8.5一阶电路的全响应 三要素法
- 格式:ppt
- 大小:1.67 MB
- 文档页数:24
§5.4 一阶电路的全响应与三要素在上两节中分别研究了一阶电路的零输入响应和零状态响应,电路要么只有外激励源的作用,要么只存在非零的初始状态,分析过程相对简单。
本节将讨论既有非零初始状态,又有外激励源共同作用的一阶电路的响应,称为一阶电路的全响应。
5.4.1 RC 电路的全响应电路如图5-9所示,将开关S 闭合前,电容已经充电且电容电压0)0(U u c =-,在t=0时将开关S 闭合,直流电压源S U 作用于一阶RC 电路。
根据KVL ,此时电路方程可表示为:C u图 5-19 一阶RC 电路的全响应S C CU u tu RC=+d d (5-19) 根据换路原则,可知方程(5-19)的初始条件为 0)0()0(U u u C C ==-+令方程(5-9)的通解为 C CC u u u ''+'= 与一阶RC 电路的零状态响应类似,取换路后的稳定状态为方程的特解,则S CU u =' 同样令方程(5-9)对应的齐次微分方程的通解为τtCAe u -=''。
其中RC =τ为电路的时间常数,所以有τtS C AeU u -+=将初始条件与通解代入原方程,得到积分常数为 S U U A +=0所以电容电压最终可表示为τtS S c e U U U u --+=)(0 (5-20)电容充电电流为etS C R U U t u C i τ--==0d d这就是一阶RC 电路的全响应。
图5-20分别描述了s U ,0U 均大于零时,在0U U s >、0=s U 、0U U s <三种情况下c u 与i 的波形。
(a) (b)图5-20C u ,i 的波形图将式(5-20)重新调整后,得)1(0ττtS tC e U eU u ---+=从上式可以看出,右端第一项正是电路的零输入响应,第二项则是电路的零状态响应。
显然,RC 电路的全响应是零输入响应与零状态响应的叠加,即 全响应 = 零输入响应 + 零状态响应研究表明,线性电路的叠加定理不仅适用于RC 电路,在RC 电路的分析过程中同样适用,同时,对于n 阶电路也可应用叠加定理进行分析。
三要素法求电路全响应电路的全响应是指电路在初始状态和外部激励作用下的完整动态响应。
为了得到电路的全响应,我们可以使用三要素法进行分析和计算。
三要素法是一种基于电路元件特性和初始条件的计算方法,通过分析电路的零输入响应、零状态响应和强迫响应来求得电路的全响应。
我们来了解一下三要素法的基本概念。
三要素法将电路的全响应分为三个部分:零输入响应、零状态响应和强迫响应。
零输入响应是指在没有外部激励的情况下,电路元件本身的特性所引起的响应。
在零输入响应中,电路元件的初始状态起到了关键作用。
例如,一个电容器在初始时刻具有一定的电荷量,当没有外部激励时,电容器会通过内部电路元件自行放电或充电,产生一种独特的响应。
零状态响应是指在没有初始电荷或初始电流的情况下,电路在外部激励作用下产生的响应。
在零状态响应中,电路的初始状态不起作用,电路的响应完全由外部激励决定。
例如,一个电容器在初始时刻没有电荷,当外部电压施加在电容器上时,电容器会根据电压变化情况产生相应的电流响应。
强迫响应是指在有外部激励作用下,电路元件和初始条件共同引起的响应。
在强迫响应中,电路的初始状态和外部激励都对电路的响应产生影响。
例如,一个电路中同时存在电容器的初始电荷和外部电压,当外部电压变化时,电容器的初始电荷和电容器本身的特性都会对电路的响应产生影响。
根据三要素法,电路的全响应可以表示为零输入响应、零状态响应和强迫响应的叠加。
通过分别计算这三个部分的响应,然后将它们相加,我们可以得到电路的全响应。
在实际计算中,我们可以利用电路的传递函数来求得不同部分的响应。
传递函数是电路输入和输出之间的转移函数,它描述了电路对输入信号的响应特性。
通过对传递函数进行拉普拉斯变换,我们可以得到电路的传递函数表达式。
利用传递函数,我们可以将输入信号的拉普拉斯变换和输出信号的拉普拉斯变换相乘,然后进行反变换,得到相应的时间域响应。
在计算电路的全响应时,我们需要注意一些细节。
§5.4 一阶电路的全响应与三要素在上两节中分别研究了一阶电路的零输入响应和零状态响应,电路要么只有外激励源的作用,要么只存在非零的初始状态,分析过程相对简单。
本节将讨论既有非零初始状态,又有外激励源共同作用的一阶电路的响应,称为一阶电路的全响应。
5.4.1 RC 电路的全响应电路如图5-9所示,将开关S 闭合前,电容已经充电且电容电压0)0(U u c =-,在t=0时将开关S 闭合,直流电压源S U 作用于一阶RC 电路。
根据KVL ,此时电路方程可表示为:C u图 5-19 一阶RC 电路的全响应S C CU u tu RC=+d d (5-19) 根据换路原则,可知方程(5-19)的初始条件为 0)0()0(U u u C C ==-+令方程(5-9)的通解为 C CC u u u ''+'= 与一阶RC 电路的零状态响应类似,取换路后的稳定状态为方程的特解,则S CU u =' 同样令方程(5-9)对应的齐次微分方程的通解为τtCAe u -=''。
其中RC =τ为电路的时间常数,所以有τtS C AeU u -+=将初始条件与通解代入原方程,得到积分常数为 S U U A +=0所以电容电压最终可表示为τtS S c e U U U u --+=)(0 (5-20)电容充电电流为etS C R U U t u C i τ--==0d d这就是一阶RC 电路的全响应。
图5-20分别描述了s U ,0U 均大于零时,在0U U s >、0=s U 、0U U s <三种情况下c u 与i 的波形。
(a) (b)图5-20C u ,i 的波形图将式(5-20)重新调整后,得)1(0ττtS tC e U eU u ---+=从上式可以看出,右端第一项正是电路的零输入响应,第二项则是电路的零状态响应。
显然,RC 电路的全响应是零输入响应与零状态响应的叠加,即 全响应 = 零输入响应 + 零状态响应研究表明,线性电路的叠加定理不仅适用于RC 电路,在RC 电路的分析过程中同样适用,同时,对于n 阶电路也可应用叠加定理进行分析。
L i 图6.15 例6.3图 分析一阶电路全响应的三要素法由6-35可见,只要求出电路的初始值、稳态值和时间常数,就可方便的求出电路的零输入、零状态和全响应。
所以仿照上式,可以写出在直流电源激励下,求解一阶线性电路全响应的通式,即τte f f f t f -+∞-+∞=)]()0([)()((6-36) 式中)(t f 代表一阶电路中任一电压、电流函数。
初始值)0(+f ,稳态值)(∞f 和时间常数τ称为一阶电路全响应的三要素。
1、求初始值)0(+f 的要点:(1)求换路前的)0()0(--L C i u 、;(2)根据换路定则得出)0()0()0()0(-+-+==L L C C i i u u ;(3)根据换路瞬间的等效电路,求出未知的)0(+u 或)0(+i 。
2、求稳态值)(∞f 的要点:(1)画出新稳态的等效电路(注意:在直流电源的作用下, C 相当于开路, L 相当于短路);(2)由电路的分析方法,求出换路后的稳态值。
3、求时间常数τ的要点:(1)求0>t 时的τ;(2) eqeq R L C R ==ττ,; (3) 将储能元件以外的电路,视为有源一端口网络,然后应用戴维南定理求等效内阻的方法求 eq R 。
[例6.3] 图6.15所示电路原已处于稳态,0=t 时开关闭合。
已知82=s u V ,L=1.2H, R1= R2= R3=2Ω, 求电压源401=s u V 激励时的电感电流L i 。
[解]: 换路前电路为直流稳态电路,所以 2)0(322=+=-R R u i s L A 换路后电感电压为有限值,所以电感电流的初始值为=+)0(L i 2)0(=-L i A换路后电感两端的等效电阻为Ω=++=321213R R R R R R eq 所以时间常数为s R L eq4.0==τ 当401=s u V 时,电感电流的稳态值可求得为 81111)(32122113=+++⋅=∞R R R R u R u R i s s L A 由三要素法可得电感电流为 τt L L L L e i i i i -+∞-+∞=)]()0([)(t e 5.268--= A。
第四节 一阶电路全响应和三要素法求解当一个非零初始状态的一阶电路受到激励时,电路的响应称为全响应。
一、经典法分析一阶电路全响应暂态过程下面以图5-4-1所示的一阶RC 全响应电路经典法分析为例,介绍一阶暂态电路全响应的分析的方法并以此推出三要素的分析方法。
U Su C i图5-4-1一阶RC 电路全响应电路设电容原有电压为0U ,开关s 闭合后,根据基尔霍夫电压定律(KVL ),有S C CU u dt du RC=+初始条件0)0()0(U u u C C ==-+方程的通解"+'=CC C u u u取换路后达到稳定状态的电容电压为特解,则SC U u ='"C u 为上述方程对应的齐次方程的通解τtC Ae u -="其中RC =τ为电路的时间常数,所以有τtS C Ae U u -+=根据初始条件0)0()0(U u u C C ==-+,得积分常数为S U U A -=0所以电容电压τtS S C e U U U u --+=)(0 (5-4-1)这就是电容电压在0≥t 时的全响应。
二、三要素法若将式(5-4-1)改写成 )1(0ττtS tC e U eU u ---+=上式右边的第一项正是电路的零输入响应,因为如果把电压源置零,电路的响应恰好就是τte U -0。
右边的第二项则是电路的零状态响应,因为它正好是0)0(=+C u 时的响应。
这说明一阶电路中,全响应是零输入响应和零状态响应的叠加,这是线性电路叠加性质的体现。
所以一般情况下,一阶电路的全响应可以表示为 全响应=(零输入响应)+(零状态响应)从式(5-4-1)又可以看出,右边的第一项是稳态分量,它等于外施的直流电压,而第二项则是瞬态分量,它随时间的增长而按指数规律逐渐衰减为零。
所以全响应又可以表示为全响应=(稳态分量)+(瞬态分量)无论是把全响应分解为零状态响应和零输入响应之叠加,还是分解为瞬态分量和稳态分量之叠加,都不过是不同分法,真正的响应则是全响应,是由初始值、特解和时间常数三个要素决定的。
三要素法求一阶电路全响应证明好嘞,今天咱们聊聊一阶电路的全响应,听起来有点高大上,但其实就像喝水一样简单。
先说说什么是一阶电路,简单来说,就是那些只包含一个电感或一个电容的电路。
就好比你家里的水管,要么是直的,要么有个弯头,没啥复杂的。
电路响应嘛,顾名思义,就是电路对输入信号的反应。
咱们要用三要素法来求它,听起来神秘,但其实就是记住三样东西,轻松愉快。
电路里总有个电压源,就像家里有电灯,没电源的电路就像没电的灯,啥也干不了。
我们要知道电路的初始状态,想象一下你刚起床,头发乱七八糟,睁不开眼,那时候你就像一个电路的初态。
我们得搞清楚,这时候电压和电流是什么样的。
电路的状态方程就像你做饭的配方,得先量好材料。
咱们用基尔霍夫定律,这就像你家人争抢遥控器时的规则,谁先抢到,谁就能看电视。
要把这些公式整理一下。
这里的计算过程就像是做一道数学题,心里有个谱,按部就班。
算出来的结果就是电路在某一时刻的状态。
这里面有个关键的地方,时间常数,它就像你的闹钟,一响就能把你叫醒。
时间常数越大,电路的反应越慢,仿佛你还在梦中打转,不愿意醒过来。
反之,时间常数越小,反应速度就快,像个喝了咖啡的年轻人,瞬间就清醒了。
然后,我们得用到强迫响应和自然响应。
强迫响应就像你被老板叫去加班,没得选,只能硬着头皮上班;自然响应就像放假了,终于可以自在地享受生活。
这两者结合起来,就是电路的全响应。
也就是说,我们的电路既要应对外部的电压源,又要考虑到内部的电流状态。
咱们把这两部分结合起来,得到的就是电路的全响应,这就像一盘美味的拼盘,各种口味交融在一起,才叫个美。
大家可能会想,为什么要用三要素法?这就像咱们做菜的时候,要有食材、火候和调味,缺一不可。
三要素法让我们从不同的角度看待问题,找到解决方案。
就算你是个新手,只要有这三样东西,也能做出一桌好菜。
用这个方法求电路全响应,简直是小菜一碟,谁都能搞定。
咱们回顾一下,电路的初始状态、状态方程和时间常数这三样东西,不仅能帮助你求解全响应,还能让你在电路的海洋里遨游自如。
一阶电路的三要素法公式
其中:
- f(t)为电路中所求的响应(电压或电流)。
- f(0_+)为响应的初始值,即换路后瞬间t = 0_+时的值。
- f(∞)为响应的稳态值,即t→∞时的值。
- τ为一阶电路的时间常数,对于RC电路τ = RC,对于RL电路τ=(L)/(R)(这里R为从储能元件(电容C或电感L)两端看进去的戴维南等效电阻)。
在使用三要素法求解一阶电路时,一般按照以下步骤:
1. 求初始值f(0_+):
- 首先根据换路前的电路(t = 0_-时的电路)求出储能元件(电容电压
u_C(0_-)或电感电流i_L(0_-))的初始值。
- 然后根据换路定律(u_C(0_+) = u_C(0_-),i_L(0_+)=i_L(0_-))确定换路后瞬间电容电压和电感电流的值。
- 再根据换路后瞬间的电路(t = 0_+时的电路),利用电路的基本定律(如欧姆定律、基尔霍夫定律等)求出所求响应的初始值f(0_+)。
2. 求稳态值f(∞):
- 画出换路后t→∞时的电路,此时电容相当于开路(i_C(∞)=0),电感相当于短路(u_L(∞)=0)。
- 利用电路的基本分析方法(如电阻的串并联化简、欧姆定律、基尔霍夫定律等)求出所求响应的稳态值f(∞)。
3. 求时间常数τ:
- 对于RC电路,τ = RC,其中R为从电容两端看进去的戴维南等效电阻。
- 对于RL电路,τ=(L)/(R),其中R为从电感两端看进去的戴维南等效电阻。
最后将f(0_+)、f(∞)和τ代入三要素法公式f(t)=f(∞)+[f(0_+) - f(∞)]e^-(t)/(τ)中,即可求出一阶电路的响应f(t)。
一阶电路全响应的三要素公式好的,以下是为您生成的关于“一阶电路全响应的三要素公式”的文章:在学习电路知识的过程中,一阶电路全响应的三要素公式就像是一把神奇的钥匙,能帮我们轻松打开电路世界的神秘大门。
咱们先来说说这一阶电路全响应到底是啥。
简单来讲,它就是在电源激励和初始储能共同作用下,电路中产生的响应。
这就好比你有一笔存款(初始储能),然后每个月还有固定的工资收入(电源激励),加起来就是你的总财富变化情况(全响应)。
那这三要素公式到底是哪三个要素呢?它们分别是初始值、稳态值和时间常数。
初始值就是电路在初始时刻的状态,就像你刚出发时站的那个起点;稳态值呢,是经过足够长时间后电路稳定下来的状态,就好比你经过长途跋涉最终到达的那个目的地;时间常数则反映了电路从初始状态过渡到稳态的快慢,就像是你到达目的地所花的时间。
给大家讲讲我曾经碰到的一个小例子吧。
有一次,我在实验室里调试一个一阶电路,怎么都弄不对。
我盯着那些电阻、电容和电感,脑袋都大了。
后来我静下心来,仔细分析了初始值、稳态值和时间常数,发现原来是我把一个电阻的阻值算错了,导致整个计算都出了偏差。
经过这次教训,我更加深刻地理解了三要素公式的重要性。
那这三要素公式具体怎么用呢?比如说,我们已知一个一阶 RC 电路,电容的初始电压为 U0,电源电压为 US,电阻为 R,电容为 C。
那么,电路中的电压响应 u(t) 就可以用三要素公式表示为:u(t) = U∞ + [U0 - U∞] e^(-t/τ) ,其中U∞ 就是稳态值,等于 US;τ 就是时间常数,等于 RC 。
再比如说一阶 RL 电路,电感的初始电流为 I0,电源电流为 IS,电阻为 R,电感为 L。
那么,电路中的电流响应 i(t) 就可以表示为:i(t) = I∞ + [I0 - I∞] e^(-t/τ) ,这里的I∞ 等于 IS ,时间常数τ 等于 L/R 。
总之,一阶电路全响应的三要素公式是我们解决一阶电路问题的得力工具。