SPSS典型相关分析结果解读
- 格式:pdf
- 大小:76.21 KB
- 文档页数:5
【SPSS数据分析】SPSS聚类分析的软件操作与结果解读
在对数据进行统计分析时,我们会遇到将一些数据进行分类处理的情况,但是又没有明确分类标准,这时候就需要用到SPSS聚类分析。
SPSS聚类分析分为两种:一种为R型聚类,是针对变量进行的聚类分析;另一种为Q型聚类,是针对样本的聚类分析。
下面我们就通过实际案例先来给大家讲解Q型聚类分析。
我们搜集了31个样本的5种指标的数据,我们想根据5种指标的数据来将31个样本进行聚类分类。
(图1)
图1
操作步骤:
①点击“分析”--“分类”--“系统聚类”(图2)
图2
③将“样本”选入个案标注依据,将γ1-5选入变量,并勾选下方“个案”标签(图3)
图3
④点击右侧“统计”按钮,将解的范围设置为2-4,意思为分聚为2,3,4类,这里可根据自己分类需求设置(图4)
图4
⑤点击右侧“图”,勾选“谱系图”(图5),点击右侧“方法”,将聚类方法设置为“组间联接”,将区间设置为“平方欧氏距离”(图6)
图5
图6
⑥点击“保存”,将解的范围设置为2-4(图7)
图7
⑦分析结果
图8
由上图(图8)可以看出,第一列为31个样本聚为4类的结果,第二列为31个样本聚为3类的结果,第三列为31个样本聚为2类的结果。
至于冰柱图和谱系图都是用图形化来进一步表达这个些结果,这里就不再赘述,想学习的朋友可以关注我们公众号进行深入学习。
以上就是今天所讲解的SPSS聚类分析的软件操作与分析结果详解,回顾一下重点,Q型聚类是根据变量数据针对样本进行的聚类。
然而还有R型聚类我们将在下一期中进行详细的讲解和分析。
敬请大家的关注!。
Correlations for Set-1Y1Y2Y3Y1 1.0000.9983.5012Y2.9983 1.0000.5176Y3.5012.5176 1.0000第一组变量间的简单相关系数Correlations for Set-2X1X2X3X4X5X6X7X8X9X10X11X12X13 X1 1.0000-.3079-.7700-.7068-.6762-.7411-.7466-.5922-.1948-.1285-.2650-.9070-.6874 X2-.3079 1.0000-.0117.0103-.0613-.0283-.0140.3333.4161.3810.3831.1098-.0640 X3-.7700-.0117 1.0000.9905.9860.9973.9990.5892.0421-.0196.2492.9515.9903 X4-.7068.0103.9905 1.0000.9910.9935.9952.5634.0249-.0367.2476.9120.9953 X5-.6762-.0613.9860.9910 1.0000.9887.9912.5717.0363-.0277.2475.8972.9926 X6-.7411-.0283.9973.9935.9887 1.0000.9985.5563.0142-.0453.2210.9355.9950 X7-.7466-.0140.9990.9952.9912.9985 1.0000.5795.0319-.0298.2441.9390.9945 X8-.5922.3333.5892.5634.5717.5563.5795 1.0000.7097.6540.8990.6619.5138 X9-.1948.4161.0421.0249.0363.0142.0319.7097 1.0000.9922.8520.1350-.0228 X10-.1285.3810-.0196-.0367-.0277-.0453-.0298.6540.9922 1.0000.8184.0752-.0801 X11-.2650.3831.2492.2476.2475.2210.2441.8990.8520.8184 1.0000.3093.1840 X12-.9070.1098.9515.9120.8972.9355.9390.6619.1350.0752.3093 1.0000.9040 X13-.6874-.0640.9903.9953.9926.9950.9945.5138-.0228-.0801.1840.9040 1.0000Correlations Between Set-1and Set-2X1X2X3X4X5X6X7X8X9X10X11X12X13 Y1-.7542-.0147.9995.9940.9892.9989.9998.5788.0334-.0280.2426.9430.9937 Y2-.7280-.0234.9965.9958.9954.9977.9988.5859.0485-.0136.2573.9285.9949 Y3-.4485.2952.5096.4955.5230.4760.5048.9695.7610.7071.9073.5449.4500Canonical Correlations1 1.0002 1.0003 1.000第一对典型变量的典型相关系数为CR1=1.....二三Test that remaining correlations are zero:维度递减检验结果降维检验Wilk's Chi-SQ DF Sig.1.000.000.000.0002.000.00024.000.0003.000103.48911.000.000此为检验相关系数是否显著的检验,原假设:相关系数为0,每行的检验都是对此行及以后各行所对应的典型相关系数的多元检验。
典型相关分析典型相关分析(Canonical correlation )又称规则相关分析,用以分析两组变量间关系的一种方法;两个变量组均包含多个变量,所以简单相关和多元回归的解惑都是规则相关的特例。
典型相关将各组变量作为整体对待,描述的是两个变量组之间整体的相关,而不是两个变量组个别变量之间的相关。
典型相关与主成分相关有类似,不过主成分考虑的是一组变量,而典型相关考虑的是两组变量间的关系,有学者将规则相关视为双管的主成分分析;因为它主要在寻找一组变量的成分使之与另一组的成分具有最大的线性关系。
典型相关模型的基本假设:两组变量间是线性关系,每对典型变量之间是线性关系,每个典型变量与本组变量之间也是线性关系;典型相关还要求各组内变量间不能有高度的复共线性。
典型相关两组变量地位相等,如有隐含的因果关系,可令一组为自变量,另一组为因变量。
典型相关会找出一组变量的线性组合X* ax i与Y*= dy j ,称为典型变量;以使两个典型变量之间所能获得相关系数达到最大,这一相关系数称为典型相关系数。
a i和bj称为典型系数。
如果对变量进行标准化后再进行上述操作,得到的是标准化的典型系数。
典型变量的性质每个典型变量智慧与对应的另一组典型变量相关,而不与其他典型变量相关;原来所有变量的总方差通过典型变量而成为几个相互独立的维度。
一个典型相关系数只是两个典型变量之间的相关,不能代表两个变量组的相关;各对典型变量构成的多维典型相关,共同代表两组变量间的整体相关。
典型负荷系数和交叉负荷系数典型负荷系数也称结构相关系数,指的是一个典型变量与本组所有变量的简单相关系数,交叉负荷系数指的是一个典型变量与另一组变量组各个变量的简单相关系数。
典型系数隐含着偏相关的意思,而典型负荷系数代表的是典型变量与变量间的简单相关, 两者有很大区别。
重叠指数如果一组变量的部分方差可以又另一个变量的方差来解释和预测, 就可以说这部分方差与另一个变量的方差之间相重叠, 或可由另一变量所解释。
相关分析一、两个变量的相关分析:Bivariate 1.相关系数的含义相关分析是研究变量间密切程度的一种常用统计方法。
相关系数是描述相关关系强弱程度和方向的统计量,通常用r 表示。
①相关系数的取值范围在-1和+1之间,即:–1≤r ≤ 1。
②计算结果,若r 为正,则表明两变量为正相关;若r 为负,则表明两变量为负相关。
③相关系数r 的数值越接近于1(–1或+1),表示相关系数越强;越接近于0,表示相关系数越弱。
如果r=1或–1,则表示两个现象完全直线性相关。
如果=0,则表示两个现象完全不相关(不是直线相关)。
④3.0<r ,称为微弱相关、5.03.0<≤r ,称为低度相关、8.05.0<≤r ,称为显著(中度)相关、18.0<≤r ,称为高度相关⑤r 值很小,说明X 与Y 之间没有线性相关关系,但并不意味着X 与Y 之间没有其它关系,如很强的非线性关系。
⑥直线相关系数一般只适用与测定变量间的线性相关关系,若要衡量非线性相关时,一般应采用相关指数R 。
2.常用的简单相关系数(1)皮尔逊(Pearson )相关系数皮尔逊相关系数亦称积矩相关系数,1890年由英国统计学家卡尔•皮尔逊提出。
定距变量之间的相关关系测量常用Pearson 系数法。
计算公式如下:∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())(( (1)(1)式是样本的相关系数。
计算皮尔逊相关系数的数据要求:变量都是服从正态分布,相互独立的连续数据;两个变量在散点图上有线性相关趋势;样本容量30≥n 。
(2)斯皮尔曼(Spearman )等级相关系数Spearman 相关系数又称秩相关系数,是用来测度两个定序数据之间的线性相关程度的指标。
当两组变量值以等级次序表示时,可以用斯皮尔曼等级相关系数反映变量间的关系密切程度。
它是根据数据的秩而不是原始数据来计算相关系数的,其计算过程包括:对连续数据的排秩、对离散数据的排序,利用每对数据等级的差额及差额平方,通过公式计算得到相关系数。
SPSS典型相关分析结果解读
典型相关分析是SPSS的一种统计分析方法,用于检验两变量之间的线性关系。
它的结果包括Pearson积差相关系数、Spearman等级相关系数以及Kendall tau-b相关系数。
a. Pearson积差相关系数:Pearson积差相关系数是最常用的相关分析指标,该系数介于-1~+1之间,表示两个变量之间的线性关系强度。
当其值接近1时,表明两个变量之间呈正相关;当其值接近-1时,表明两个变量之间呈负相关;而当其值接近0时,表明两个变量之间没有显著相关性。
b. Spearman等级相关系数:Spearman等级相关系数也是一种常用的相关分析指标,用于检验两个变量之间的非线性关系,通常情况下,该指标的取值范围在-1~+1之间,其余与Pearson积差相关系数的解释原理相同。
c. Kendall tau-b相关系数:Kendall tau-b相关系数也是一种常用的相关分析指标,用于检验两个变量之间的非线性关系,其取值范围也是-1~+1,当取值为正时,表明两个变量之间存在正相关性;当取值为负时,表明两个变量之间存在负相关性;而当取值为0时,表明两个变量之间没有显著相关性。
spss典型相关分析【SPSS典型相关分析】导言:典型相关分析是一种常用的统计方法,旨在研究两个不同变量集之间的关联程度。
通过典型相关分析,可以定量地了解两组变量之间的相互影响,从而更好地理解它们之间的关系。
本文将介绍SPSS软件在典型相关分析中的操作流程,并通过一个具体案例来展示对结果的解释和分析。
一、概述典型相关分析是一种多元回归技术,用于研究两组变量集之间的关系。
它通过构建线性组合(典型变量),从而发现两组变量之间的最大相关。
典型相关分析包含两个主要步骤:提取典型变量和解释典型变量。
二、SPSS操作流程1. 数据准备首先,需要确保所用数据集完整、无缺失值,并且变量之间没有共线性。
可以使用SPSS软件导入需要分析的数据集。
2. 创建数据文件在SPSS软件中,通过点击“文件”并选择“新建”来创建新的数据文件。
3. 导入数据在新的数据文件中,通过点击“文件”并选择“打开”来导入待分析的数据集。
在弹出的窗口中,选择所需导入的数据文件并点击“打开”。
4. 进行典型相关分析在SPSS软件中,点击“分析”并选择“典型相关”进行分析。
5. 设置变量在典型相关分析的窗口中,将两组变量逐一添加到相应的文字框中。
6. 运行分析确认所设置的变量无误后,点击“确定”运行分析。
7. 结果解释得出结果后,可以通过SPSS软件中提供的表格和图形等形式进行结果的解释和展示。
三、案例展示为了更好地理解典型相关分析的操作流程和结果解释,以下是一个具体案例的分析。
案例描述:研究人员想要了解大学生的学习成绩和心理健康之间的关系,他们收集了大学生的学习成绩(包括各科目的成绩和平均绩点)和心理健康指标(包括抑郁程度、压力水平和自尊水平)的数据。
分析步骤:1. 数据准备:研究人员清洗数据并确保数据集完整和无缺失值。
他们还进行了变量之间的相关性分析,以排除共线性。
2. 创建数据文件:研究人员在SPSS软件中创建了新的数据文件,命名为“大学生学习与心理健康”。
SPSS第十三讲相关性分析相关性分析是统计学中非常重要的概念,用于研究两个变量之间的关系。
SPSS是一种统计分析软件,可以用来进行相关性分析并且生成相应的结果。
本文将介绍SPSS中的相关性分析方法,并结合实际案例来解释其应用。
首先,打开SPSS软件并导入需要分析的数据。
假设我们有一组数据包含两个变量:X和Y。
我们想要确定这两个变量之间的相关性。
第一步是选择"分析"菜单中的"相关"子菜单。
在相关菜单中,我们可以看到有两个选项:"二变量"和"相关矩阵"。
如果我们只想要分析两个变量之间的关系,就选择"二变量"。
在"二变量"对话框中,我们需要选择要分析的两个变量,即X和Y。
将它们分别输入到对应的方框中。
首先,选择X变量并将其拖到框中,然后选择Y变量并将其拖到框中。
在"协方差矩阵"部分,可以选择是否要计算协方差矩阵。
协方差矩阵会给出每个变量之间的协方差,是相关性的衡量指标之一、如果我们只关心相关性,可以不勾选该选项。
然后,点击"确定"按钮生成相关性分析结果。
SPSS会输出相关性系数,如皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数用于度量两个连续变量之间的线性相关性,而斯皮尔曼相关系数则用于度量两个有序变量之间的相关性。
除了相关系数,SPSS还会输出显著性水平(p值)。
p值用来衡量样本相关系数是否代表总体相关系数。
通常情况下,如果p值小于0.05,则我们可以认为样本相关系数是显著的。
接下来,我们将通过一个实际案例来说明相关性分析在SPSS中的应用。
假设我们想要研究体重和身高之间的相关性。
我们收集了100个人的身高和体重数据,现在想要分析这两个变量之间的关系。
首先,将身高数据输入到X变量中,将体重数据输入到Y变量中。
然后,在"协方差矩阵"部分不勾选选项,因为我们只关心相关性。
Correlations for Set-1
Y1Y2Y3
Y1 1.0000.9983.5012
Y2.9983 1.0000.5176
Y3.5012.5176 1.0000
第一组变量间的简单相关系数
Correlations for Set-2
X1X2X3X4X5X6X7X8X9X10X11X12X13 X1 1.0000-.3079-.7700-.7068-.6762-.7411-.7466-.5922-.1948-.1285-.2650-.9070-.6874 X2-.3079 1.0000-.0117.0103-.0613-.0283-.0140.3333.4161.3810.3831.1098-.0640 X3-.7700-.0117 1.0000.9905.9860.9973.9990.5892.0421-.0196.2492.9515.9903 X4-.7068.0103.9905 1.0000.9910.9935.9952.5634.0249-.0367.2476.9120.9953 X5-.6762-.0613.9860.9910 1.0000.9887.9912.5717.0363-.0277.2475.8972.9926 X6-.7411-.0283.9973.9935.9887 1.0000.9985.5563.0142-.0453.2210.9355.9950 X7-.7466-.0140.9990.9952.9912.9985 1.0000.5795.0319-.0298.2441.9390.9945 X8-.5922.3333.5892.5634.5717.5563.5795 1.0000.7097.6540.8990.6619.5138 X9-.1948.4161.0421.0249.0363.0142.0319.7097 1.0000.9922.8520.1350-.0228 X10-.1285.3810-.0196-.0367-.0277-.0453-.0298.6540.9922 1.0000.8184.0752-.0801 X11-.2650.3831.2492.2476.2475.2210.2441.8990.8520.8184 1.0000.3093.1840 X12-.9070.1098.9515.9120.8972.9355.9390.6619.1350.0752.3093 1.0000.9040 X13-.6874-.0640.9903.9953.9926.9950.9945.5138-.0228-.0801.1840.9040 1.0000
Correlations Between Set-1and Set-2
X1X2X3X4X5X6X7X8X9X10X11X12X13 Y1-.7542-.0147.9995.9940.9892.9989.9998.5788.0334-.0280.2426.9430.9937 Y2-.7280-.0234.9965.9958.9954.9977.9988.5859.0485-.0136.2573.9285.9949 Y3-.4485.2952.5096.4955.5230.4760.5048.9695.7610.7071.9073.5449.4500
Canonical Correlations
1 1.000
2 1.000
3 1.000
第一对典型变量的典型相关系数为CR1=1.....二三
Test that remaining correlations are zero:维度递减检验结果降维检验
Wilk's Chi-SQ DF Sig.
1.000.000.000.000
2.000.00024.000.000
3.000103.48911.000.000
此为检验相关系数是否显著的检验,原假设:相关系数为0,每行的检验都是对此行及以后各行所对应的典型相关系数的多元检验。
第一行看出,第一对典型变量的典型相关系数不是0的,相关性显著。
第二行sig值P=0.000>0.05,在5%显著性水平显著。
第三同二。
Standardized Canonical Coefficients for Set-1(标准化变量的典型相关的换算系数)123
Y112.146-1.52712.981
Y2-11.461 2.051-13.787
Y3-.422.599.986
Raw Canonical Coefficients for Set-1(原始变量的典型相关变量的换算系数)
123
Y1.002.000.002
Y2.000.000.000
Y3-.196.279.458
第一个典型变量的标准化典型系数为12.146和-11.461、-0.422。
Cv1-1=12.146Y1-11.461Y2-0.422Y3.同上
Standardized Canonical Coefficients for Set-2(典型负载系数)(结构相关系数:典型变量与原始变量之间的相关系数)
123
X1-.503-.350-1.854
X2.323.172 1.051
X3.991 1.263 3.796
X4-6.342-1.593-15.640
X5-1.616 3.256 6.526
X6-3.593-1.138-10.125
X78.644-2.0308.132
X8-2.506-.024-4.343
X9-2.187-1.566-8.282
X10 1.476 1.387 6.546
X11 2.048.667 5.396
X12.464-.195.207
X13 2.623.9597.123
Raw Canonical Coefficients for Set-2
123
X1-6.480-4.504-23.879
X28.591 4.58627.983
X3.000.000.001
X4-.008-.002-.020
X5-.008.016.031
X6-.002-.001-.006
X7.001.000.001
X8-1.013-.010-1.756
X9-.571-.409-2.162
X10.253.237 1.121
X11.677.221 1.784
X12.000.000.000
X13.000.000.000
Cv2-1=-0.503x1+0.323x2...........-2,-3同上
Canonical Loadings for Set-1
123
Y1.493.821-.288
Y2.445.837-.318
Y3-.267.896.355
Cross Loadings for Set-1
123
Y1.493.821-.288
Y2.445.837-.318
Y3-.267.896.355
Canonical Loadings for Set-2
123
X1-.627-.610-.195
X2-.035.151.423
X3.504.823-.262
X4.450.822-.338
X5.386.845-.367
X6.497.806-.319
X7.483.825-.294
X8-.094.899.392
X9-.472.504.515
X10-.482.439.522
X11-.385.701.497
X12.582.791-.023
X13.476.793-.375
Cross Loadings for Set-2
123
X1-.627-.610-.195
X2-.035.151.423
X3.504.823-.262
X4.450.822-.338
X5.386.845-.367
X6.497.806-.319
X7.483.825-.294
X8-.094.899.392
X9-.472.504.515
X10-.482.439.522
X11-.385.701.497
X12.582.791-.023
X13.476.793-.375
典型负荷系数和交叉负荷系数表
重叠系数分析
Redundancy Analysis:
Proportion of Variance of Set-1Explained by Its Own Can.Var.
Prop Var
CV1-1.171
CV1-2.726
CV1-3.103
Proportion of Variance of Set-1Explained by Opposite Can.Var.
Prop Var
CV2-1.171
CV2-2.726
CV2-3.103
Proportion of Variance of Set-2Explained by Its Own Can.Var.
Prop Var
CV2-1.204
CV2-2.523
CV2-3.139
Proportion of Variance of Set-2Explained by Opposite Can.Var.
Prop Var
CV1-1.204
CV1-2.523
CV1-3.139
0.171=CR1^2*0.171=1^2*0.171 0.204=CR1^2*0.204=1^2*0.204 ------END MATRIX-----。