行列式键盘接口
- 格式:ppt
- 大小:544.00 KB
- 文档页数:42
键盘接口设计键盘接口设计摘要:本文主要介绍了键盘的工作原理和六种键盘接口电路的结构及其按键的识别方法,可以满足各种应用场合对于键盘的要求。
关键词:独立式行列式阶梯式ADC Pin I/O Pin和ADC Pin 二极管一、引言键盘是基本的输入设备,在单片机应用系统中能实现向单片机输入数据、传送命令等功能,是人工干预单片机的主要手段。
下面介绍键盘的工作原理,键盘接口类型及其按键识别方法。
二、键盘的工作原理1、键盘输入的特点键盘实质上是一组按键开关的集合。
通常,键盘开关利用了机械触点的合、断作用。
一个电压信号通过键盘开关机械触点的断开、闭合,其行线电压输出波形如图1所示。
图1 键盘开关及其波形图1中T1和T3分别是按键的闭合和断开过程中的抖动期(呈现一串负脉冲),抖动时间长短和开关的机械特性有关,一般为5~10ms,T2为稳定的闭合期,其时间由按键动作所确定,一般为十分之几秒到几秒,T0、T4为断开期。
2、按键的确认按键的闭合与否,反映在行线输出电压上就是呈现高电平或低电平,如果高电平表示按键断开,低电平表示按键闭合,通过对行线电平高低状态的检测,便可确认按键按下与否。
为了确保MCU对一次按键动作只确认一次按键有效,必须消除抖动期T1和T3的影响。
3、软件消除按键抖动通常采用软件来消除按键抖动,基本思想是:在第一次检测到有键按下时,假设该键所对应的行线为低电平,执行一段延时10ms的子程序后,确认该行线电平是否仍为低电平,如果仍为低电平,则确认该行确实有按键按下。
当按键松开时,行线的低电平变为高电平,执行一段延时10ms的子程序后,检测该行线为高电平,说明按键确实已经松开。
三、键盘接口类型及原理1、独立式键盘接口独立式键盘就是各键相互独立,每个按键各接一个Input Pin,通过检测Input Pin的电平状态可以很容易的判断哪个按键被按下。
在按键数目较多时,独立式键盘电路需要较多的Input Pin,且电路结构繁杂,故此种键盘适用于按键较少或操作速度较高的场合。
第二讲 单片机与键盘接口1.键盘结构● 键盘结构:独立式键盘;行列式键盘。
● 按键识别法:扫描工作方式。
由程序调用键盘扫描子程序,读取按键值。
缺点是可能会丢失按键值。
中断式工作方式。
当按键有闭合时即产生中断请求,CPU 响应中断,读取按键值。
● 消抖动措施:双稳态消抖动电路;滤波消抖动电路;软件消抖动。
按键触点的机械抖动双稳态去抖电路VCC (+5 V)2. 独立式键盘接口设计独立式键盘是直接用I/O口线构成单个按键电路,每个按键占用1根I/O口线。
按键多时不宜采用。
上拉电阻保证按键断开后,I/O口线有确定的高电平。
当I/O口内部有上拉电阻时,外电路可以不接上拉电阻。
例题1:;S1键按下,P1.0连接的LED灯亮,再次按下,LED灯灭。
6MHz晶振,无按键释放判别。
(S1按键接P2.2口)ORG 0000HSETB P2.2NOPBEGIN: JB P2.2,BEGINACALL DL10MSJB P2.2,BEGINCPL P1.0AJMP BEGIN;----------------------------------DL10MS: MOV R6,#10 ;10mSDL1: MOV R7,#7DHDL0: NOPNOPDJNZ R7,DL0DJNZ R6,DL1RET;-----------------------------------END实验证明:该按键可靠性不高,工作不稳定。
例题2:;S1键按下,P1.0连接的LED灯亮,再次按下,LED灯灭。
6MHz晶振,有按键释放判别。
(S1按键接P2.2口)ORG 0000HSETB P2.2NOPBEGIN: JB P2.2,BEGINACALL DL10MSJB P2.2,BEGINL1: JNB P2.2,L1ACALL DL10MSJNB P2.2,L1CPL P1.0AJMP BEGIN;----------------------------------DL10MS: MOV R6,#10 ;10mSDL1: MOV R7,#7DHDL0: NOPNOPDJNZ R7,DL0DJNZ R6,DL1RET;-----------------------------------END实验证明:加入按键释放程序后该按键可靠性显著提高,工作稳定可靠。
FPGA学习心得——矩阵键盘1、行列式键盘概述为了减少键盘与单片机接口时所占用I/O口线的数目,在键数较多时,通常都将键盘排列成行列矩阵式,行列式键盘又叫矩阵式键盘。
用带有I/O口的线组成行列结构,按键设置在行列的交点上。
例如用2*2的行列结构可以构成4个键的键盘,4*4的行列结构可以构成有16个键的键盘。
这样,当按键数量平方增长时,I/O口线只是线性增长,这样就可以节省I/O口线。
2、行列式键盘原理教研室已有薄膜矩阵键盘,其实物图如图所示。
其电路原理图如下图所示。
由行列式键盘的原理可以知道,要正确地完成按键输入工作必须有按键扫描电路产生keydrv3~keydrv0信号。
同时还必须有按键译码电路从keydrv3~keydrv0信号和keyin3~keyin0信号中译码出按键的键值。
此外,一般还需要一个按键发生标志信号用于和其他模块接口,通知其它模块键盘上有按键动作发生,并可以从键盘模块中读取按键键值。
由于各个模块需要的时钟频率是不一样的,因此时钟产生模块就是用于产生各个模块需要的时钟信号。
因此得到键盘接口电路的结构如图2所示。
图2 键盘接口电路结构图行列式键盘电路的FPGA实现主要解决三个问题,一是如何检测是否有按键按下并防止采集到干扰信号;二是在按键闭合时如何防止抖动;三是如何判断为哪一个按键位动作,并对其进行译码。
因此,为了解决这些问题,程序中使用不同的进程分别实现键盘扫描信号的产生、键盘去抖以及键盘的译码。
3、源程序[plain]view plaincopy1.----------------------------------------------------------------------------------2.-- Company:3.-- Engineer:4.--5.-- Create Date: 08:46:57 07/31/20126.-- Design Name:7.-- Module Name: MatrixKeyboard - Behavioral8.-- Project Name:9.-- Target Devices:10.-- Tool versions:11.-- Description:12.--13.-- Dependencies:14.--15.-- Revision:16.-- Revision 0.01 - File Created17.-- Additional Comments:18.--19.----------------------------------------------------------------------------------20.library IEEE;e IEEE.STD_LOGIC_1164.ALL;e IEEE.STD_LOGIC_ARITH.ALL;e IEEE.STD_LOGIC_UNSIGNED.ALL;24.25.---- Uncomment the following library declaration if instantiating26.---- any Xilinx primitives in this code.27.--library UNISIM;28.--use UNISIM.VComponents.all;29.30.entity MatrixKeyboard is31. Port ( Clk : in STD_LOGIC;32. Reset : in STD_LOGIC;33. KeyIn : in STD_LOGIC_VECTOR (3 downto 0);34. KeyScan : out STD_LOGIC_VECTOR (3 downto 0);35. LED : out STD_LOGIC_VECTOR (3 downto 0)36. );37.end MatrixKeyboard;38.39.architecture Behavioral of MatrixKeyboard is40.41.Signal Clk_scan : STD_LOGIC := '0';42.Signal Clk_5ms : STD_LOGIC := '0';43.Signal Clk_2ms : STD_LOGIC := '0';44.Signal Key_Scan : STD_LOGIC_VECTOR(3 downto 0);45.Signal Key_Decode : STD_LOGIC_VECTOR(7 downto 0);46.47.Type State_Key is(st_key1,st_key2,st_key3,st_key4);48.Signal Current_Key : State_Key := st_key1;49.50.Type State_Scan is(st_scan1,st_scan2,st_scan3,st_scan4);51.Signal Current_Scan : State_Scan := st_scan1;52.53.begin54.55. Proc_Clk_5ms : process(Clk)56. variable cnt_clk : integer range 0 to 250000 := 0;57. begin58. if(rising_edge(Clk)) then59. if(cnt_clk < 125000) then60. cnt_clk := cnt_clk + 1;61. Clk_scan <= '0';62. elsif(cnt_clk < 249999) then63. cnt_clk := cnt_clk + 1;64. Clk_scan <= '1';65. else66. cnt_clk := 0;67. end if;68. Clk_5ms <= Clk_scan;69. end if;70. end process Proc_Clk_5ms;71.72. Proc_Clk_2ms : process(Clk)73. variable cnt_clk : integer range 0 to 100000 := 0;74. begin75. if(rising_edge(Clk)) then76. if(cnt_clk < 50000) then77. cnt_clk := cnt_clk + 1;78. Clk_2ms <= '0';79. elsif(cnt_clk < 99999) then80. cnt_clk := cnt_clk + 1;81. Clk_2ms <= '1';82. else83. cnt_clk := 0;84. end if;85. end if;86. end process Proc_Clk_2ms;87.88.89. Proc_Scan:process(Clk_5ms)90. begin91. if(rising_edge(Clk_5ms)) then92. case Current_Scan is93. when st_scan1 =>94. Key_Scan <= "1110";95. Current_Scan <= st_scan2;96. when st_scan2 =>97. Key_Scan <= "1101";98. Current_Scan <= st_scan3;99. when st_scan3 =>100. Key_Scan <= "1011";101. Current_Scan <= st_scan4;102. when st_scan4 =>103. Key_Scan <= "0111";104. Current_Scan <= st_scan1;105. end case;106. end if;107.108. end process Proc_Scan;109.110. KeyScan <= Key_Scan;111. Key_Decode <= Key_Scan & Keyin;112.113. Proc_Keyboard:process(Clk_2ms,Reset)114. variable cnt_btn : integer range 0 to 50000 := 0;115. begin116. if(Reset = '1') then117. LED <= x"1";118. Current_Key <= st_key1;119. elsif(falling_edge(Clk_2ms)) then120. case Current_Key is121. when st_key1 => --Check whether any keys are p ressed122. if((Keyin and "1111") = "1111") then123. Current_Key <= st_key1;124. else125. Current_Key <= st_key2;126. end if;127. when st_key2 => --keys debouncing128. if((Keyin and "1111") = "1111") then129. Current_Key <= st_key1;130. else131. case Key_Decode is132. when "11101110" => LED <= "0001";133. when "11101101" => LED <= "0010";134. when "11101011" => LED <= "0011";135. when "11100111" => LED <= "1010";136. when "11011110" => LED <= "0100";137. when "11011101" => LED <= "0101";138. when "11011011" => LED <= "0110";139. when "11010111" => LED <= "1011";140. when "10111110" => LED <= "0111";141. when "10111101" => LED <= "1000";142. when "10111011" => LED <= "1001";143. when "10110111" => LED <= "1100";144. when "01111110" => LED <= "1110";145. when "01111101" => LED <= "0000";146. when "01111011" => LED <= "1111";147. when "01110111" => LED <= "1101";when others => null;148. end case;149. end if;150. Current_Key <= st_key3;151. when st_key3 => --Check whether the pressed keys a re released152. if((Keyin and "1111") /= "1111") then153. Current_Key <= st_key3;154. else155. Current_Key <= st_key4;156. end if;157. when st_key4 => --keys debouncing158. if((Keyin and "1111") /= "1111") then159. Current_Key <= st_key3;160. else161. LED <= x"0";162. Current_Key <= st_key1;163. end if;164. end case;165. end if;166. end process Proc_Keyboard;167.168.end Behavioral;169.薄膜键盘矩阵键盘4x4 ,单片机开发配件,机械手按键。
学号姓名专业电气工程及其自动化班级实验5 行列式键盘实验一、实验目的(1)、学习掌握行列式键盘接口方法(2)、学习掌握行列式键盘编程方法。
二、实验内容用单片机P1口接4*4键盘,P0口接共阳数码管,编程实现键字的显示。
P1.0-P1.3为行,P1.4-P1.7为列。
先给端口设处置FEH,相当于给第一行置0,然后分写列值,如果对应的列值为0,说明该行与该列交叉处的键是按下的,接下来扫描第二行,与第一行的操作相同。
这就是行列式键盘扫描原理。
当扫描到某行的键按下时,就退出扫描,然后取键值,再将键值对应的额编码送P0端口显示。
三、实验设备计算机(已安装Keil和Proteus软件)元器件:A T89C51, CAP, CAP-ELEC, CRYSTAL, RES, 7SEG-COM-AN-GRN, RESPACK-7, BUTTON四、实验硬件电路实验源程序:#include<reg51.h>charled_mod[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x6f,0x77,0x7c,0x58,0x5e,0x79,0x7 1};charkey_buf[]={0xee,0xde,0xbe,0x7e,0xed,0xdd,0xbd,0x7d,0xeb,0xdb,0xbb,0x7b,0xe7,0xd7,0xb7,0x 77};char getkey(void){char key_scan[]={0xef,0xdf,0xbf,0x7f};char i=0,j=0;for(i=0;i<4;i++){P1=key_scan[i];if((P1&0x0f)!=0x0f){for(j=0;j<16;j++){if(key_buf[j]==P1)return j;}}}return -1;}void main(void){char key=0;P0=0x00;while(1){key=getkey();if(key!=1)P0=~led_mod[key]; }}五、实验要求(1)、根据实验内容设计相应的调试程序,并通过仿真,运行正确。
矩阵式键盘接口技术及程序设计在单片机系统中键盘中按钮数量较多时,为了减少I/O口的占用,常常将按钮排列成矩阵形式,如图1所示。
在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按钮加以连接。
这样,一个端口(如P1口)就能组成4*4=16个按钮,比之直接将端口线用于键盘多出了一倍,而且线数越多,区别越明显,比如再多加一条线就能组成20键的键盘,而直接用端口线则只能多出一键(9键)。
由此可见,在需要的键数比较多时,采用矩阵法来做键盘是合理的。
《单片机矩阵式键盘接口技术及编程接口图》矩阵式结构的键盘显然比直接法要复杂一些,识别也要复杂一些,上图中,列线通过电阻接正电源,并将行线所接的单片机的I/O口作为输出端,而列线所接的I/O口则作为输入。
这样,当按钮没有按下时,所有的输出端都是高电平,代表无键按下。
行线输出是低电平,一旦有键按下,则输入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了。
具体的识别及编程办法如下所述。
矩阵式键盘的按钮识别办法确定矩阵式键盘上何键被按下介绍一种“行扫描法”。
行扫描法行扫描法又称为逐行(或列)扫描查询法,是一种最常用的按钮识别办法,如上图所示键盘,介绍过程如下。
判断键盘中有无键按下将全部行线Y0-Y3置低电平,然后检测列线的状态。
只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4根行线相交叉的4个按钮之中。
若所有列线均为高电平,则键盘中无键按下。
判断闭合键所在的位置在确认有键按下后,即可进入确定具体闭合键的过程。
其办法是:依次将行线置为低电平,即在置某根行线为低电平时,其它线为高电平。
在确定某根行线位置为低电平后,再逐行检测各列线的电平状态。
若某列为低,则该列线与置为低电平的行线交叉处的按钮就是闭合的按钮。
下面给出一个具体的例程:图仍如上所示。
8031单片机的P1口用作键盘I/O口,键盘的列线接到P1口的低4位,键盘的行线接到P1口的高4位。
单片机与键盘或按键接口设计与实现方法单片机与键盘或按键接口设计是嵌入式系统开发中常见的任务,它可以实现通过键盘或按键输入控制单片机的功能。
本文将介绍单片机与键盘或按键接口设计的基本原理和实现方法。
一、基本原理单片机与键盘或按键接口设计的基本原理是通过将键盘或按键连接到单片机的IO口,利用IO口的输入功能来获取输入信号,并进行相应的处理。
在接口设计中,常见的有行列式键盘接口和矩阵式键盘接口两种方式。
1. 行列式键盘接口行列式键盘接口是一种常见的键盘接口设计方式。
它将键盘的行线和列线通过矩阵的方式连接到单片机的IO口。
当按下某个键时,单片机通过扫描每一行或每一列的电平变化,来检测按键的触发信号。
通过扫描方式,可以确定按下的键是哪一个。
行列式键盘接口的设计步骤如下:(1)将键盘的行线和列线分别连接到单片机的IO口。
(2)将行线接入IO口的输出引脚,并设置为高电平输出状态。
(3)将列线接入IO口的输入引脚,并设置为上拉输入状态。
(4)单片机通过改变行线的输出状态,逐行扫描键盘。
具体方法是将某一行的输出引脚设置为低电平,然后扫描各列的输入引脚,检测是否有低电平表示某个键被按下。
2. 矩阵式键盘接口矩阵式键盘接口是另一种常见的键盘接口设计方式。
它将键盘的每一个按键连接到单片机的IO口,通过设置IO口的输入输出模式和状态来检测按键的触发信号。
矩阵式键盘接口的设计步骤如下:(1)将键盘的每一个按键分别连接到单片机的IO口。
(2)将IO口的输入输出模式设置为相应的模式,如输入模式或输出模式。
(3)设置IO口的状态,如上拉输入状态或输出高电平状态。
(4)根据需要,单片机不断扫描每一个IO口,检测按键的触发信号。
二、实现方法实现单片机与键盘或按键接口可以使用各种软件开发工具,如Keil、IAR等,配合相应的编程语言,如C语言或汇编语言。
下面分别介绍两种接口设计的实现方法。
1. 行列式键盘接口实现方法在行列式键盘接口设计中,需要设置IO口的输入输出状态和扫描方法。
实验四:矩阵式键盘接口设计一、实验目的1.掌握独立式按键和矩阵式键盘结构和工作原理。
2.掌握矩阵式键盘的按键识别和扫描方法。
3.掌握独立式按键和矩阵式键盘的接口电路及其编程应用。
二、实验说明键盘的接口形式有两种:独立式按键接口和矩阵式键盘接口。
独立式按键是直接用I/O口构成的单个按键电路,其特点是每个按键单独占用一根I/O 口,每个按键的工作不会影响其它I/O口的状态。
独立式按键电路配置灵活,程序设计简单,但这种键盘占用硬件资源多,每个按键必须占用一根I/O口,因此,在按键较多时,I/O 口浪费较大,不宜采用。
矩阵式键盘由行线和列线组成,按键位于行、列线的交叉点上。
一个4×4的行、列结构可以构成一个含有16个按键的键盘,显然,在按键数量较多时,矩阵式键盘较之独立式按键键盘要节省很多I/O口。
矩阵式键盘中,行、列线分别连接到按键开关的两端,行线通过上拉电阻接到+5V 上。
当无键按下时,行线处于高电平状态;当有键按下时,行、列线将导通,此时,行线电平将由与此行线相连的列线电平决定。
这是识别按键是否按下的关键。
然而,矩阵键盘中的行线、列线和多个键相连,各按键按下与否均影响该键所在行线和列线的电平,各按键间将相互影响,因此,必须将行线、列线信号配合起来作适当处理,才能确定闭合键的位置。
识别按键的方法很多,其中,最常见的方法是扫描法。
按键按下时,与此键相连的行线与列线导通,行线在无键按下时处在高电平。
显然,如果让所有的列线也处在高电平,那么,按键按下与否不会引起行线电平的变化,因此,必须使所有列线处在低电平。
只有这样,当有键按下时,该键所在的行电平才会由高电平变为低电平。
CPU根据行电平的变化,便能判定相应的行有键按下。
在单片机应用系统中,键盘是人机对话不可缺少的组件之一。
在按键比较少时,我们可以一个单片机I/O口接一个按键,但当按键需要很多,I/O资源又比较紧张时,使用矩阵式键盘无疑是最好的选择。
常用键盘接口
常用按键接口可分为独立式按键接口、行列式按键接口和专用芯片式等。
具体采用哪种方式,可根据所设计系统的实际情况而定。
下面分别介绍这几种接口方式的优缺点及适用场合。
1.独立式按键接口
独立式按键接口设计优点是电路配置灵活,软件实现简单。
但缺点也很明显,每个按键需要占用一根口线,若按键数量较多,资源浪费将比较严重,电路结构也变得复杂。
因此本方法主要用于按键较少或对操作速度要求较高的场合。
软件实现时,可以采用中断方式,也可以采用查询方式,示意图如图所示。
图独立式键盘接口
2.行列式按键接口
行列式按键接口示意图如图(a)所示,其使用原理将在下节详细讲述。
行列式按键接口适应于按键数量较多,又不想使用专用键盘芯片的场合。
这种方式的按键接口由行线和列线组成,按键位于行、列的交叉点上。
这种方式的优点就是相对于独立接口方式可以节省很多I/O 资源,相对于专用芯片键盘可以节省成本,且更为灵活。
缺点就是需要用软件处理消抖、重键等。
行列式按键接口是一种老式的键盘接口,其键扫描方法是几乎所有PC 键盘所采用的方法。
tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
基于RS232行列式矩阵键盘接口的设计方案
一、引言
本方案是用VHDL语言来实现的基于RS232按位串行通信总线的行列式矩阵键盘接口电路,具有复位和串行数据的接收与发送功能,根据发光二极管led0-led2的显示状态可判断芯片的工作情况;实现所有电路功能的程序均是在美国ALTERA公司生产的具有现场可编程功能的芯片
EPM7128SLC84-15上调试通过的。
能通过动态扫描来判有键按下、将键值转换成对应的ASCII码值,在时钟脉冲的作用实现串行数据的接收与发送。
二、设计方案
1.芯片引脚定义
reset复位输入端;clk时钟输入端;rxd串行数据接收端;retn0-retn7。