.且4.已知一个直角三角形的两条直角边的长恰好是方程的两个根,则这个直角三角形的斜边长是()A.B.3C.6D.95.如图所示,将正方形图案绕中心旋转后,得到的图案是()6.将二次函数化为的形式,结果为( )A.B.C.D.7.从分别写有数字、、、、、1、、、的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是()A.B.C.D.8.将抛物线向左平移1个单位,再向下平移3个单位,得到的抛物线是( )A.B.C.D.9.如图所示,为的内接三角形,则的内接正方形的面积为()A.2B.4C.8D.1610.如图,等腰Rt()的直角边与正方形的边长均为2,且与在同一直线上,开始时点与点重合,让沿这条直线向右平移,直到点与点重合为止.设的长为,与正方形重合部分(图中阴影部分)的面积为,则与之间的函数关系的图象大致是()二、填空题1.计算:________.2.三角形的每条边的长都是方程的根,则三角形的周长是_______________.3.如图所示,内接于,,,则______.4.已知抛物线的对称轴为,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为 .5.已知扇形的半径为,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为 .6.如图所示,一个圆形转盘被等分成五个扇形区域,上面分别标有数字,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为(偶数),指针指向标有奇数所在区域的概率为(奇数),则(偶数)_______(奇数)(填“”“”或“”).7.已知两圆的半径分别为3和7,且这两圆有公共点,则这两圆的圆心距d为 .8.如图,在△ABC中,∠ACB=90º,∠B=30º,AC=1,AC在直线l上.将△ABC在直线l上顺时针滚动一周,滚动过程中,三个顶点B ,C ,A 依次落在P 1,P 2,P 3处,此时AP 3= ;按此规律继续旋转,直到得点P 2012,则AP 2012= .三、解答题1.计算与化简: (1)(2)(a >0)2.解方程: (1) (2)3.如图,有两个可以自由转动的均匀转盘A 、B ,转盘A 被分为3等份,分别标有1、2、3三个数字;转盘B 被分为4等份,分别标有3、4、5、6四个数字;有人为甲、乙两人设计了一个游戏规则:自由转动转盘A 和B ,转盘停止后,指针各指向一个数字(若指针恰好停在分界线上时,当作指向右边的数字),将指针所指的两个数字相加,如果和为6,那么甲获胜,否则乙获胜。
2019年秋期末质量监测九年级数学试题考试时间:120分钟 试卷总分:120分一、单项选择题(本大题共10小题,每小题3分,共30分) 1. 下列函数属于二次函数的是( )A. 132+-=x y B. 2x y =C. xy 2= D. 52+=x y 2. 下列一元二次方程中,没有实数根的是( )A. 022=-x xB. 0142=-+x xC. 03422=+-x xD. 2532-=x x 3. 下列四个图形中,既是中心对称图形,又是轴对称图形的是( )A . B. C. D.4. 我市组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( )A. 31B.41 C.51 D.61 5. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,且BC 平分∠ABD ,AD 分别与BC ,OC 相交于点E ,F ,则下列结论不一定成立的是( ) A. OC ∥BDB. AD ⊥OCC. △CEF ≌ △BEDD. AF=FD6. 函数a ax y +-=与xay =(0≠a )在同一坐标系中的图象可能是( )A. B. C. D.7. 某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( ) A. 4B. 5C. 6D. 78. 如图,点A ,B ,C ,D 在⊙O 上,AB=AC ,∠A=40°,CD ∥AB ,若⊙O 的半径为2,则图中阴影部分的面积是 ( )A.2332-π B.332-πC.2334-π D.334-π9. 如图,是二次函数c bx ax y ++=2图象的一部分,下列结论:①0>abc ;②0>+-c b a ;③012=+++c bx ax 有两个相等的实数根;④a b a 24-<<-. 其中正确的结论有( )A. 1个B. 2 个C. 3 个D. 4个10. 如图,△OA 1B 1,△A 1A 2B 2,△A 2A 3B 3,…是分别以B 1,B 2,B 3,…为直角顶点,斜边在x 轴正半轴上的等腰直角三角形,其直角顶点B 1(1x ,1y ),B 2(2x ,2y ),B 3(3x ,3y ),…均在反比例函数xy 4=(0>x )的图象上,则1021y y y +++ 的值为( ) A. 102 B. 6 C. 24 D. 72(第5题) (第8题) (第9题) (第10题)二、填空题(本大题共6小题,每小题3分,共18分)11. 不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是 .12. 某运动员对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为35321212++-=x x y ,由此可知该运动员此次实心球训练的成绩为 米 .13. 一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积...是 . 14. 如图,在△ABC 中,∠BAC=75°,以点A 为旋转中心,将△ABC 绕点A 逆时针旋转,得△AB'C',连接BB',若BB'∥AC',则∠BAC ′ 的度数是 .15. 如图,直线333-=x y 交x 轴于点A ,交y 轴于点B ,点P 是x 轴上一动点,以点P 为圆心,以1个单位长度为半径作⊙P ,当⊙P 与直线AB 相切时,点P 的横坐标是 . 16. 如图,直线1+=x y 与抛物线542+-=x x y 交于A ,B 两点,点P 是y 轴上的一个动点,当△PAB的周长最小时,△PAB 的面积是 .三、解答题(本大题共8小题,共72分)(第14题) (第15题)17. (本题满分8分)解下列方程:(1) 422=-x x ; (2))3(332-=-x x x )(. 18. (本题满分9分)2019年4月23日是第二十四个“世界读书日”.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1) 求本次比赛获奖的总人数,并补全条形统计图;(2) 求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3) 学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.19. (本题满分8分)如图,菱形ABCD 的顶点A ,D 在直线l 上,∠BAD=60°,以点A 为旋转中心将菱形ABCD 顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC 于点M ,C′D′交直线l 于点N ,连接MN ,当MN ∥B′D′ 时,解答下列问题: (1) 求证:△AB′M ≌△AD′N ; (2) 求α的大小.20. (本题满分8分)已知关于x 的一元二次方程02)12(22=+++-k k x k x 有两个实数根1x ,2x .(1) 求实数k 的取值范围;(第19题)(第18题)(2) 是否存在实数k 使得222121x x x x --≥0成立?若存在,请求出k 的值;若不存在,请说明理由.21. (本题满分9分)如图,一次函数b kx y +=的图象分别交x 轴、y 轴于C ,D 两点,交反比例函数x n y =的图象于A (23,4), B (3,m )两点.(1) 求直线AB 的表达式;(2) 点E 是线段OD 上一点,若415=AEB S △,求点E 的坐标; (3) 请你根据图象直接写出不等式b kx +≤ 的解集.(第21题)x n22.(本题满分8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E,连接OC.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=3,DE=3,求⊙O的半径及AC的长.(第22题)23.(本题满分10分)寒冬来临,豆丝飘香,豆丝是鄂州民间传统美食.某企业接到一批豆丝生产任务,约定这批豆丝的出厂价为每千克4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,新工人李明第1天生产100千克豆丝,由于不断熟练,以后每天都比前一天多生产20千克豆丝.设李明第x天(1≤x≤20,且x为正整数)生产y千克豆丝,解答下列问题:(1)求y与x的关系式,并求出李明第几天生产豆丝280千克?(2)如图,设第x天生产的每千克豆丝的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为W元,求W与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)(第23题)24.(本题满分12分)如图,抛物线)3xy交x轴于A,C两点,交y轴于点B,且OB=2CO.=xa+)(1(-(1)求二次函数解析式;(2)在二次函数图象位于x轴上方部分有两个动点M,N,且点N在点M的左侧,过M,N作x轴的垂线交x轴于点G,H,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.(第24题)2019年秋季期末质量监测 九年级数学参考答案一、选择题1--5: A C D A C6--10: D C B C A二、填空题11. 3112. 10 13. 48π 14. 105° 15. 233233+-或 16.512 三、解答题17.(1)51,5121-=+=x x ……4分(2)32,321==x x ……8分 18.(1)本次比赛获奖的总人数为4÷10%=40(人)……2分二等奖人数为40-(4+24)=12(人) (画图略) (3)分(2)︒=︒⨯÷1083604012……5分(3)树状图如图所示,……7分∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是9分(未画树形图或列表,得数正确可得2分)19.(1)∵四边形AB′C′D′是菱形,∴AB′=B′C′=C′D′=AD′,∵∠B′AD′=∠B′C′D′=60°,∴△AB′D′,△B′C′D′是等边三角形,∵MN∥B′C′,∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,∴△C′MN是等边三角形,∴C′M=C′N,∴MB′=ND′,……2分∵∠AB′M=∠A D′N=120°,AB′=AD′,∴△AB′M≌△AD′N(SAS),……4分(2)由△AB′M≌△AD′N得:∠B′AM=∠D′AN,……5分∴∠D′AN=∠B′AM=15°,∴α=15°……8分20.(1)∵原方程有两个实数根,∴[-(2k+1)]2-4(k2+2k)≥0,……2分∴4k2+4k+1-4k2-8k≥0∴1-4k≥0,4分(2)假设存在实数k 使得x 1•x 2−x 12−x 22≥0成立.∵x 1,x 2是原方程的两根,∴x 1+x 2=2k +1,x 1•x 2=k 2+2k . 由x 1•x 2−x 12−x 22≥0,得3x 1•x 2−(x 1+x 2)2≥0.∴3(k 2+2k )-(2k+1)2≥0,整理得:-(k-1)2≥0, ……6分∴只有当k=1时,上式才能成立. ∴不存在实数k 使得x 1•x 2−x 12−x 22≥0成立. ……8分21.(1)把点A(23,4)代入x n y =∴反比例函数的解析式为xy 6=……2分 将点B (3,m )代入xy 6=得m=2 ∴B (3,2) 设直线AB 的表达式为y=kx+b ,则有4分(2)设E 点的坐标为),0(b 令0=x ,则6=y∴ D 点的坐标为)6,0( DE =6-b ∵AEB DEA DEB S S S △△△=-5分解得:1=b ∴E 点的坐标为)1,0(……7分(3)3230≥≤x x 或(写对1个给1分)……9分22.(1)证明:∵CB=CD ,CO=CO ,OB=OD , ∴△OCB ≌△OCD (SSS ), ∴∠ODC=∠OBC=90°, ∴OD ⊥DC , ∴DC 是⊙O 的切线;……4分(2)解: 设⊙O 的半径为r .在Rt △OBE 中,∵OE 2=EB 2+OB 2,)2, ∴r=1……6分∴OE=3-1=2Rt △ABC 中,OE OB 21=∴︒=∠30E∴︒=︒-︒=∠603090ECDRt △BCO 中,2122=⨯==OB OC ,3122222=-=-=OB OC BCRt △ABC 中,7)3(22222=+=+=BC AB AC……8分23.(1) 8020)1(20100+=-⨯+=x x y……2分令280=y ,则2808020=+x ,解得10=x 答:第10天生产豆丝280千克.……4分(2) 由图象得,当0≤x <10时,p=2;当10≤x≤20时,设P=kx+b ,把点(10,2),(20,3)代入得,⎩⎨⎧=+=+320210b k b k 解得⎩⎨⎧==11.0b k∴p=0.1x+1,①1≤x≤10时,w=(4-2)×(20x+80)=40x+160, ∵x 是整数, ∴当x=10时,w最大=560(元);……6分②10<x≤20时,w=(4-0.1x-1)×(20x+80)=-2x 2+52x+240,……8分=-2(x-13)2+578,∵a=-2<0, ∴当x=-=13时,w最大=578(元) ……9分综上,当x=13时,w 有最大值,最大值为578. ……10分24.(1)对于抛物线y=a (x+1)(x-3),令y=0,得到a (x+1)(x-3)=0, 解得x=-1或3,∴C (-1,0),A (3,0), ∴OC=1, ∵OB=2OC=2, ∴B (0,2),……2分∴二次函数解析式为)3)(1(32-+-=x x y234322++-=x x……4分(2)设点M 的坐标为(m ,234322++-m m ),则点N 的坐标为(2-m ,234322++-m m ), MN=m -2+m =2m -2 , GM=234322++-m m矩形MNHG 的周长 C=2MN+2GM=2(2m -2)+2(234322++-m m )6分8分(每个1分,共4分)……12分。
2018-2019学年度第一学期期末教学质量监测九年级数学试卷一、选择题(每小题3分,共30分)1.如图的几何体是由六个同样大小的正方体搭成的,2.其左视图是( )A .B .C .D .2.关于x 的一元二次方程0102=-+bx x 的一个根为2,则b 的值为( )A.1B.2C.3D.73.点(4,﹣3)是反比例函数x k y =的图象上的一点,则k=( ) A .-12 B .12 C . D .14.下列关于x 的一元二次方程有实数根的是( )A . x 2+2=0B .2x 2+x+1=0C .x 2﹣x+3=0D . x 2﹣2x ﹣1=05.一个口袋中有2个红球,3个白球,这些球除色外都相同,从口袋中随机摸出一个球,这个球是白球的概率是( )A .B .C .D .6.顺次连结下列四边形的四边中点所得图形一定是菱形的是( )A . 平行四边形B .菱形C .矩形D . 梯形 7.反比例函数xk y =与一次函数k kx y +=,其中0≠k ,则他们的图象可能是( ) A . B . C . D .8.下列命题中,假命题的是( )A .分别有一个角是 110的两个等腰三角形相似B .如果两个三角形相似,则他们的面积比等于相似比C .若5x=8y ,则58=y x D .有一个角相等的两个菱形相似9.在同一时刻的太阳光下,小刚的影子比小红的影子长,那么,在晚上同一路灯下,( )A .小刚的影子比小红的长B .小刚的影子比小红的影子短C .小刚跟小红的影子一样长D .不能够确定谁的影子长10.如图,在□ABCD 中,BE 平分∠ABC ,CF 平分∠BCD ,E 、F 在AD 上,BE 与CF 相交于点G ,若AB=7,BC=10,则△EFG 与△BCG 的面积之比为( )A .4:25B .49:100C .7:10D .2:5二.填空题:(每小题4分,共24分)11.如果x:y=2:3,那么yy x + .12.由于某型病毒的影响,某地区猪肉价格连续两个月大幅下降.由原来每斤20元下调到每斤13元,设平均每个月下调的百分率为x ,则根据题意可列方程为 .13.某养殖户在池塘中放养了鲤鱼1000条,鲢鱼若干,在一次随机捕捞中,共抓到鲤鱼200条,鲢鱼500条,估计池塘中原来放养了鲢鱼 条. 14.函数422)1(--+=m m x m y 是y 关于x 的反比例函数,则m= .15.在矩形ABCD 中,AB =6,BC=8,△ABD 绕B 点顺时针旋转 90到△BEF ,连接DF ,则DF= .16. 如图,菱形ABCD 中,AB=4,∠A BC=60°,点E 、F 、G分别为线段BC ,CD ,BD 上的任意一点,则EG+FG 的最小值为 .三、解答题(一)(每小题6分,共18分)17.解方程:x 2+8x ﹣9=018.如图,在△ABC中,D、E分别在AB与AC上,且AD=5,DB=7,AE=6,EC=4,△ADE与△ACB相似吗?请说明理由.19.在一次朋友聚餐中,有A、B、C、D四种素菜可供选择,小明从中选择一种,小莉也从中选择一种(与小明选择的不相同),请利用列表或树状图的方法求出A与B两种素菜被选中的概率.四、解答题(二)(每小题7分,共21分)20.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.21.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点C 作CE∥BD,过点D 作DE∥AC,CE 与DE 相交于点E .(1)求证:四边形CODE 是矩形.(2)若AB=5,AC=6,求四边形CODE 的周长.22.某服装店销售一种服装,每件进货价为40元,当以每件80元销售的时候,每天可以售出50件,为了增加利润,减少库存,服装店准备适当降价。
九年级上册包头数学期末试卷(提升篇)(Word 版 含解析)一、选择题1.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135°2.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 3.在Rt △ABC 中,AB =6,BC =8,则这个三角形的内切圆的半径是( )A .5B .2C .5或2D .2或7-14.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=5.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ; ③sin ∠ABS =3; ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④6.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A .1B .2C .3D .47.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .73B .234+C .1433D .22338.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )A .13B .14C .15D .169.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个10.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B 3C .32D 211.抛物线y =(x ﹣2)2+3的顶点坐标是( ) A .(2,3) B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)12.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为( )A .2.5B .2.8C .3D .3.2二、填空题13.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.14.已知小明身高1.8m ,在某一时刻测得他站立在阳光下的影长为0.6m .若当他把手臂竖直举起时,测得影长为0.78m ,则小明举起的手臂超出头顶______m .15.抛物线y=ax 2-4ax+4(a≠0)与y 轴交于点A .过点B(0,3)作y 轴的垂线l ,若抛物线y=ax 2-4ax+4(a≠0)与直线l 有两个交点,设其中靠近y 轴的交点的横坐标为m ,且│m│<1,则a 的取值范围是______.16.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).17.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.18.如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y =﹣x 2+4x +2的一部分,曲线BC 是双曲线ky x=的一部分,由点C 开始不断重复“A ﹣B ﹣C ”的过程,形成一组波浪线,点P (2018,m )与Q (2025,n )均在该波浪线上,则mn =_____.19.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在O 中,如图,点A 、B 在圆上,边BC 经过圆心O ,劣弧AB 的度数等于_______︒20.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.21.若点 M (-1, y 1 ),N (1, y 2 ),P (72, y 3 )都在抛物线 y =-mx 2 +4mx+m 2 +1(m >0)上,则y 1、y 2、y 3 大小关系为_____(用“>”连接).22.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.23.如图,AB 是⊙O 的直径,弦BC=2cm ,F 是弦BC 的中点,∠ABC=60°.若动点E 以2cm/s 的速度从A 点出发沿着A ⇒B ⇒A 方向运动,设运动时间为t (s )(0≤t <3),连接EF ,当t 为_____s 时,△BEF 是直角三角形.24.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.三、解答题25.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点F 是AD 上一点,连接AF 交CD 的延长线于点E .(1)求证:△AFC∽△ACE;(2)若AC=5,DC=6,当点F为AD的中点时,求AF的值.26.如图,在ABC∆中,AB AC=.以AB为直径的O与BC交于点E,与AC交于点D,点F在边AC的延长线上,且12CBF BAC∠=∠.(1)试说明FB是O的切线;(2)过点C作CG AF⊥,垂足为C.若4CF=,3BG=,求O的半径;(3)连接DE,设CDE∆的面积为1S,ABC∆的面积为2S,若1215SS=,10AB=,求BC的长.27.如图,四边形OABC为矩形,OA=4,OC=5,正比例函数y=2x的图像交AB于点D,连接DC,动点Q从D点出发沿DC向终点C运动,动点P从C点出发沿CO向终点O运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了t s.(1)求点D的坐标;(2)若PQ∥OD,求此时t的值?(3)是否存在时刻某个t,使S△DOP=52S△PCQ?若存在,请求出t的值,若不存在,请说明理由;(4)当t为何值时,△DPQ是以DQ为腰的等腰三角形?28.抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上.(1)求b、c的值;(2)画出抛物线的简图并写出它与y 轴的交点C 的坐标;(3)根据图象直接写出:点C 关于直线x =2对称点D 的坐标 ;若E(m ,n)为抛物线上一点,则点E 关于直线x =2对称点的坐标为 (用含m 、n 的式子表示).29.某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:数量/条 平均每条鱼的质量/kg 第1次捕捞 20 1.6 第2次捕捞 15 2.0 第3次捕捞151.8(1)求样本中平均每条鱼的质量; (2)估计鱼塘中该种鱼的总质量;(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y (元)与出售该种鱼的质量x (kg )之间的函数关系,并估计自变量x 的取值范围.30.在矩形ABCD 中,3AB =,5AD =,E 是射线DC 上的点,连接AE ,将ADE ∆沿直线AE 翻折得AFE ∆.(1)如图①,点F 恰好在BC 上,求证:ABF ∆∽FCE ∆;(2)如图②,点F 在矩形ABCD 内,连接CF ,若1DE =,求EFC ∆的面积; (3)若以点E 、F 、C 为顶点的三角形是直角三角形,则DE 的长为 .31.已知,如图,在平面直角坐标系中,直线122y x =-- 与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =++经过A 、B 两点,与x 轴的另一个交点为C . (1)直接写出点A 和点B 的坐标; (2)求抛物线的函数解析式; (3)D 为直线AB 下方抛物线上一动点;①连接DO 交AB 于点E ,若DE :OE=3:4,求点D 的坐标;②是否存在点D ,使得∠DBA 的度数恰好是∠BAC 度数2倍,如果存在,求点D 的坐标,如果不存在,说明理由.32.若关于x 的方程()2260x b x b +++-=有两个相等的实数根(1)求b 的值;(2)当b 取正数时,求此时方程的根,【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题意画出图形,连接OA 和OB ,根据勾股定理的逆定理得出∠AOB =90°,再根据圆周角定理和圆内接四边形的性质求出即可. 【详解】 解:如图所示,连接OA ,OB , 则OA =OB =3, ∵AB =2, ∴OA 2+OB 2=AB 2, ∴∠AOB =90°,∴劣弧AB 的度数是90°,优弧AB 的度数是360°﹣90°=270°, ∴弦AB 对的圆周角的度数是45°或135°, 故选:D . 【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数.2.B解析:B 【解析】 【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题; 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6, ∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFCABCDSS =四边形,∴1176824 AGHEFCABCDS SS+=+=四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.3.D解析:D【解析】【分析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC, OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt △ABC中,AB=6,BC=8,由勾股定理得,2210AC AB BC=+= ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB BC AB OF BC OE AC OD ,∴11116868102222r r r ,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC, OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2227AC BC AB ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB AC AB OF BC OD AC OE ,∴111162768272222r r r , ∴r=71- .故选:D. 【点睛】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.4.D解析:D 【解析】 【分析】根据题意分别用含x 式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案. 【详解】解:设增长率为x ,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2, 根据题意可列方程为233(1)3(1)10x x ++++=. 故选:D . 【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.5.C解析:C 【解析】 【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题. 【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确. 设AB CD acm ==,BC AD bcm ==,由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩ 解得46a b =⎧⎨=⎩, 所以4AB CD cm ==,6BC AD cm ==,故②正确,2.5BS k =, 1.5SD k =, ∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=,解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =,3sin 5AS ABS BS ∴∠==故③错误, 5BS =,5 2.5k ∴=,2/k cm s ∴=,故④正确,故选:C .【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.6.B解析:B【解析】【分析】将x=2代入方程即可求得k 的值,从而得到正确选项.【详解】解:∵一元二次方程x 2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B .【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.7.C解析:C【解析】【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题.【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,∴易证AE ⊥BC ,∵A 、C 关于BD 对称,∴PA =PC ,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b ,∴a +b ==; 故选C .【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.A解析:A【解析】【分析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有6个球,红球有2个,所以,取出红球的概率为2163 P==,故选A.【点睛】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键.9.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.10.D解析:D【解析】【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD AB,再证明△CBD为等边三角形得到BC=BD AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=2AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=2×1=2.故选D.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.11.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.12.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DBDB AD=,从而求出DE的长,最后利用AE AD DE=-即可得出答案.【详解】连接BD,CD∵AB为O的直径90ADB∴∠=︒BD∴==∵弦AD平分BAC∠CD BD∴==CBD DAB∴∠=∠ADB BDE∠=∠ABD BED∴DE DBDB AD∴=5=解得115DE=115 2.85AE AD DE∴=-=-=故选:B.【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题13.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大. 14.54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,,解得x=0.54即举起的手臂超出头顶0.54m解析:54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,1.8 1.80.60.78x , 解得x=0.54即举起的手臂超出头顶0.54m.故答案为:0.54.【点睛】本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,15.a>或a<.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a 的关系,即开口向上时,a>0,且a 越大开口越小,开口向下时,a<0,且a 越大,开口越大,从而确定a 的范围.【详解】解:如解析:a>13或a<15. 【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围.【详解】解:如图,观察图形抛物线y=ax2-4ax+4的对称轴为直线422axa-=-= ,设抛物线与直线l交点(靠近y轴)为(m,3),∵│m│<1,∴-1<m<1.当a>0时,若抛物线经过点(1,3)时,开口最大,此时a值最小,将点(1,3)代入y=ax2-4ax+4,得,3=a-4a+4解得a=1 3 ,∴a>1 3 ;当a<0时,若抛物线经过点(-1,3)时,开口最大,此时a值最大,将点(-1,3)代入y=ax2-4ax+4,得,3=a+4a+4解得a=1 5 - ,∴a<1 5 -.a的取值范围是a>13或a<15-.故答案为:a>13或a<15. 【点睛】 本题考查抛物线的性质,首先明确a 值与开口的大小关系,观察图形,即数形结合的思想是解答此题的关键.16.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab <0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】 解:∵对称轴是x=-2b a=1, ∴ab <0,①正确;∵二次函数y=ax2+bx+c的图象与x轴的交点坐标为(-1,0)、(3,0),∴方程x2+bx+c=0的根为x1=-1,x2=3,②正确;∵当x=1时,y<0,∴a+b+c<0,③错误;由图象可知,当x>1时,y随x值的增大而增大,④正确;当y>0时,x<-1或x>3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.17.50(1﹣x)2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x)2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.18.24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),解析:24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),∴m=6;点B(2,6)在kyx的图象上,∴k=6;即12y x=, 2025÷6=337…3,故点Q 离x 轴的距离与当x =3时,函数12y x =的函数值相等, 又 x =3时,1243y ==, ∴点Q 的坐标为(2025,4),即n =4,∴mn =6424.⨯=故答案为24.【点睛】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P 、Q 在A ﹣B ﹣C 段上的对应点是解题的关键.19.120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【详解】如图,连接OA ,∵OA,OB 为半径,∴,∴,∴劣弧的度数等于,故答案为:1解析:120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得AOB ∠,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴30OAB ABO ∠=∠=︒,∴180120AOB OAB ABO ∠=︒-∠-∠=︒,∴劣弧AB 的度数等于120︒,故答案为:120.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握.20.【解析】【分析】利用勾股定理求出AC ,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD 是△A BC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°, 610【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°, ∴22223110AC AD CD =+=+∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC =, ∴310AB =∴6105AB=,故答案为:6105.【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.21.y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=mx2 +4mx+m2 +1(m>0),对称轴为x=,观察二次函数的图象可知:y1<y3<y2.故答案为:y解析:y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=-mx2 +4mx+m2 +1(m>0),对称轴为x=422mm-=-,观察二次函数的图象可知:y1<y3<y2.故答案为:y1<y3<y2.【点睛】本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.22.7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 23.1或1.75或2.25s【解析】试题分析:∵AB 是⊙O 的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm .则当0≤t <3时,即点E 从A 到B 再到解析:1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=34,此时点E走过的路程是214或274,则运动时间是74s或94s.故答案是t=1或74或94.考点:圆周角定理.24.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.三、解答题25.(1)见解析;(2)4【解析】【分析】(1)根据条件得出AD=AC,推出∠AFC=∠ACD,结合公共角得出三角形相似;(2)根据已知条件证明△ACF≌△DEF,得出AC=DE,利用勾股定理计算出AE的长度,再根据(1)中△AFC∽△ACE,得出AFAC=ACAE,从而计算出AF的长度.【详解】(1)∵CD⊥AB,AB是⊙O的直径∴AD=AC∴∠AFC=∠ACD.∵在△ACF和△AEC中,∠AFC=∠ACD,∠CAF=∠EAC∴△AFC ∽△ACE(2)∵四边形ACDF内接于⊙O∴∠AFD+∠ACD=180°∵∠AFD+∠DFE=180°∴∠DFE=∠ACD∵∠AFC=∠ACD∴∠AFC=∠DFE.∵△AFC∽△ACE∴∠ACF=∠DEF.∵F为AC的中点∴AF=DF.∵在△ACF和△DEF中,∠ACF=∠DEF,∠AFC=∠DFE,AF=DF ∴△ACF≌△DEF.∴AC=DE=5.∵CD⊥AB,AB是⊙O的直径∴CH=DH=3.∴EH=8在Rt△AHC中,AH2=AC2-CH2=16,在Rt△AHE中,AE2=AH2+EH2=80,∴AE=∵△AFC∽△ACE∴AFAC=ACAE,即5AF,∴AF 【点睛】本题属于圆与相似三角形的综合,涉及了圆内接四边形的性质,勾股定理,等弧所对的圆周角相等,相似三角形的判定定理等,解题的关键是灵活运用所学知识,正确寻找全等三角形. 26.(1)详见解析;(2)3;(3)45BC =.【解析】【分析】(1)根据切线的判断方法证明AB BF ⊥即可求解;(2)根据tan CG AB F CF BF==即可求出AB 即可求解; (3)连接BD .求出E 为BC 中点,得到BDE CDE S S ∆∆=,根据1215S S =,设1S a =,25S a =,得到2BCD S a ∆=,3ABD S a ∆=,求出23CD AD =得到6AD =,4CD =,再根据勾股定理即可求解.【详解】(1)证明:连接AE . ∵AB 为直径,∴90AEB =︒∠.又∵AB AC =,∴12BAE BAC ∠=∠, ∵12CBF BAC ∠=∠,∴CBF BAE ∠=∠. ∵90BAE ABE ∠+∠=︒,∴90FBC ABE ∠+∠=︒,即AB BF ⊥.又∵AB 是直径,∴FB 与O 相切.(2)解:∵AB AC =,∴A ABC CB =∠∠,又∵AB BF ⊥,CG AC ⊥,∴ABC GBC ACB BCG ∠+∠=∠+∠,∴GBC BCG ∠=∠,∴3BG CG ==.∵3CG =,4CF =,∴5FG =,∴8FB =.∵tan CG AB F CF BF==, ∴6AB =,∴O 的半径是3.(3)解:连接BD .∵AB 为直径,∴90ADB ∠=︒.∵AB AC =,AE BC ⊥,∴E 为BC 中点,∴BDE CDE S S ∆∆=.又∵1215S S =,设1S a =,25S a =,∴2BCD S a ∆=,3ABD S a ∆=, ∴23BCD ABD S S ∆∆=,∴23CD AD =. 又∵10AB AC ==,∴6AD =,4CD =.∵在Rt ABD ∆中,BD 8==,∴在Rt BCD ∆中,BC =【点睛】此题主要考查圆的切线综合,解题的关键是熟知三角函数的性质、切线的判定、勾股定理的应用.27.(1)D (2,4);(2)52t =;(3)存在,t 的值为2 ;(4)当15t =或22511t =或3256t =时,△DPQ 是一个以DQ 为腰的等腰三角形 【解析】【分析】(1)由题意得出点D 的纵坐标为4,求出y=2x 中y=4时x 的值即可得;(2)由PQ ∥OD 证△CPQ ∽△COD ,得CQ CP CD CO=,即555t t -=,解之可得; (3)分别过点Q 、D 作QE ⊥OC ,DF ⊥OC 交OC 与点E 、F ,对于直线y=2x ,令y=4求出x 的值,确定出D 坐标,进而求出BD ,BC 的长,利用勾股定理求出CD 的长,利用两对角相等的三角形相似得到三角形CQE 与三角形CDF 相似,由相似得比例表示出QE ,由底PC ,高QE 表示出三角形PQC 面积,再表示出三角形ODP 面积,依据S △DOP =52S △PCQ 列出关于t 的方程,解之可得;(4)由三角形CQE 与三角形CDF 相似,利用相似得比例表示出CE ,PE ,进而利用勾股定理表示出PQ 2,DP 2,以及DQ ,分两种情况考虑:①当DQ=DP ;②当DQ=PQ ,求出t 的值即可.【详解】解:(1)∵OA =4∴把4y =代入2y x =得2x =∴D (2,4).(2)在矩形OABC 中,OA =4,OC=5∴AB =OC =5,BC =OA =4∴BD =3,DC =5由题意知:DQ =PC =t∴OP =CQ =5-t ∵PQ ∥OD∴CQ CP CD CO = ∴555t t -= ∴52t = . (3)分别过点Q 、D 作QE ⊥OC , DF ⊥OC 交OC 与点E 、F则DF =OA =4∴DF ∥QE∴△CQE ∽△CDF∴QE CQ DF CD = ∴545QE t -= ∴455t QE -=() ∵ S △DOP =52S △PCQ ∴151********t t =t ()()--⨯⨯⨯ ∴12t =,25t =当t =5时,点P 与点O 重合,不构成三角形,应舍去∴t 的值为2.(4)∵△CQE ∽△CDF∴QE CQ DF CD = ∴4(5)5QE t =- 38(5)355PE t t t =--=- ∴222216(5)816(3)16252555t PQ t t t -=+-=-+ 2224(3)DP t =+-2DQ t =①当DQ PQ =时,221616255t t t =-+, 解之得:1225511t ,t == ②当DQ DP =时,2224(3)t t +-=解之得:256t = 答:当15t =或22511t =或3256t =时,△DPQ 是一个以DQ 为腰的等腰三角形. 【点睛】此题属于一次函数的综合问题,涉及的知识有:坐标与图形性质,相似三角形的判定与性质,勾股定理,以及等腰三角形的性质,熟练掌握相似三角形的判定与性质以及勾股定理是解本题的关键.28.(1)b =4,c =﹣4;(2)见解析,(0,﹣4);(3)(4,﹣4),(4﹣m ,n)【解析】【分析】(1)根据图象写出抛物线的顶点式,化成一般式即可求得b 、c ;(2)利用描点法画出图象即可,根据图象得到C (0,﹣4);(3)根据图象即可求得.【详解】解:(1)∵抛物线y =﹣x 2+bx+c 的对称轴为直线x =2,且顶点在x 轴上,∴顶点为(2,0),∴抛物线为y =﹣(x ﹣2)2=﹣x 2+4x ﹣4,∴b =4,c =﹣4;(2)画出抛物线的简图如图:点C 的坐标为(0,﹣4);(3)∵C (0,﹣4),∴点C 关于直线x =2对称点D 的坐标为(4,﹣4);若E (m ,n )为抛物线上一点,则点E 关于直线x =2对称点的坐标为(4﹣m ,n ), 故答案为(4,﹣4),(4﹣m ,n ).【点睛】本题主要考查了二次函数的图像及其对称性,熟练掌握二次函数的图像与性质是解题的关键.29.(1)1.78kg ;(2)8900kg ;(3)y =14x ,0≤x ≤8900.【解析】【分析】(1)根据平均数的公式求解即可;(2)根据每条鱼的平均质量×总条数=总质量即可得答案;(3)根据收入=单价×质量,列出函数表达式即可.【详解】(1)样本中平均每条鱼的质量为20 1.615 2.015 1.8 1.78201515⨯+⨯+⨯=++(kg ). (2)∵样本中平均每条鱼的质量为1.78kg ,∴估计鱼塘中该种鱼的总质量为1.78×5000=8900(kg ).(3)∵每千克的售价为14元,∴所求函数表达式为y =14x ,∵该种鱼的总质量约为8900kg ,∴估计自变量x 的取值范围为0≤x≤8900.【点睛】 本题考查一次函数的应用、用样本估计总体,明确题意,写出相应的函数关系式,利用平均数的知识求出每条鱼的质量是解题关键.30.(1)见解析;(2)EFC ∆的面积为513;(3)53、5、15、345)3【解析】【分析】(1)先说明∠CEF=∠AFB 和90B C ∠=∠=,即可证明ABF ∆∽FCE ∆;(2)过点F 作FG DC ⊥交DC 与点G ,交AB 于点H ,则90EGF AHF ∠=∠=;再结合矩形的性质,证得△FGE ∽△AHF ,得到AH=5GF ;然后运用勾股定理求得GF 的长,最后运用三角形的面积公式解答即可;(3)分点E 在线段CD 上和DC 的延长线上两种情况,然后分别再利用勾股定进行解答即可.【详解】(1)解:∵矩形ABCD 中,∴90B C D ∠=∠=∠=由折叠可得90D EFA ∠=∠=∵90EFA C ∠=∠=∴90CEF CFE CFE AFB ∠+∠=∠+∠=∴CEF AFB ∠=∠在ABF ∆和FCE ∆中∵AFB CEF ∠=∠,90B C ∠=∠=∴ABF ∆∽FCE ∆(2)解:过点F 作FG DC ⊥交DC 与点G ,交AB 于点H ,则90EGF AHF ∠=∠= ∵矩形ABCD 中,∴90D ∠=由折叠可得:90D EFA ∠=∠=,1DE EF ==,5AD AF ==∵90EGF EFA ∠=∠=∴90GEF GFE AFH GFE ∠+∠=∠+∠=∴GEF AFH ∠=∠在FGE ∆和AHF ∆中∵,90GEF AFH EGF FHA ∠=∠∠=∠=∴FGE ∆∽AHF ∆ ∴EF GF FA AH= ∴15GF AH= ∴5AH GF =在Rt AHF ∆中,90AHF ∠=∵222AH FH AF +=∴222(5)(5)5GF GF +-= ∴513GF =。
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题4分,共40分)1.下列图形是我们日常生活中经常看到的一些标志,则其中是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1B.﹣2C.﹣1D.23.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.任意一个六边形的外角和等于720°C.同时掷两枚质地均匀的骰子,两个骰子的点数相同D.367个同学参加一个集会,他们中至少有两个同学的生日是同月同日4.如图,在⊙O中,M是弦CD的中点,EM⊥CD,若CD=4cm,EM=6cm,则⊙O的半径为()A.5B.3C.D.45.抛物线y=x2﹣4x+6的顶点坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)6.已知方程x2+2018x﹣3=0的两根分别为α和β,则代数式α2+αβ+2018α的值为()A.1B.0C.2018D.﹣20187.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于()A.30°B.25°C.15°D.10°8.如图,在⊙O的内接四边形ABCD中,∠A=80°,∠OBC=60°,则∠ODC的度数为()A.40°B.50°C.60°D.30°9.已知a、b是等腰三角形的两边,且a、b满足a2+b2+29=10a+4b,则△ABC的周长为()A.14B.12C.9或12D.10或1410.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴为直线l,则下列结论:①abc>0;②a+b+c >0;③a+c>0;④a+b>0,正确的是()A.①②④B.②④C.①③D.①④二、填空题(8小题,每小题4分,共32分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是.12.抛物线y=x2的对称轴是直线.13.一元二次方程x(x﹣2)=x﹣2的根是.14.小明和他的哥哥、姐姐共3人站成一排,小明与哥哥相邻的概率是.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为cm.16.已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.17.某校规划在一个长16m,宽9m的矩形场地ABCD上修建同样宽度的三条小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是.18.已知二次函数y=ax2+bx﹣2自变量x的部分取值和对应的函数值y如下表,则在实数范围内能使得y﹣1>0成立的x的取值范围是.三、解答题:(7个小题,共78分)19.(8分)解方程(1)x2﹣2x﹣48=0.(2)2x2﹣4x=﹣1.20.(10分)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.21.(12分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(3,4)、B(1,2)、C(5,3)(1)将△ABC平移,使得点A的对应点A1的坐标为(﹣2,4),在如图的坐标系中画出平移后的△A1B1C1;(2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1并直接写出A2、B2的坐标;(3)求△A2B2C1的面积.22.(12分)传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.(1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?(2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,都是草莓馅的概率是多少?23.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于点D,E为BC 的中点,连接DE并延长交AC的延长线于点E.(1)求证:DF是⊙O的切线;(2)若CF=2,DF=4,求⊙O的半径.24.(12分)一年一度的“春节”即将到来,某超市购进一批价格为每千克3元的桔子,根据市场预测,该种桔子每千克售价4元时,每天能售出500千克,并且售价每上涨0.1元,其销售量将减少10千克,物价部门规定,该种桔子的售价不能超过进价的200%,请你利用所学知识帮助超市给这种桔子定价,使得超市每天销售这种桔子的利润为800元.25.(12分)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】根据中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合选项即可得出答案.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】此题考查了中心对称的知识,解答本题一定要熟练中心对称的定义,关键是寻找中心对称点,要注意和轴对称区分开来.2.【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【解答】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;B、任意一个六边形的外角和等于720°是不可能事件;C、任同时掷两枚质地均匀的骰子,两个骰子的点数相同是随机事件;D、367个同学参加一个集会,他们中至少有两个同学的生日是同月同日是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】如图,连接OC.设⊙O的半径为r.首先证明EN经过圆心O,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OC.设⊙O的半径为r.∵CM=DM=2cm,EM⊥CD,∵EM经过圆心O,在Rt△COM中,∵OC2=OM2+CM2,∴r2=22+(6﹣r)2,∴r=,故选:C.【点评】本题考查垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.【分析】已知抛物线的一般式,利用配方法转化为顶点式,直接写成顶点坐标.【解答】解:∵y=x2﹣4x+6=x2﹣4x+4+2=(x﹣2)2+2,∴抛物线y=x2﹣4x+6的顶点坐标为(2,2).故选:C.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k);此题还考查了配方法求顶点式.6.【分析】由根与系数的关系得到α+β=﹣2018,将其代入整理后的代数式求值.【解答】解:依题意得:αβ=﹣3,α+β=﹣2018,α2+2018α﹣3=0,所以α2+αβ+2018α=α(α+β)+2018α=﹣2018α+2018α=0.故选:B.【点评】考查了根与系数的关系,一元二次方程的解的定义,解题的巧妙之处在于将所求的代数式转化为α(α+β)+2018α的形式,然后代入求值.7.【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′=∠BAB′,根据等腰三角形的性质和三角形内角和计算出∠CAC′=40°,所以∠BAB′=40°,然后计算∠CAB′=∠CAB﹣∠BAB′即可.【解答】解:∵C′C∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A旋转到△AB'C'的位置,∴AC=AC′,∠CAC′=∠BAB′,∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴∠BAB′=40°,∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.8.【分析】在四边形OBCD中,利用四边形内角和定理即可解决问题.【解答】解:∵∠A=80°,∴∠C=180°﹣80°=100°,∠BOD=2∠A=160°,∴∠ODC=360°﹣160°﹣60°﹣100°=40°,故选:A.【点评】本题考查圆内接四边形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【分析】利用配方法分别求出a、b,根据三角形三边关系、等腰三角形的概念计算.【解答】解:a2+b2+29=10a+4b,a2﹣10a+25+b2﹣4b+4=0,(a﹣5)2+(b﹣2)2=0,a﹣5=0,b﹣2=0,解得,a=5,b=2,∵2、2、5不能组成三角形,∴这个等腰三角形的周长为:5+5+2=12,故选:B.【点评】本题考查的是配方法、非负数的性质、等腰三角形的性质以及三角形三边关系,掌握配方法、完全平方公式是解题的关键.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.【解答】解:①抛物线的对称轴位于y轴的右侧,则a、b异号,即ab<0.抛物线与y轴交于负半轴,则c<0.所以abc>0.故正确;②如图所示,当x=1时,y<0,即a+b+c<0,故错误;③由图可知,当x=﹣1时,y=0,即a﹣b+c=0,x=1时,y<0,即a+b+c<0,所以a+a+c+c<0.所以2a+2c<0.所以a+c<0.故错误;④由图可知,当x=﹣1时,y=0,即a﹣b+c=0.当x=2时,y>0,即4a+2b+c>0,所以4a+2b+b﹣a>0,所以3a+3b>0.所以a+b>0.故正确.故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.二、填空题(8小题,每小题4分,共32分)11.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【分析】直接利用y=ax2图象的性质得出其对称轴.【解答】解:抛物线y=x2的对称轴是直线y轴或(x=0).故答案为:y轴或(x=0).【点评】此题主要考查了二次函数的性质,正确掌握简单二次函数的图象是解题关键.13.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.14.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,哥哥为B,姐姐为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的哥哥相邻的概率是=,故答案为:.【点评】此题考查的是用树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【解答】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为:16.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.【分析】设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,根据矩形的面积公式结合草坪部分的总面积为112m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,依题意,得:(16﹣x)(9﹣2x)=112.整理,得:2x2﹣41x+32=0.故答案为:2x2﹣41x+32=0.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=1的自变量x 的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣1时,y=1,∴x=3时,y=1,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣1>0成立的x取值范围是x<﹣1或x>3,故答案为:x<﹣1或x>3.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.三、解答题:(7个小题,共78分)19.【分析】(1)直接利用十字相乘法分解因式解方程即可;(2)直接利用配方法将原式变形,进而解方程即可.【解答】解:(1)x2﹣2x﹣48=0(x+6)(x﹣8)=0,解得:x1=﹣6,x2=8;(2)2x2﹣4x=﹣1(x2﹣2x)=﹣(x﹣1)2=,则x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题主要考查了十字相乘法、配方法解方程,正确分解因式是解题关键.20.【分析】(1)利用点平移规律写出平移后的顶点坐标为(3,﹣2),然后利用顶点式写出抛物线y2的解析式;(2)通过解方程2(x﹣3)2﹣2=0得y2与x轴的交点坐标;(3)利用函数图象写出抛物线在x轴上方对应的自变量的范围即可.【解答】解:(1)平移后的抛物线y2的解析式为y2=2(x﹣3)2﹣2;(2)当y2=0时,2(x﹣3)2﹣2=0,解得x1=2,x2=4,所以y2与x轴的交点坐标为(2,0),(4,0);(3)当2<x<4时,y2<0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)由点A及其对应点A1的位置得出平移方向和距离,再将点B和点C分别按此方式平移得出其对应点,继而首尾顺次连接即可得;(2)由旋转的性质作出变换后的对应点,再首尾顺次连接即可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C1即为所求,其中A2的坐标为(﹣1,1)、B2的坐标为(1,﹣1);(3)△A2B2C1的面积为2×4﹣×2×2﹣×1×2﹣×1×4=3.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得出变换后的对应点.22.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)所有等可能结果中,满足吃一个汤圆,吃到黑芝麻馅的结果只有1种,∴吃到黑芝麻馅的概率为;(2)列表如下:由表知,共有30种等可能结果,2个都是草莓馅的结果有12种,所以都是草莓馅的概率是.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的半径为3.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.24.【分析】设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合售价不能超过进价的200%即可确定x的值,此题得解.【解答】解:设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,依题意,得:(x﹣3)(500﹣10×)=800,整理,得:x2﹣12x+35=0,解得:x1=5,x2=7.∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5.答:每千克桔子的定价为5元时,每天的利润为800元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【解答】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)【点评】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的横坐标.。
昆一中西山学校 2018-2019 学年度上学期期末考试九年级数学试卷(全卷三个大题,共 23 个小题,共 6 页;满分 120 分,考试用时 120 分钟) 一、填空题1. 如图,在△ABC 中,点 D,E 分别在边 AB,AC 上,若 DE∥BC,AD=2BD,则 DE :BC 等于_______.2. 已知014,221=+-x x x x 是方程 的两个实数根,则2121x x x x -+的值是______.3. 一支反比例函数20,4<<-=x xy 若,则y 的取值范围是________. 4. 若抛物线=+-++=c b a c bx ax y )则,对称轴经过(经过0,1)0,3(2_______.5. 如图AC ,BD 是⊙O 的两条直径,首位顺次连接A,B,C,D 得到四边形ABCD ,若AD=3,∠BAC=30o ,则途中阴影部分的面积是______.第5题 第6题 6. 如图,利用我们现在已经学过的圆和锐角三角函数的知识可知,半径 r 和圆心角θ及其所对的弦长l 之间的关系为r l r l 22sin 2sin 2==θθ,从而,综合上述材料当==θθsin 312sin 时,______. 二、选择题7. 如图,下列几何体的俯视图是右图所示图形的是( )8. 如图,PA 与 PB 分别与圆 O 相切与 A 、B 两点,∠P=80o ,则∠C =()A. 45︒B. 50︒C. 55︒D. 60︒9. 如图,线段 OA=2,将点 A 绕坐标原点 O 逆时针旋转105 后得到点 A ,则 A 的坐标为( ) A.),(31- B. ),(31- C. ),(13- D. ),(13-10. 小明随机地在如图正方形及其内部区域投针,则针扎到阴影区域的概率是( )A. 8πB. 6πC. 5πD. 4π 11. 一个凸多边形共有 20 条对角线,它是( )边形A.6B.7C.8D. 912. 若一次函数 y ax+b=0的图像与 x 轴交点坐标为(2,0),则抛物线y=ax2+bx+c 的对称轴为( )A.直线 x=1B.直线 x=-1C. 直线 x=2 D . 直线 x=-213. 如图,已知一次函数 y=kx-2 的图象与 x 轴、y 轴分别交于 A ,B 两点,与反比例函数)(04>=x xy 的图象交于点 C ,且 AB=AC ,则 k 的值为( )A. 1B. 2C. 3D.414. 如图,以扇形 OAB 的顶点 O 为原点,半径 OB 所在的直线为 x 轴,建立平面直角坐标系,点 B 的坐标为(2,0),若抛物线 n x y +=2(n 为常数)与扇形 OAB 的边界总有两个公共点则 n 的取值范围是( ) A.n>-4 B. 41<n C. 41n 4- << D. 41n 4- ≤≤三解答题15. (本小题 5 分)计算:16. (本小题 9 分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷。
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣12.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥43.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣15.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.16.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.610.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为cm.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣1【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q 的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)【分析】根据二次函数的顶点式方程可地直接写出其顶点坐标.【解答】解:∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2),故选:D.【点评】本题主要考查二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣1【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物找y=2x2向左平移4个单位所得直线解析式为:y=2(x+4)2;再向下平移1个单位为:y=2(x+4)2﹣1.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.1【分析】根据中心对称图形的概念判断即可.【解答】解:矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,根据圆周角定理解答.【解答】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°,故选:A.【点评】本题考查的是切线的性质,圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、任意画一个三角形,其内角和为180°是必然事件;B、经过有交通信号的路口,遇到红灯是随机事件;C、太阳从东方升起是必然事件;D、任意一个五边形的外角和等于540°是不可能事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.【分析】利用黑色区域的面积除以游戏板的面积即可.【解答】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.10.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π【分析】根据勾股定理得到AC,然后根据扇形的面积公式即可得到结论.【解答】解:∵∠AB⊥OB,AB=2,OB=4,∴OA=2,∴边AB扫过的面积=﹣=π,故选:C.【点评】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.【分析】先把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得到满足条件的m的值为﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,利用根与系数的关系得到0+t=,然后求出t即可.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.【分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣1),∴当y=0时,0=(x﹣3)(x﹣1),解得,x1=3,x2=1,∵3﹣1=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2,故答案为:2.【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为20cm.【分析】作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理计算即可.【解答】解:作OC⊥AB于C,连接OA,则AC=AB=20,在Rt△OAC中,OC==20(cm)故答案为:20.【点评】本题考查的是垂径定理和勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为4.【分析】作DE⊥x轴于点E,易证△OAB≌△EDA,求得A、B的坐标,根据全等三角形的性质可以求得D的坐标,从而利用待定系数法求得反比例函数的解析式,即可求解.【解答】解:作DE⊥x轴于点E.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAE=90°,又∵Rt△ABO中,∠BAO+∠OBA=90°,∴∠DAE=∠OBA,在△OAB和△EDA中,∵,∴△OAB≌△EDA(AAS),∴AE=OB=3,DE=OA=1,故D的坐标是(4,1),代入y=得:k=4,故答案为:4.【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得D的坐标是关键.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,=EC•AD=4.则S△AEC故答案为:4.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解本题的关键.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.【分析】由切线的性质可知∠ODE=90°,纵坐标OD∥AE即可解决问题;【解答】证明:连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点评】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【分析】如果设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x);那么根据题意即可得出方程.【解答】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x).根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,解得x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点评】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.【分析】(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点评】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.【分析】(1)连接OD,根据角平分线的定义得到∠ACD=∠BCD,根据圆周角定理,等腰三角形的定义证明;(2)作AE⊥CD于E,根据等腰直角三角形的性质求出AD,根据勾股定理求出AE、CE,DE,结合图形计算,得到答案.【解答】(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC【分析】(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∵B(﹣3,n)在反比例函数图象上,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,=×2×5=5.∴S△ABC【点评】此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.【分析】(1)连接OC,根据等腰三角形的性质得到OC⊥AB,OC平分∠ACB,求得∠AOD=∠COE,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到四边形CDOE的面积=△AOC的面积,根据三角形的面积公式即可得到结论;(3)当四边形CDFE是正方形时,其面积最大,根据正方形的面积公式即可得到结论.【解答】解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.【点评】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,连接OC构造全等三角形是解题的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)由点A,B的坐标,利用待定系数法可求出抛物线的解析式;(2)利用一次函数图象上点的坐标特征可得出点C,D的坐标,进而可得出0<m<4,由点P的横坐标为m可得出点P,E的坐标,进而可得出PE=﹣m2+m+2,再利用二次函数的性质即可解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况考虑,由平行四边形的性质(对角线互相平分)结合点P,C,D的坐标可求出点Q的坐标,此题得解.【解答】解:(1)将A(﹣1,0),B(5,0)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+4x+5.(2)∵直线y=﹣x+3与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,3),点D的坐标为(4,0),∴0<m<4.∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+4m+5),点E的坐标为(m,﹣m+3),∴PE=﹣m2+4m+5﹣(﹣m+3)=﹣m2+m+2=﹣(m﹣)2+.∵﹣1<0,0<<4,∴当m=时,PE最长.(3)由(2)可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+4﹣0,+0﹣3),即(,);②以PC为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+0﹣4,+3﹣0),即(﹣,);③以CD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(0+4﹣,3+0﹣),即(,﹣).综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为(,)、(﹣,)或(,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线的解析式;(2)利用二次函数的性质解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况,利用平行四边形的性质求出点Q的坐标.。
2018—2019学年九年级(上)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.(3分)下面左侧几何体的左视图是()A.B.C.D.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.505.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣36.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.18.(5分)x2﹣8x+12=0.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.(3分)下面左侧几何体的左视图是()A.B.C.D.【解答】解:从左面看,是一个长方形.故选C.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.【解答】解:∵=2,∴a=2b,∴==3.故选A.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.50【解答】解:根据题意得=0.4,解得:n=30,故选:B.5.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣3【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选B.6.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=950.故选:D.7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=【解答】解:由题意可得:y==.故选:C.8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=60°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选A9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等【解答】解:A、二次函数y=(x+1)2﹣3的顶点坐标是(﹣1,﹣3),错误;B、将二次函数y=x2的图象向上平移2个单位,得到二次函数y=x2+2的图象,错误;C、菱形的对角线互相垂直且平分,错误;D、平面内,两条平行线间的距离处处相等,正确;故选D10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m【解答】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴=、=,即=、=,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影长边长1m.故选:A.11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.【解答】解:∵一次函数y=ax+c的图象经过一三四象限,∴a>0,c<0,故二次函数y=ax2+x+c的图象开口向上,对称轴在y轴左边,交y轴于负半轴,故选:C.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④正错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选B.二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.【解答】解:∵共有3张卡片,卡片的正面分别标上数字﹣1,0,﹣2,卡片上的数字为负数的有2张,∴卡片上的数字为负数的概率为;故答案为:.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是x=﹣.【解答】解:y=﹣(x﹣1)(x+2)=﹣(x2+x﹣2)=﹣(x+)2+,∴二次函数y=﹣(x﹣1)(x+2)的对称轴为x=﹣,故答案为:x=﹣.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为4.【解答】解:∵点A在曲线y=(x>0)上,AB⊥x轴,AB=1,∴AB×OB=3,∴OB=3,∵CD垂直平分AO,∴OC=AC,∴△ABC的周长=AB+BC+AC=1+BC+OC=1+OB=1+3=4,故答案为:4.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.【解答】解:作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=A D=6,∴OA=OB=6,∵OB=3OE,∴OE=2,EB=4,∵∠EBH=∠BEH=45°,∴EH=BH=2,∴AH=AB﹣BH=4,∵∠ADG+∠DAF=90°,∠DAF+∠EAH=90°,∴∠ADG=∠EAH,∵∠DAG=∠AHE,∴△DAG∽△AHE,∴=,∴=,∴AG=3,∴GH=AH﹣AG=,在Rt△EGH中,EG==.故答案为.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.【解答】解:原式=1﹣3+2+3=3.18.(5分)x2﹣8x+12=0.【解答】解:x2﹣8x+12=0,分解因式得(x﹣6)(x﹣2)=0,∴x﹣6=0,x﹣2=0,解方程得:x1=6,x2=2,∴方程的解是x1=6,x2=2.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.【解答】解:(1)画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球都是白色的有2种情况,∴随机从袋中摸出两个球,都是白色的概率是:=.(2)根据题意,得:=,解得:a=5,经检验a=5是原方程的根,故a=5.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.【解答】(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CF,∴△CGE≌△FCG(ASA),∴GE=GF,∴四边形DFCE是平行四边形,∵DE=CE,∴四边形DFCE是菱形;(2)解:过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书300﹣10x本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【解答】解:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为:300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.【解答】解:(1)如图1,过点C作CE⊥x轴于E,∴∠CEO=90°,∵∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵点C在反比例函数图象上,∴k=2×2=4,∴反比例函数解析式为y=,(2)如图2,过点D作DG⊥x轴于G,交BC于F,∵CB∥x轴,∴GF⊥CB,∵OA=4,由(1)知,OC=CE=2,∴AE=EC=2,∴∠ECA=45°,∠OCA=90°,∵OC∥AB,∴∠BAC=∠OCA=90°,∴AD⊥AC,∵A(4,0),AB∥OC,∴直线AB的解析式为y=x﹣4①,∵反比例函数解析式为y=②,联立①②解得,或(舍),∴D(2+2,2﹣2),∴AG=DG=2﹣2,∴AD=DG=4﹣2,∴DF=2﹣(2﹣2)=4﹣2,∴AD=DF,∵AD⊥AC,DF⊥CB,∴点D是∠ACB的角平分线上,即:CD平分∠ACB;(3)存在,∵点C(2,2),∴直线OC的解析式为y=x,OC=2,∵D(2+2,2﹣2),∴CD=2﹣2Ⅰ、如图3,当点P在点C右侧时,即:点P的横坐标大于2,∵S△POC=S△COD,∴设CD的中点为M,∴M(+2,),过点M作MP∥OC交双曲线于P,∴直线PM的解析式为y=x﹣2③,∵反比例函数解析式为y=④,联立③④解得,或(舍),∴P(+1,﹣1);Ⅱ、当点P'在点C左侧时,即:点P'的横坐标大于0而小于2,设点M关于OC的对称点为M',M'(m,n),∴=2,=2,∴m=2﹣,n=4﹣,∴M'(2﹣,4﹣),∵P'M'∥OC,∴直线P'M'的解析式为y=x+2⑤,联立④⑤解得,或(舍),∴P'(﹣1,+1).即:点P的坐标为(﹣1,+1)或P(+1,﹣1).23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.【解答】解:(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=﹣,∴y=﹣(x+2)(x﹣4)或y=﹣x2+x+4或y=﹣(x﹣1)2+.(2)如图1中,作PE⊥x轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m==,∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1),∵BC的解析式为y=﹣x+4,设P(n,﹣n2+n+4),则F(n,﹣n+4),∴PF=﹣n2+n+4﹣(﹣n+4)=﹣(n﹣2)2+2,∴m==﹣(n﹣2)2+,∵﹣<0,∴当n=2时,m有最大值,最大值为,此时P(2,4).(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2﹣1中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=kx+1中,得到k=,∴直线DP的解析式为y=x+1,可得D(0,1),E(﹣,0),由△DOE∽△QOD可得=,∴OD2=OE•OQ,∴1=•OQ,∴OQ=,∴Q(,0).根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,∴N(2+,4﹣1),即N(,3)b、如图2﹣2中,四边形PDNQ是矩形时,∵直线PD的解析式为y=x+1,PQ⊥PD,∴直线PQ的解析式为y=﹣x+,∴Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,∴N(0+6,1﹣4),即N(6,﹣3).②当DP是对角线时,设Q(x,0),则QD2=x2+1,QP2=(x﹣2)2+42,PD2=13,∵Q是直角顶点,∴QD2+QP2=PD2,∴x2+1+(x﹣2)2+16=13,整理得x2﹣2x+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,﹣3).。
内蒙古初三初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.计算:=()A.3B.9C.6D.22.下列图形中既是轴对称又是中心对称图形的是()A.三角形B.平行四边形C.圆D.正五边形3.方程的解是()A.4B.±2C.2D.-24.关于的方程的一个根为,则实数的值为()A.2B.C.1D.5.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A.B.C.D.6.⊙O与⊙O的半径分别是3、4,圆心距为1,则两圆的位置关系是()A.相交B.外切C.内切D.外离7.时钟的时针在不停的旋转,时针从上午的6时到9时,时针旋转的旋转角是()A.30°B.60°C.90°D.9°8.将抛物线的图象向上平移1个单位,则平移后的抛物线的解析式为()A.B.C.D.9.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9B.27C.6D.310.⊙o的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是()A.7B.17C.7或17D.4二、填空题1.“明天下雨的概率为0.99”是事件2.,则=3.一元二次方程的根4.已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为5.已知方程有两个相等的实数根,则=6.抛物线的顶点坐标是7.有四条线段,分别为3,4,5,6,从中任取三条,能够成直角三角形的概率是8.将抛物线向下平移2个单位再向右平移3个单位,所得抛物线的表达式是.三、解答题1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?2.如图AB是⊙O的直径,C是⊙O上的一点,若AC=8㎝,AB=10㎝,OD⊥BC于点D,求BD的长?3.不透明的袋中装有3个大小相同的小球,其中两个为白色,一个为红色,随机地从袋中摸取一个小球后放回,再随机地摸取一个小球,(用列表或树形图求下列事件的概率)(1)两次取的小球都是红球的概率;(2)两次取的小球是一红一白的概率.4.△ABC的内切圆⊙o与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长?5.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.6.如图,AB是⊙O的直径,∠BAC=45°,AB=BC.(1)求证:BC是⊙O的切线;(2)设阴影部分的面积为a,b,⊙O的面积为S,请写出S与a,b的关系式.四、计算题某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量箱与销售价元/箱之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?内蒙古初三初中数学期末考试答案及解析一、选择题1.计算:=()A.3B.9C.6D.2【答案】A.【解析】=3.故选A.【考点】二次根式的乘除法.2.下列图形中既是轴对称又是中心对称图形的是()A.三角形B.平行四边形C.圆D.正五边形【答案】C.【解析】A.任意三角形既不是轴对称图形,也不是中心对称图形,错误;B.平行四边形不是轴对称图形,是中心对称图形,错误;C.圆既是轴对称图形又是中心对称图形,正确;D.正五边形是轴对称图形,不是中心对称图形,错误.故选C.【考点】1.中心对称图形;2.轴对称图形.3.方程的解是()A.4B.±2C.2D.-2【答案】B.【解析】∵,∴,∴方程的解:,.故选B.【考点】1.解一元二次方程-因式分解法;2.因式分解.4.关于的方程的一个根为,则实数的值为()A.2B.C.1D.【答案】C.【解析】因为是原方程的根,所以将代入原方程,即成立,解得.故选C.【考点】一元二次方程的解.5.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A.B.C.D.【答案】C.【解析】 ∵共8球在袋中,其中5个红球,∴其概率为,故选C .【考点】概率公式.6.⊙O 与⊙O 的半径分别是3、4,圆心距为1,则两圆的位置关系是( )A .相交B .外切C .内切D .外离【答案】C.【解析】 根据题意,得:R ﹣r=4﹣3=1,圆心距O 1O 2=1,∴两圆内切.故选C .【考点】圆与圆的位置关系.7.时钟的时针在不停的旋转,时针从上午的6时到9时,时针旋转的旋转角是 ( ) A .30° B .60° C .90° D .9°【答案】C.【解析】 ∵时针从上午的6时到9时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故选C .【考点】钟面角.8.将抛物线的图象向上平移1个单位,则平移后的抛物线的解析式为( )A .B .C .D .【答案】C.【解析】 原抛物线的顶点为(0,0),向上平移1个单位,那么新抛物线的顶点为(0,1),可设新抛物线的解析式为:,代入得:.故选C .【考点】二次函数图象与几何变换.9.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是( )A .9B .27C .6D .3【答案】B.【解析】 根据扇形面积公式,阴影部分面积==27π.故选B .【考点】扇形面积的计算.10.⊙o 的半径是13,弦AB ∥CD ,AB=24,CD=10,则AB 与CD 的距离是( )A .7B .17C .7或17D .4【答案】C.【解析】 ①当AB 、CD 在圆心两侧时;过O 作OE ⊥AB 交AB 于E 点,过O 作OF ⊥CD 交CD 于F 点,连接OA 、OC ,如图所示:∵半径r=13,弦AB ∥CD ,且AB=24,CD=10,∴OA=OC=13,AE=EB=12,CF=FD=5,E 、F 、O 在一条直线上,∴EF 为AB 、CD 之间的距离,在Rt △OEA 中,由勾股定理可得:OE 2=OA 2﹣AE 2,∴OE==5,在Rt △OFC 中,由勾股定理可得:OF 2=OC 2﹣CF 2,∴OF==12,∴EF=OE+OF=17,AB 与CD 的距离为17; ②当AB 、CD 在圆心同侧时;同①可得:OE=5,OF=12;则AB 与CD 的距离为:OF ﹣OE=7;故AB 与CD 的距离是为7或17.故选C.【考点】1.垂径定理;2.解直角三角形.二、填空题1.“明天下雨的概率为0.99”是事件【答案】不确定或随机事件.【解析】“明天下雨的概率为0.99”是不确定或随机事件.【考点】概率的意义.2.,则=【答案】12.【解析】根据题意得:且,解得,∴.【考点】非负数的性质.3.一元二次方程的根【答案】0,1.【解析】移项得,因式分解得,解得.【考点】解一元二次方程-因式分解法.4.已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为【答案】15π.【解析】圆锥的侧面积=2π×3×5÷2=15π.【考点】圆锥的计算.5.已知方程有两个相等的实数根,则=【答案】.【解析】∵有两个相等的实数根,∴△=0,∴,∴.故答案为.【考点】根的判别式.6.抛物线的顶点坐标是【答案】(1,﹣4).【解析】∵原抛物线可化为:,∴其顶点坐标为(1,﹣4).故答案为:(1,﹣4).【考点】二次函数的性质.7.有四条线段,分别为3,4,5,6,从中任取三条,能够成直角三角形的概率是【答案】.【解析】能构成三角形的情况为:3,4,5;3,4,6;3,5,6;4,5,6这四种情况.直角三角形只有3,4,5一种情况.故能够成直角三角形的概率是.故答案为:.【考点】1.勾股定理的逆定理;2.概率公式.8.将抛物线向下平移2个单位再向右平移3个单位,所得抛物线的表达式是.【答案】.【解析】根据平移法则:“左右平移变x,左加右减;上下平移变常数项,上加下减”,∴新抛物线解析式为,故答案为.【考点】二次函数图象与几何变换.三、解答题1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?【答案】10.【解析】设每轮传染中平均每个人传染了人,那么第一轮有()人患了流感,第二轮有人被传染,然后根据共有121人患了流感即可列出方程解题.试题解析:设每轮传染中平均每个人传染了人,依题意得,∴=10或=﹣12(不合题意舍去).所以,每轮传染中平均一个人传染了10个人.【考点】一元二次方程的应用.2.如图AB是⊙O的直径,C是⊙O上的一点,若AC=8㎝,AB=10㎝,OD⊥BC于点D,求BD的长?【答案】3.【解析】根据勾股定理和垂径定理求解.试题解析:∵AB是⊙O的直径,∴∠C=90°.∵AC=8,AB=10,∴根据勾股定理得BC=6;又∵OD⊥BC于点D,根据垂径定理知OD垂直平分BC,∴BD=3.【考点】1.垂径定理;2.勾股定理;3.圆周角定理.3.不透明的袋中装有3个大小相同的小球,其中两个为白色,一个为红色,随机地从袋中摸取一个小球后放回,再随机地摸取一个小球,(用列表或树形图求下列事件的概率)(1)两次取的小球都是红球的概率;(2)两次取的小球是一红一白的概率.【答案】(1);(2).【解析】(1)用列表法列举出所有情况,看所求的情况与总情况的比值即可得答案,(2)由(1)的图表,可得要求的情况,与总情况作比即可得答案.试题解析:(1)根据题意,有两次取的小球都是红球的概率为;(2)由(1)可得,两次取的小球是一红一白的有4种;故其概率为.【考点】列表法与树状图法.4.△ABC的内切圆⊙o与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长?【答案】AF=4cm,BD=5cm,CE=9cm.【解析】根据切线长定理,可设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.再根据题意列方程组,即可求解.试题解析:根据切线长定理,设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.根据题意,得:,解得:.即AF=4cm、BD=5cm、CE=9cm.【考点】三角形的内切圆与内心.5.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线.(2)先证明△BDE≌△FCD(HL),根据全等三角形对应边相等及切线的性质的AB=AF,得出AB+EB=AC.试题解析:(1)过点D作DF⊥AC于F;∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,∴AC为⊙D的切线.(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.【考点】1.切线的判定;2.直角三角形全等的判定.6.如图,AB是⊙O的直径,∠BAC=45°,AB=BC.(1)求证:BC是⊙O的切线;(2)设阴影部分的面积为a,b,⊙O的面积为S,请写出S与a,b的关系式.【答案】(1)证明见试题解析;(2).【解析】(1)AB是⊙O的直径,那么求得∠ABC为90°即可;(2)设AC圆交于点D,连接BD,因为AD=BD,那么a可转移到弧BD与弦BD围成的面积,即△BCD的面积=,易得△ADB的面积=△BCD的面积,那么半圆的面积=,从而得到三者的关系.试题解析:(1)证明:∵AB=BC,∴∠CAB=∠ACB=45°.∵在△ABC中,∠ABC=180°﹣45°﹣45°=90°,∴AB⊥BC.又∵AB是⊙O的直径,∴BC是⊙O的切线.(2)设AC圆交于点D,连接BD,∵AD=BD,∴△BCD的面积=,∵△ADB的面积=△BCD的面积,∴半圆的面积=,∴.【考点】1.切线的判定;2.扇形面积的计算四、计算题某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量箱与销售价元/箱之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?【答案】(1);(2);(3)55,1125.【解析】本题是通过构建函数模型解答销售利润的问题.依据题意易得出平均每天销售量(y)与销售价x(元/箱)之间的函数关系式为,然后根据销售利润=销售量×(售价﹣进价),列出平均每天的销售利润w (元)与销售价x(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.试题解析:(1)由题意得:,化简得:;(2)由题意得:;(3);∵,∴抛物线开口向下.当时,w有最大值.又,w随x的增大而增大.∴当元时,w的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.【考点】二次函数的应用.。
内蒙古包头市昆区2018-2019年度初三第一学期数学期末试卷一.选择题(共10小题,每小题3分,共30分)1.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.【分析】根据主视图的定义,并从实线和虚线想象几何体看得见部分和看不见部分的轮廓线,据此可得.【解答】解:由主视图定义知,该几何体的主视图为:故选:A.2.在Rt△ABC中,∠C=90°,AC=4,cos A的值等于,则AB的长度是()A.3B.4C.5D.【分析】根据题意可得=,进而可得AB的长.【解答】解:∵cos A的值等于,∴=,则=,解得:AB=.故选:D.3.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1B.(x+2)2=7C.(x+2)2=13D.(x+2)2=19【分析】把方程两边加上7,然后把方程左边写成完全平方式即可.【解答】解:x2+4x=3,x2+4x+4=7,(x+2)2=7.故选:B.4.如图,点E是反比例函数y=(x>0)图象上任意一点,EF⊥y轴于F,点G是x轴上的动点,则△EFG的面积为( )A.1B.2C.3D.4【分析】可以设出E的坐标是(m,n),△EFG的面积即可利用E的坐标表示,据此即可求解.【解答】解:设E的坐标是(m,n),则mn=4.∵EF=m,△EFG的EF边上的高等于n.∴△EFG的面积=mn=2.故答案是:B.5.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根【分析】由一次函数的定义可求得k的取值范围,再根据一元二次方程的判别式可求得答案.【解答】解:∵y =x +1是关于x 的一次函数, ∴≠0,∴k ﹣1>0,解得k >1,又一元二次方程kx 2+2x +1=0的判别式△=4﹣4k ,∴△<0,∴一元二次方程kx 2+2x +1=0无实数根,故选:A .6.从数﹣2,﹣,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k =mn ,则正比例函数y =kx 的图象经过第三、第一象限的概率是( )A.13B. 14 C .16 D.112【分析】根据题意先画出图形,求出总的情况数,再求出符合条件的情况数,最后根据概率公式进行计算即可.【解答】解:从数﹣2,﹣,0,4中任取1个数记为m ,再从余下,3个数中,任取一个数记为n .根据题意画图如下:共有12种情况,∵正比例函数y =kx 的图象经过第三、第一象限,∴k =mn >0.由树状图可知符合mn >0的情况共有2种,∴正比例函数y =kx 的图象经过第三、第一象限的概率是=.故答案为:B7.如图,菱形ABCD 的对角线AC 与BD 交于点O ,过点C 作AB 垂线交AB 延长线于点E ,连结OE ,若AB =2,BD =4,则OE 的长为( )A.6B.5C.2D.4【分析】先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=4,∴OB=BD=2,在Rt△AOB中,AB=2,OB=2,∴OA==4,∴OE=OA=4.故选:D.8.如图,在△ABC中,∠C=90°,∠A=30°,D为AB上一点,且AD:DB=1:3,DE ⊥AC于点E,连接BE,则tan∠CBE的值等于()A.B.C.D.【分析】根据题意和30°角所对的直角边与斜边的关系,设AB=4a,可以用a分别表示出CE和CB的值,从而可以求得tan∠CBE的值.【解答】解:设AB=4a,∵在△ABC中,∠C=90°,∠A=30°,D为AB上一点,且AD:DB=1:3,∴BC=2a,AC=2a,AD:AB=1:4,∵∠C=90°,DE⊥AC,∴∠AED=90°,∴∠AED=∠C,∴DE∥BC,∴△AED∽△ACB,∴,∴,∴AE=,∴EC=AC﹣AE=,∴tan∠CBE=,故选:C.9.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF的中点,则AM的最小值是()A.2.5B.2.4C.2D.3【分析】根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.【解答】解:∵PE⊥AB,PF⊥AC,∠BAC=90°,∴∠EAF=∠AEP=∠AFP=90°,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点,∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP×BC=AB×AC,∴AP×BC=AB×AC,在Rt△ABC中,由勾股定理,得BC==10,∵AB=6,AC=8,∴10AP=6×8,∴AP=,∴AM=,故选:B.10.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为()A.3B.C.3或D.4或【分析】根据题目中的条件和三角形的相似,可以求得CE的长,本题得以解决.【解答】解:∵△DCE和△ABC相似,∠ACD=∠ABC,AC=6,AB=4,CD=2,∴∠A=∠DCE,∴=或=,即=或=解得,CE=3或CE=故选:C.二.填空题(共8小题,每小题3分,共24分)11.计算:3tan30°−cos245°+1cos60°-2sin60°= .分析:把特殊角的三角函数值代入即可求出答案。
答案:3 212.受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅度提高。
据调查,2018年1月某市房地产公司的住房销售量为100套,3月份的住房销售量为169套,若每月平均增长的百分率相同,则该公司这两个月住房销售量的平均增长率为.【分析】关系式为:1月的产量×(1+增长率)2=169,把相关数值代入即可求解.【解答】解:由题意可得,100(1+x)2=169,解得x1=0.3=30%,x2=﹣2.3(舍去).故答案是:30%.13.已知矩形的长和宽分别是关于x的方程2x2+mx+8=0(m≥8)的两根,则矩形的面积是.【分析】不妨设矩形的长和宽分别为a、b,由根与系数的关系可求得ab的值,即可求得答案.【解答】解:不妨设矩形的长和宽分别为a、b,∵矩形的长和宽分别是关于x的方程2x2+mx+8=0(m≥8)的两根,∴ab==4,即矩形的面积是4,故答案为:4.14.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为.【分析】根据反比例函数的性质和菱形的性质可以求得点B的坐标,从而可以求得k的值.【解答】解:设点C的坐标为(c,0),∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,∴点C(0,5),∴点B的坐标为(8,﹣4),∵函数y=(k<0)的图象经过点B,∴﹣4=,得k=﹣32,故答案:—32.15.如图,小明在A时测得垂直于地面的树的影长为4米,B时又测得该树的影长为16米,两次日照的光线互相垂直,则树的高度为米。
【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得=;即EC2=ED•FE,代入数据可得答案.【解答】解:根据题意,作△DFC,树高为CE,且∠DCF=90°,ED=4,FE=16,易得:Rt△DEC∽Rt△CEF,有=,即EC2=ED•EF,代入数据可得EC2=4×16=64,EC=8,故树的高度为8米.答案:816..如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为。
【分析】只要证明△BAC ∽△BDA ,推出=,求出BD 即可解决问题. 【解答】解:∵AF ∥BC ,∴∠F AD =∠ADB ,∵∠BAC =∠F AD ,∴∠BAC =∠ADB ,∵∠B =∠B ,∴△BAC ∽△BDA ,∴=, ∴=,∴BD =9,∴CD =BD ﹣BC =9﹣4=5,故答案:517.如图,已知点O 为等边三角形ABC 的中心,OD 垂直AC,OE 垂直OD,若AB=2,则四边形ODCE 的面积为 。
分析:连接BO,则B 、O 、 D 三点位于同一直线上。
因O 为等边三角形ABC 的中心,所以DC=1,由等边三角形性质及角DOE 为90°得,角DBC=30°,OE ∕∕AC ,以求得DC OE 的长,四边形ODCE 面积为S △BDC −△BOE ,从而求出答案。
答案:5√31818.如图,把菱形ABCD 向右平移至DCEF 的位置,作EG ⊥AB ,垂足为G ,EG 与CD 相交于点K ,GD 的延长线交EF 于点H ,连接DE ,则下列结论:①DG =DE ;②∠DHE =∠BAD ;③EF +FH =2KC ;④∠B =∠EDH .则其中所有成立的结论是 (写出所有正确结论的序号)【分析】首先证明△ADG≌△FDH,再利用菱形的性质、直角三角形斜边中线的性质即可一一判断;【解答】解:∵四边形ABCD和四边形DCEF是菱形,∴AB∥CD∥EF,AD=CD=DF,∴∠GAD=∠F,∵∠ADG=∠FDH,∴△ADG≌△FDH,∴DG=DH,AG=FH,∵EG⊥AB,∴∠BGE=∠GEF=90°,∴DE=DG=DH,故①正确,∴∠DHE=∠DEH,∵∠DEH=∠CEF,∠CEF=∠CDF=∠BAD,∴∠DHE=∠BAD,故②正确,∴EF+FH=AB+AG=BG,故③正确,∵∠B=∠DCE,∠CED=∠CDE=∠DEF=∠DHE,∴∠B=∠EDH,故④正确.故答案:①②③④三.解答题(共5题,46分)19.(8分)随着迪士尼公司出品的电影《寻梦环游记》的热播,公司现需要了解该节目在中学生中的受欢迎程度,走进重庆八中随机抽取部分学生就“你是否喜欢看《寻梦环游记》?”进行问卷调查,并将调查后的结果统计后绘制成如图所示的不完整条形统计图和扇形统计图,请你结合图中信息解答下列问题.(1)参与调查的学生共有人,并请补全条形统计图;(2)现在了解到3名不喜欢的学生分别是小王、小李、小张,若从他们3人中随机抽取2名同学进行座谈,请用列表法或画树状图法,求小王和小李同时被选中的概率.【分析】(1)根据不喜欢的人数和所占的百分比求出总人数,再用总人数减去非常喜欢、一般和不喜欢的人数,从而求出喜欢的人数,即可补全统计图;(2)根据题意先画出树状图得出所有等情况数和小王和小李同时被选中的情况数,再根据概率公式即可得出答案.【解答】解:(1)参与调查的学生共有:3÷10%=30(人);喜欢的有:30﹣12﹣6﹣3=9(人),补图如下:故答案为:30;(2)根据题意画图如下:由图可知,共有6种等可能的结果数,其中小王和小李同时被选中的有2种,则小王和小李同时被选中的概率是=.20.(8分)如图,在△ABC中,BA=BC,点E在BC上,且AE⊥BC,cos∠B=,EC=3.(1)分别求AB和AE;(2)若点P在AB边上,且BP=4,求△BPE的面积.【分析】(1)根据∠B的余弦设AB=5x,BE=4x,然后根据CE=BC﹣BE列方程求解即可得到x的值,从而求出AB,BE,再利用勾股定理列式计算即可求出AE;(2)先求出△ABE的面积,再根据等高的三角形的面积的比等于底边的比解答.【解答】解:(1)∵AE⊥BC,cos∠B=,∴设AB=5x,BE=4x,∵BA=BC,∴BC=5x,∵EC=3,CE=BC﹣BE,∴5x﹣4x=3,解得x=3,∴AB=5×3=15,BE=4×3=12,在Rt△ABE中,根据勾股定理得,AE===9;(2)△ABE的面积=BE•AE=×12×9=54,∵BP=4,∴△BPE的面积=×54=14.4.21.(8分)如图,在直角坐标系中,△OBA∽△DOC,边OA、OC都在x轴的正半轴上,点D的坐标为(4,3),∠BAO=∠OCD=90°,OB=10.反比例函数(x>0)的图象经过点D,交AB边于点E.(1)求反比例函数的解析式.(2)求点B的坐标.(2)求BE的长.【分析】(1)利用待定系数法求反比例函数的解析式;(2)利用点D的坐标可以求得OD、OC、DC的长度,然后利用相似三角形△OBA∽△DOC 的对应边成比例推知==,据此可以求得BA=8,OA=6,所以点B的坐标迎刃而解了;(3)根据(2)中点B的坐标,可以设点E的坐标为(6,y);然后利用反比例函数图象上点的坐标特征可以求得y=2;最后根据点E的坐标可知AE=2,所以BE=BA﹣AE=6.【解答】解:(1)∵点D(4,3)在反比例函数(x>0)上,∴3=,解得k=12;∴反比例函数的解析式是(x>0);(2)∵点D的坐标为(4,3),∴DO=5(勾股定理),OC=4,DC=3,又∵△OBA∽△DOC(已知),OB=10(已知),∴==(相似三角形的对应边成比例),∴BA=8,OA=6,∴点B的坐标为(6,8);(3)由(2)知,点B的坐标为(6,8),故设点E的坐标为(6,y),则y==2,∴点E的坐标为(6,2),∴AE=2,∴BE=BA﹣AE=8﹣2=6,即BE=6.22.(10分)人民商场销售某种冰箱,每台进价为2500元,市场调研表明:当每台销售价定为2900元时,平均每天能售出8台;每台售价每降低50元,平均每天能多售出4台.设该种冰箱每台的销售价降低了x元.(1)填表:(2)若商场要想使这种冰箱的销售利润平均每天达到5000元,则每台冰箱的售价应定为多少元?【分析】(1)销售利润=一台冰箱的利润×销售冰箱数量,一台冰箱的利润=售价﹣进价,降低售价的同时,销售量就会提高,“一减一加”;(2)根据每台的盈利×销售的件数=5000元,即可列方程求解.【解答】解:(1)销售1台的利润:2900﹣2500=400;降价后销售的数量:8+×4,降价后销售的利润:400﹣x;故答案是:400;8+×4,400﹣x.(2)设销售价降低了x元,根据题意可得:(400﹣x)•(8+×4)=5000,整理得:x2﹣300x+22500=0,(x﹣150)2=0,解得:x1=x2=150,2900﹣150=2750(元),答:每台冰箱的售价应定为2750元.23.(12分)如图,已知△ABC中,AB=AC=a,BC=10,动点P沿CA方向从点C向点A 运动,同时,动点Q沿CB方向从点C向点B运动,速度都为每秒1个单位长度,P、Q 中任意一点到达终点时,另一点也随之停止运动.过点P作PD∥BC,交AB边于点D,连接DQ.设P、Q的运动时间为t.(1)直接写出BD的长;(用含t的代数式表示)(2)若a=15,求当t为何值时,△ADP与△BDQ相似;(3)是否存在某个a的值,使P、Q在运动过程中,存在S△BDQ:S△ADP:S梯形CPDQ=1:4:4的时刻,若存在,求出a的值;若不存在,请说明理由.【分析】(1)根据PD∥BC,AB=AC,即可求出BD;(2)根据平行线得出比例式,求出PD,根据△ADP和△BDQ,得出比例式,代入即可求出答案;(3)假设存在,根据设四边形CPDQ的边CQ上的高是h,推出△BDQ的边BQ上的高是h,△ABC的边BC上的高是3h,根据△BDQ和△ABC的面积之间的关系,求出t的值,根据PD∥BC,得出比例式,代入求出a即可.【解答】解:(1)BD=t.(2)∵PD∥BC,AB=AC=15,∴=,∴AD=AP=15﹣t,∴BD=CP=t,∵AC=15,BC=10,CP=t,∴PD=10﹣t,∵△ADP和△BDQ相似,∴=或=,∴=或=解得:t1=4,t2=15(舍去),t3=15>10(舍去),t4=6答:t=4或6时,△ADP与△BDQ相似.(3)存在,理由是:假设存在S△BDQ:S△ADP:S梯形CPDQ=1:4:4,即==,∵PD∥BC,∴△APD∽△ACB,相似比是,∴=,设四边形CPDQ的边CQ上的高是h,则△BDQ的边BQ上的高是h,△ABC的边BC上的高是3h,∴BQ×h=×BC×3h,(10﹣t)=×3×10,∴t=,∵AP=a﹣t=a﹣,AC=a,∴=,代入解得:a=20,答:存在某个a的值,使P、Q在运动过程中,存在S△BDQ:S△ADP:S梯形CPDQ=1:4:4的时刻,a的值为20.。