七年级数学竞赛讲座:第五讲 方程组的解法
- 格式:doc
- 大小:253.00 KB
- 文档页数:11
初中数学竞赛专题选讲(1)未知数比方程个数多的方程组解法一、内容提要在一般情况下,解方程或方程组,未知数的个数总是与方程的个数相同的,但也有一些方程或方程组,所含的未知数的个数多于方程的个数,包括在列方程解应用题时,引入的辅助未知数.解这类方程或方程组,一般有两种情况:一是依题意只求其特殊解,如整数解,或几个未知数的和(积)等,无需求出所有的解;二是在实数范围内,可运用其性质,增加方程或不等式的个数. 例如,利用取值范围,非负数的性质等.二、例题例1. 在实数范围内,解下列方程或方程组:①0211122=++--+-y x x x ; ②x 2+xy+y 2-3x -3y+3=0;③⎩⎨⎧=-=++4222z xy z y x解:① 根据在实数范围内,二次根式被开方数是非负数,分母不等于零.得不等式组 ⎪⎩⎪⎨⎧≠-≥-≥-01010122x x x解得x 2=1而x ≠1, ∴⎩⎨⎧-=-=21y x② 整理为关于x 的二次方程,利用方程有实数根,则判别式 △≥0.x 2+(y -3)x+(y 2-3y+3)=0.∵x 是实数, ∴△≥0.即( y -3)2-4(y 2-3y+3)≥0 .解得 (y -1)2≤0 .而(y -1)2≥0. ∴y=1.∴⎩⎨⎧==11y x 是原方程的解.③消去一元后,利用实数平方是非负数性质.由①得z=2-x -y .代入②得2xy -(2-x -y)2-4=0.整理配方,得(x -2)2+(y -2)2=0.∵相加得0的两个数,只有是互为相反数.而 x, y 是实数,∴(x -2)2≥0,(y -2)2≥0.∴满足等式的条件只能是:⎩⎨⎧=-=-0202y x .∴方程组的解是 ⎪⎩⎪⎨⎧-===222z y x本题在消去z 后,也可以仿②,写成关于 x 的二次方程,用判别式求解.例2. 一个自然数除以4余1,除以5余2,除以11余4,求适合条件的最小自然数.分析:本题有多种解法:①交集法, ②设三元,消去一元,用二元一次方程求整数解,③设二元,求二元一次方程的整数解.解法一:除以4余1的自然数集合:{1,5,9,13,17,21,…37…};除以5余2的自然数集合:{2,7,12,17,…37…};除以11余4的自然数集合:{4,15,26,37,…}.三个集合的公共元素中最小的自然数是37.解法二:设所求的自然数 为4a+1或5b+2 或11c+4 (a,b,c 都是自然数).得方程组 ⎩⎨⎧+=++=+)2(41114)1(2514c a b a由(1)得 a=41415++=+b b b .设k b =+41(k 为正整数), 那么 b=4k -1, a=5k -1. 由(2)得 c=117911720113)15(41134-+=-=--=-k k k k a .要使1179-k 为整数,k 取最小正整数2.这时c=3 (也可求得b=7, a=9), 所求自然数 是37.解法三:设所求的自然数为x, 则41-x ,52-x , 114-x 都是自然数.∵41-x >52-x >114-x .∴41-x +114-x -52-x 也是自然数.设y=41-x +114-x -52-x .去分母,得 200y=31x -47.x=31163173147200+++=+y y y .y 取最小正整数5,能使31163+y 为整数.∴x=37, 即最小的自然数是37.例3. 有甲,乙,丙三种货物.若购买甲3件,乙7件,丙1件共需3.15元;若购买甲4件,乙10件,丙1件共需4.20元.问购买甲、乙、 丙各1件共需几元?(1985年全国初中数学联赛题)解:设甲,乙,丙每件分别为x, y, z 元.根据题意,得⎩⎨⎧=++=++)2(20.4104)1(15.373z y x z y x ( 依题意只要求出x+y+z 的值)(1)×3-(2)×2:x+y+z=1.05(元).答:买甲、乙、 丙各1件共需1.05元.例4. 甲、乙两车分别从A 、B 两站同时出发,相向而行,当甲车走完全程的一半时,乙车距A 站24公里;当乙车走完全程的一半时,甲车距B 站15公里.求A 、B 两站的距离.解:设A 、B 两站的距离为x 公里,并引入辅助未知数V 甲,V 乙分别表示甲、乙两车的速度. 根据题意,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=)2(215)1(242乙甲乙甲V x V x V x V x( 这方程组可同时消去两个辅助未知数.)∵ 方程(2)左、右不等于零 ∴(1)÷(2)得224152x x x x-=-.解得, x=40;或 x=12 (不合题意 舍去).答:A 、B 两站的距离为40公里.三、练习1. 甲,乙,丙,丁,戊做一件工程,甲,乙,丙合作需7.5小时,甲,丙戊合作需5小时,甲,丙,丁合作需6小时,乙,丁,戊合作需4小时.问五人合作需几小时?2. 服装厂向百货商店购买甲、乙两种布,共付42.9元,售货员收款时发现甲、乙两种布单价对调了,退给厂方1.6元,厂方把这1.6元又买 了甲、乙两种布各1尺.问服装厂共买布几尺?3. 两只船分别从河的两岸同时对开,速度保持不变,第一次相遇时,距河的一岸700米,继续前进到达对岸后立即返回,第二次相遇时,距河的另一岸400米,求河的宽.4. 游泳运动员自闽江逆流而上,在解放大桥把水壶丢失,继续前游20分钟才发现,于是返回追寻,在闽江大桥处追到,已知两桥相距1000米,求水流的速度.5. 已知长方形的长和宽均为整数,且周长的数值与面积的数值相等.问这长方形的长和宽各是多少?6. 有一队士兵,若排成3列纵队,则最后一行只有1人;若排成5列纵队,则最后一行只有7. 人;排成7列纵队,则最后一行只有6人.问这队士兵最少是几人?7. 求下列方程的实数解:①311221=++-+-y x x② 5x 2+6xy+2y 2-14x -8y+10=0③ (x 2+1)(y 2+4)=8xy④ 052312=+-+-+y x y x8. 一件工程,如果甲单独完成所需的时间是乙,丙合做,完成这件工程所需时间的a 倍;如果乙单独完成所需的时间是甲,丙合做,完成这件工程所需时间的b 倍.(其中b>a>1),那么丙单独完成所需的时间是甲,乙合做,完成这件工程所需时间的多少倍?(1990年泉州市初二数学双基赛题 )9. 甲,乙两车从东站,丙,丁两车从西站,同时相向而行.甲车行120公里遇丙车,再行20公里遇丁车;乙车在离西站126公里处遇丙车,在中途遇丁车.求东西两站的距离.10. 三辆车A ,B ,C 从甲到乙.B 比C 迟开5分钟,出发后20分钟追上C ;A 比B 迟开10分钟,出发后50分钟追上C.求A 出发后追上B 的时间.11. 学生若干人住宿,如果每间4人,有20人没房住;如果每间8人,则有一间不满也不空.求学生人数.12.一只船从甲码头顺水航行到乙码头用5小时,由乙码头逆水航行到甲码头需7小时。
初一数学方程与不等式解法总结解决方程的技巧分享数学中的方程与不等式是我们初中数学学习中的重要内容,通过解方程与不等式可以帮助我们解决各种实际问题。
然而,对于初一学生而言,方程与不等式的解题可能会比较困难。
因此,本文将总结初一数学中解决方程与不等式的技巧,以帮助同学们更好地理解与掌握这一知识点。
一、方程解法总结1. 一元一次方程的解法一元一次方程是最简单的方程类型,形如ax + b = 0。
解一元一次方程的基本步骤如下:- 将方程变形为ax = -b的形式;- 通过移项将x的系数化为1;- 利用等式两边相等的性质,解得x = -b/a的结果,即为方程的解。
2. 一元一次方程的应用一元一次方程在日常生活中有很多应用,如解决购物价格折扣、人物行走速度等问题。
在应用题中,我们需要:- 定义未知数及其含义;- 根据题目中给出的信息列出方程;- 解方程求得未知数的值;- 根据问题进行解释与回答。
3. 一元二次方程的解法一元二次方程形如ax^2 + bx + c = 0,其中a、b、c为常数且a ≠ 0。
解一元二次方程的步骤如下:- 利用配方法,将方程变形为(a·x + b/2a)^2 = (b^2 - 4ac)/4a^2的形式;- 开方并使用平方根的正负解得两个方程;- 通过解两个方程,得出方程的两个根。
4. 一元二次方程的判别式与解的情况一元二次方程的判别式D = b^2 - 4ac可以用来判断方程根的性质:- 若D > 0,方程有两个不相等的实数根;- 若D = 0,方程有两个相等的实数根;- 若D < 0,方程无实数根。
二、不等式解法总结1. 一元一次不等式的解法一元一次不等式是最简单的不等式类型,形如ax + b > c或ax + b < c。
解一元一次不等式的基本步骤如下:- 将不等式变形为ax > c - b或ax < c - b的形式;- 通过移项将x的系数化为1;- 根据不等式的方向确定解的范围。
七年级数学二元一次方程组解法教案优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!七年级数学二元一次方程组解法教案优秀7篇作为一位杰出的老师,可能需要进行教案编写工作,教案有利于教学水平的提高,有助于教研活动的开展。
如何有效解决初中数学中的方程组问题方程组问题是初中数学学习中较为重要的一个内容,对于学生来说,掌握解决方程组问题的方法,不仅能够提高解决数学问题的能力,还能够培养逻辑思维能力和数学建模能力。
本文将介绍如何有效解决初中数学中的方程组问题,帮助学生更好地掌握和运用解决方程组的方法。
一、化简方程组在解决方程组问题时,首先需要将方程组进行化简,即通过代数运算将方程组中的变量进行消去或整理,简化方程组的形式。
化简方程组可以减少计算量,使问题更加清晰明了。
例如,假设我们有一个方程组:2x + 3y = 54x - y = 7我们可以通过倍加、倍减等代数运算来实现方程组的化简。
将第二个方程的系数倍加到第一个方程上,得到:2x + 3y = 58x + 2y = 12经过化简后,原本的方程组被简化成了一个新的方程组,通过这个新的方程组,我们可以更方便地求解方程组的解。
二、代入法求解代入法是常用的解决方程组问题的方法之一。
它的基本思想是将一个方程的解代入另一个方程中,从而得到一个只含有一个未知数的方程,进而求解出这个未知数的值,最后再代入到另一个方程中求得另一个未知数的值。
例如,对于方程组:2x + 3y = 54x - y = 7我们可以先从第二个方程中解出y的值,然后将其代入第一个方程中,得到新的方程:2x + 3(4x - 7) = 5通过代入法,我们得到了只含有一个未知数的新方程。
通过求解这个新方程,可以得到x的值,再代入到原方程组中求得y的值。
三、消元法求解消元法是解决方程组问题的另一种常用方法。
它的基本思想是通过加减等代数运算,将方程组中某些方程中的某个未知数的系数相消,从而得到一个新的方程组,新的方程组中只包含减少了一个未知数的方程。
重复这个过程,逐步消去所有的未知数,最后得到一个只含有一个未知数的方程,从而求得这个未知数的值。
例如,对于方程组:2x + 3y = 5我们可以通过消元法,将第一个方程的2倍加到第二个方程上,得到:2x + 3y = 58x + 2y = 12然后,将第二个方程的4倍减去第一个方程,得到:2x + 3y = 5-2y = 2通过消元法,我们得到了只含有一个未知数的新方程。
第五讲方程组的解法
二元及多元(二元以上)一次方程组的求解,主要是通过同解变形进行消元,最终转化为一元一次方程来解决.所以,解方程组的基本思想是消元,主要的消元方法有代入消元和加减消元两种,下面结合例题予以介绍.
例1解方程组
解将原方程组改写为
由方程②得x=6+4y,代入①化简得
11y-4z=-19.④
由③得
2y+3z=4.⑤
④×3+⑤×4得
33y+8y=-57+16,
所以y=-1.
将y=-1代入⑤,得z=2.将y=-1代入②,得x=2.所以
为原方程组的解.
说明本题解法中,由①,②消x时,采用了代入消元法;解④,⑤组成的方程组时,若用代入法消元,无论消y,还是消z,都会出现分数系数,计算较繁,而利用两个方程中z的系数是一正一负,且系数的绝对值较小,采用加减消元法较简单.
解方程组消元时,是使用代入消元,还是使用加减消元,要根据方程的具体特点而定,灵活地采用各种方法与技巧,使解法简捷明快.
例2解方程组
解法1由①,④消x得
由⑥,⑦消元,得
解之得
将y=2代入①得x=1.将z=3代入③得u=4.所以
解法2由原方程组得
所以
x=5-2y=5-2(8-2z)
=-11+4z=-11+4(11-2u)
=33-8u=33-8(6-2x)
=-15+16x,
即x=-15+16x,解之得x=1.将x=1代入⑧得u=4.将u=4代入⑦得z=3.将z=3代入⑥得y=2.所以
为原方程组的解.
解法3①+②+③+④得
x+y+z+u=10,⑤
由⑤-(①+③)得
y+u=6,⑥
由①×2-④得
4y-u=4,⑦
⑥+⑦得y=2.以下略.
说明解法2很好地利用了本题方程组的特点,解法简捷、流畅.
例3解方程组
分析与解注意到各方程中同一未知数系数的关系,可以先得到下面四个二元方程:
①+②得
x+u=3,⑥
②+③得
y+v=5,⑦
③+④得
z+x=7,⑧
④+⑤得
u+y=9.⑨
又①+②+③+④+⑤得
x+y+z+u+v=15.⑩
⑩-⑥-⑦得z=7,把z=7代入⑧得x=0,把x=0代入⑥得u=3,把u=3代入⑨得y=6,把y=6代入⑦得v=-1.所以
为原方程组的解.
例4解方程组
解法1①×2+②得
由③得
代入④得
为原方程组的解.
为原方程组的解.
说明解法1称为整体处理法,即从整体上进行加减消元或代入消
为换元法,也就是干脆引入一个新的辅助元来代替原方程组中的“整体元”,从而简化方程组的求解过程.
例5已知
分析与解一般想法是利用方程组求出x,y,z的值之后,代入所求的代数式计算.但本题中方程组是由三个未知数两个方程组成的,因此无法求出x,y,z的确定有限解,但我们可以利用加减消元法将原方程组变形.
①-②消去x得
①×3+②消去y得
①×5+②×3消去z得
例6已知关于x,y的方程组
分别求出当a为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解.分析与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结为一元一次方程ax=b的形式进行讨论.但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零.解由①得
2y=(1+a)-ax,③
将③代入②得
(a-2)(a+1)x=(a-2)(a+2).④
(1)当(a-2)(a+1)≠0,即a≠2且a≠-1时,方程④有
因而原方程组有唯一一组解.
(2)当(a-2)(a+1)=0且(a-2)(a+2)≠0时,即a=-1时,方程④无解,因此原
方程组无解.
(3)当(a-2)(a+1)=0且(a-2)(a+2)=0时,即a=2时,方程④有无穷多个解,因此原方程组有无穷多组解.
例7已知关于x,y的二元一次方程
(a-1)x+(a+2)y+5-2a=0,
当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.
解法1根据题意,可分别令a=1,a=-2代入原方程得到一个方程组
将x=3,y=-1代入原方程得
(a-1)·3+(a+2)·(-1)+5-2a=0.
所以对任何a值
都是原方程的解.
说明取a=1为的是使方程中(a-1)x=0,方程无x项,可直接求出y值;取a=-2的道理类似.
解法2可将原方程变形为
a(x+y-2)-(x-2y-5)=0.
由于公共解与a无关,故有
例8甲、乙两人解方程组
原方程的解.
分析与解因为甲只看错了方程①中的a,所以甲所得到的解
4×(-3)-b×(-1)=-2.③
a×5+5×4=13.④
解由③,④联立的方程组得
所以原方程组应为
练习五
1.解方程组
2.若x1,x2,x3,x4,x5满足方程组
试确定3x4+2x5的值.
3.将式子3x2+2x-5写成a(x+1)2+b(x+1)+c的形式,试求
4.k为何值时,方程组
有唯一一组解;无解;无穷多解?
5.若方程组
的解满足x+y=0,试求m的值.。